JPS6158255B2 - - Google Patents

Info

Publication number
JPS6158255B2
JPS6158255B2 JP55041357A JP4135780A JPS6158255B2 JP S6158255 B2 JPS6158255 B2 JP S6158255B2 JP 55041357 A JP55041357 A JP 55041357A JP 4135780 A JP4135780 A JP 4135780A JP S6158255 B2 JPS6158255 B2 JP S6158255B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
positioning
feed motor
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041357A
Other languages
Japanese (ja)
Other versions
JPS56139836A (en
Inventor
Yutaka Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4135780A priority Critical patent/JPS56139836A/en
Publication of JPS56139836A publication Critical patent/JPS56139836A/en
Publication of JPS6158255B2 publication Critical patent/JPS6158255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/16Electric circuits specially adapted therefor, e.g. power supply for preventing short circuits or other abnormal discharges by altering machining parameters using adaptive control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 この発明は放電加工装置の電極位置決め方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode positioning method for an electric discharge machining apparatus.

周知のように放電加工装置においては、被加工
体の所望位置を加工するために、それに先だつて
加工用の電極を被加工体に対して位置決めするこ
とが必要である。
As is well known, in an electric discharge machining apparatus, in order to machine a desired position of a workpiece, it is necessary to position a machining electrode with respect to the workpiece in advance.

このため従来においては、電極の中心と被加工
体の加工中心とに印をつけ、電極と被加工体との
間にプリズムあるいはレンズを配置し、上記両方
の印が一致するように被加工体を移動させ、目的
の位置決めを行なつていた。
For this reason, in the past, the center of the electrode and the processing center of the workpiece were marked, a prism or lens was placed between the electrode and the workpiece, and the workpiece was placed so that both marks coincided. was moved to determine the desired position.

しかし、このような従来の方法では電極および
被加工体にプリズム等を配置しなければならず、
しかもその光軸は電極を取付けるスピンドルの軸
心と平行な関係を維持する必要があり、もしこれ
が満足されないと、位置決めに誤差を生ずるよう
になる。したがつてこのような構成によつては高
精度の位置決めは極めて困難であつた。
However, in such conventional methods, prisms etc. must be placed on the electrode and the workpiece,
Moreover, the optical axis needs to maintain a parallel relationship with the axis of the spindle on which the electrode is attached, and if this is not satisfied, errors will occur in positioning. Therefore, with such a configuration, highly accurate positioning is extremely difficult.

また従来より行なわれている電気的な電極位置
決め方法としては、電極と被加工体との接触を電
気的に検出し、これにより電極端面と被加工体端
面との相対位置を知る方法がある。この種の装置
としては第1図で示すものがあり、図において1
は加工用の電極、2は被加工体、3は本体コラ
ム、4はベツド、5は電極1のサーボ送りヘツ
ド、6はテーブル送りモータ、7はテーブル送り
モータ6に駆動される送りねじで、被加工体2を
載置する加工台8のめねじに係合し、被加工体2
を電極1に対して直角の方向に駆動させる。9は
短絡検出回路で、電極1と被加工体2とに電気的
に接続されており、両者の接触の有無を電気的に
検出して、駆動制御回路10に信号を送る。駆動
制御回路10は一般には数値制御装置等で構成さ
れており、紙テープ等を入力指令としてテーブル
送りモータ6を所望の方向へ駆動する。
Further, as a conventional electrical electrode positioning method, there is a method of electrically detecting the contact between the electrode and the workpiece, and thereby knowing the relative position between the end face of the electrode and the end face of the workpiece. This type of device is shown in Figure 1.
is an electrode for processing, 2 is a workpiece, 3 is a main column, 4 is a bed, 5 is a servo feed head of electrode 1, 6 is a table feed motor, 7 is a feed screw driven by the table feed motor 6, It engages with the female thread of the processing table 8 on which the workpiece 2 is placed, and
is driven in a direction perpendicular to the electrode 1. A short circuit detection circuit 9 is electrically connected to the electrode 1 and the workpiece 2, electrically detects whether or not there is contact between the two, and sends a signal to the drive control circuit 10. The drive control circuit 10 is generally composed of a numerical control device or the like, and drives the table feed motor 6 in a desired direction using a paper tape or the like as an input command.

次にこの動作について説明すると、駆動制御回
路10は位置決め指令を受けると送りモータ6を
駆動して、短絡検出回路9からの信号により電極
1と被加工体2が接触したことを知らされるまで
加工台8を駆動する。短絡検出回路9からの信号
により電極1と被加工体2の接触が知らされると
同時に送りモータ6は停止する様に構成されてお
り、電極1は被加工体2に対してわずかに接触し
ている様に位置決めされることになる。なお、以
上の説明では、X軸方向の端面位置決めについて
のみ説明したが、Y軸方向の端面位置決めも全く
同様に可能である。従つてX軸、Y軸の端面位置
決めができることになり、加工形状を電極1およ
び被加工体2の端面を基準として寸法指定するこ
とにより電極の位置決めが可能となる。
Next, to explain this operation, when the drive control circuit 10 receives a positioning command, it drives the feed motor 6 until it is informed by a signal from the short circuit detection circuit 9 that the electrode 1 and the workpiece 2 have contacted each other. The processing table 8 is driven. The feed motor 6 is configured to stop at the same time when the contact between the electrode 1 and the workpiece 2 is notified by a signal from the short circuit detection circuit 9, so that the electrode 1 slightly contacts the workpiece 2. It will be positioned as shown. In addition, in the above description, only the end face positioning in the X-axis direction was explained, but the end face positioning in the Y-axis direction is also possible in exactly the same way. Therefore, the end faces can be positioned on the X and Y axes, and the electrode can be positioned by specifying the dimensions of the machining shape with reference to the end faces of the electrode 1 and the workpiece 2.

しかしながら、一般には電極1および被加工体
2は精度を高めるため極めて剛性が高く設計され
ており、電極1と被加工体2が接触したままで送
りモータ6を駆動すると、電極1が破壊したり、
放電加工機全体に支障をもたらすことになる。従
つてこの様な電極位置決めは送りモータ6を極め
て低速にして行なわなければならない問題があつ
た。
However, in general, the electrode 1 and the workpiece 2 are designed to have extremely high rigidity in order to improve accuracy, and if the feed motor 6 is driven while the electrode 1 and the workpiece 2 are in contact, the electrode 1 may be damaged. ,
This will cause trouble to the entire electrical discharge machine. Therefore, there was a problem in that such electrode positioning had to be carried out with the feed motor 6 running at an extremely low speed.

以上のように従来の電極位置決め方法におい
て、光学方式で位置決めするものでは高精度位置
決めが困難であり、また電気による接触検出回路
を用いたものでは、接触と同時に送りモータ6を
停止させても、機械系の慣性により行き過ぎる問
題が生じ、このため送りモータ6は極めて低速と
なるので、位置決めに時間を費し、実用的な電極
位置決め方法とは言い難い欠点があつた。
As described above, in conventional electrode positioning methods, it is difficult to achieve high precision positioning when positioning is performed using an optical method, and when using an electrical contact detection circuit, even if the feed motor 6 is stopped at the same time as contact is made, The problem of overshooting occurs due to the inertia of the mechanical system, which causes the feed motor 6 to run at an extremely low speed, resulting in the disadvantage that positioning takes time and cannot be called a practical electrode positioning method.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、電極と被加工体と
の間に1000V程度以上の高電圧を印加し、電極と
被加工体の接近に伴う空気中における微小コロナ
放電電流により接近を検出し、放電により電極と
被加工体を損傷させることなく、更には、電極と
被加工体が機械的に接触する以前に送りモータの
速度を落として位置決めをすることにより、極め
て短時間の内に電極と被加工体との位置決めを正
確に行なう電極位置決め方法を提供することを目
的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it applies a high voltage of about 1000 V or more between the electrode and the workpiece, and removes air as the electrode and workpiece approach. The approach is detected by a minute corona discharge current inside, and the positioning is performed by reducing the speed of the feed motor before the electrode and workpiece come into mechanical contact, without damaging the electrode and workpiece due to discharge. It is an object of the present invention to provide an electrode positioning method that accurately positions an electrode and a workpiece within an extremely short period of time.

以下この発明の一実施例を図について説明す
る。第2図において、第1図と同一または相当部
分は同一符号で示しているので説明を省略し、1
1は電圧1000V程度以上の高圧電源、12はコロ
ナ放電の電流検出用抵抗器、13は電流検出用抵
抗器12に発生する電圧を検出する回路で、例え
ば演算増幅器等で構成されているコロナ放電検出
回路である。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 2, the same or corresponding parts as in Fig. 1 are indicated by the same reference numerals, so the explanation will be omitted.
1 is a high-voltage power supply with a voltage of about 1000 V or more, 12 is a resistor for detecting current of corona discharge, and 13 is a circuit for detecting the voltage generated in the current detecting resistor 12, for example, corona discharge consisting of an operational amplifier, etc. It is a detection circuit.

次にこの発明の動作について説明すると、電極
位置決め時には高圧電源11から電極1と被加工
体2間に高圧電圧を印加する。高圧電源11から
は、1000V程度以上の電圧が印加されているが、
電極1と被加工体2との間隔が大きい時にはコロ
ナ放電は発生しない。このため送りモータ6によ
り高速で加工台8が移動し、電極1が被加工体2
にある程度以上近づいた時点で、電極1と被加工
体2間に放電が発生するが、高圧電源11の内部
インピーダンスを極めて高く設計することによ
り、放電電流は10μA程度に抑えられ、アーク放
電には移行せずコロナ放電となる。コロナ放電の
電流値が極めて小さいため電極1および被加工体
2を損傷することはなく、また万一電極1等に触
れ感電しても電撃等は感じないことになる。コロ
ナ放電の発生により微小電流が抵抗器12を流れ
ると、その両端に電圧が発生するので、これが演
算増幅器等で構成されているコロナ放電検出回路
13を介して駆動制御回路10へ入力される。駆
動制御回路10はこの信号に基づいて送りモータ
6を停止させるか、あるいはその駆動を減速させ
て電極1と被加工体2との距離をより小さくする
ために高圧電源11の電圧を低くし、再度コロナ
放電が発生する時点または電極1と被加工体2と
が接触する時点で送りモータ6を停止させるよう
に作用するものである。
Next, the operation of the present invention will be described. When positioning the electrode, a high voltage is applied between the electrode 1 and the workpiece 2 from the high voltage power supply 11. A voltage of about 1000V or more is applied from the high voltage power supply 11,
When the distance between the electrode 1 and the workpiece 2 is large, no corona discharge occurs. Therefore, the processing table 8 is moved at high speed by the feed motor 6, and the electrode 1 is moved to the workpiece 2.
However, by designing the internal impedance of the high-voltage power supply 11 to be extremely high, the discharge current can be suppressed to about 10 μA, and arc discharge will not occur. There is no transition and corona discharge occurs. Since the current value of the corona discharge is extremely small, the electrode 1 and the workpiece 2 will not be damaged, and even if you touch the electrode 1 or the like and receive an electric shock, you will not feel any electric shock. When a minute current flows through the resistor 12 due to the occurrence of corona discharge, a voltage is generated across the resistor 12, which is input to the drive control circuit 10 via the corona discharge detection circuit 13, which is comprised of an operational amplifier or the like. Based on this signal, the drive control circuit 10 stops the feed motor 6 or decelerates its drive to lower the voltage of the high voltage power supply 11 in order to further reduce the distance between the electrode 1 and the workpiece 2. It acts to stop the feed motor 6 when corona discharge occurs again or when the electrode 1 and the workpiece 2 come into contact.

この発明は以上に述べたように、電極と被加工
体の接近は微少コロナ放電電流により検出し、電
極あるいは被加工物を損傷させることなく、電極
と被加工体が接触する以前に送りモータの速度を
落して位置決めをすることが可能となるから、最
初は高速で電極を移動することができ、そして低
速で最終的な位置決めをする距離は極めて短くで
きるので、位置決め完了までに要する時間は極め
て短縮され、かつ精度の高い位置決めが得られる
ことになる。
As described above, this invention detects the approach of the electrode and the workpiece using a minute corona discharge current, and the feed motor is activated before the electrode and the workpiece come into contact without damaging the electrode or the workpiece. Since it is possible to perform positioning at a reduced speed, the electrode can be moved at high speed initially, and the distance for final positioning at low speed can be extremely short, so the time required to complete positioning is extremely short. This results in shortened and highly accurate positioning.

また、より精密な位置決めを実現するためには
コロナ放電が発生すると同時に、送りモータ6の
駆動を減速させ高圧電源11の電圧を下げ、再び
コロナ放電が発生する時点または電極と被加工体
がかるく接触する時点まで電極を被加工体に接近
させて、停止することにより得られる。
In addition, in order to achieve more precise positioning, at the same time that corona discharge occurs, the drive of the feed motor 6 is decelerated and the voltage of the high-voltage power supply 11 is lowered, so that the point at which corona discharge occurs again or when the electrode and workpiece are slightly This is obtained by bringing the electrode close to the workpiece until contact is made and then stopping.

なお、高圧電源として10KHz程度以上の高周波
電源を使用すれば、比較的低電圧でもコロナ放電
が安定に発生し、高精度の位置決めが可能である
とともに、人体が電極に誤まつて触れた場合も高
周波による表皮効果のために、電流は人体の表面
のみを流れ極めて安全な装置となる。また誤まつ
て電極と被加工体との間にコンデンサー等が挿入
された場合も、直流電圧の電源では高圧に充電さ
れ電撃の可能性を生ずるが、高周波電源に対して
はコンデンサーはインピーダンスが低くなるため
高圧に充電されることなく極めて安全である。
In addition, if a high frequency power source of approximately 10 KHz or more is used as a high voltage power source, corona discharge will occur stably even at a relatively low voltage, making it possible to perform highly accurate positioning and to prevent the human body from accidentally touching the electrode. Due to the skin effect caused by the high frequency, the current flows only on the surface of the human body, making it an extremely safe device. Also, if a capacitor or the like is accidentally inserted between the electrode and the workpiece, it will be charged to a high voltage with a DC voltage power source, creating the possibility of electric shock, but capacitors have low impedance against high-frequency power sources. Therefore, it is extremely safe as it does not charge to high voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電極位置決め方法を説明する
図、第2図はこの発明の一実施例を示す説明図で
ある。 なお図中同一符号は同一または相当部分を示
し、1は加工電極、2は被加工体、5はサーボ送
りヘツド、6は送りモータ、10は駆動制御回
路、11は高圧電源、12はコロナ電流検出用抵
抗、13はコロナ放電検出回路である。
FIG. 1 is a diagram explaining a conventional electrode positioning method, and FIG. 2 is an explanatory diagram showing an embodiment of the present invention. Note that the same symbols in the figures indicate the same or equivalent parts, 1 is the processing electrode, 2 is the workpiece, 5 is the servo feed head, 6 is the feed motor, 10 is the drive control circuit, 11 is the high voltage power supply, and 12 is the corona current. The detection resistor 13 is a corona discharge detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電極と被加工体との間に高周波の高圧電圧を
印加し、電極と被加工体との接近によるコロナ放
電の発生を検出し、その検出信号により電極の位
置決め速度を減少させて被加工体に対する電極の
位置決めを行なう放電加工装置の電極位置決め方
法。
1 A high-frequency, high-voltage voltage is applied between the electrode and the workpiece, the occurrence of corona discharge due to the proximity of the electrode and the workpiece is detected, and the detection signal is used to reduce the positioning speed of the electrode to move the workpiece A method for positioning an electrode in an electrical discharge machining device.
JP4135780A 1980-03-31 1980-03-31 Electrospark machining apparatus Granted JPS56139836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4135780A JPS56139836A (en) 1980-03-31 1980-03-31 Electrospark machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4135780A JPS56139836A (en) 1980-03-31 1980-03-31 Electrospark machining apparatus

Publications (2)

Publication Number Publication Date
JPS56139836A JPS56139836A (en) 1981-10-31
JPS6158255B2 true JPS6158255B2 (en) 1986-12-10

Family

ID=12606237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4135780A Granted JPS56139836A (en) 1980-03-31 1980-03-31 Electrospark machining apparatus

Country Status (1)

Country Link
JP (1) JPS56139836A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625078B2 (en) * 1994-03-29 1997-06-25 栄電子工業株式会社 Method and apparatus for processing small diameter holes in substrate material
JP2614697B2 (en) * 1994-03-29 1997-05-28 栄電子工業株式会社 Small-diameter hole drilling apparatus and small-diameter hole drilling method using the same
DE19882531B4 (en) 1998-05-08 2004-07-08 Mitsubishi Denki K.K. Positioning device for an electrical discharge machine and associated method
JP6423832B2 (en) * 2016-08-24 2018-11-14 ファナック株式会社 Wire electric discharge machine and measuring method
TWI786638B (en) * 2021-05-18 2022-12-11 徠通科技股份有限公司 The method of quick edge-detecting in wedm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531567A (en) * 1978-08-28 1980-03-05 Inoue Japax Res Inc Spark machining device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531567A (en) * 1978-08-28 1980-03-05 Inoue Japax Res Inc Spark machining device

Also Published As

Publication number Publication date
JPS56139836A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
US4678976A (en) Path-controlled machining method
US4281385A (en) Control system for a machine tool
US4246577A (en) Tool breakage detecting apparatus
US4622450A (en) Method of measuring flexure value of wire electrode
JPS6158255B2 (en)
JPWO2004022275A1 (en) Wire electrical discharge machine
JPH0364254B2 (en)
JP3733538B2 (en) Positioning device and method for electric discharge machine
JP4017764B2 (en) Reference position positioning method in wire cut electric discharge machining
JPS6325889B2 (en)
JPS5953144A (en) Method of rapid positioning by contact detection
JP2698664B2 (en) Vertical equipment for wire electrode of wire electric discharge machine
JPS6311226A (en) Wire cut electric discharge machine
JPS601365Y2 (en) Contact detection head
JPS59166422A (en) Power supply working machine
JPH03121721A (en) Wire discharge machining process
JPS6157151B2 (en)
JPS63191552A (en) Numerically controlled (nc) machine tool equipped with measurement probe error compensation function
US4549062A (en) Low-power availability protection for electrical machining apparatus
JPS6374555A (en) Numerically controlled machine tool having measuring function
JPS6215022A (en) Electric discharge machining and device thereof
KR100417076B1 (en) A method of vertically setting wire in a wire electric discharging machine
JPS61288923A (en) Quill speed setter for electric discharge machine
SU1177096A1 (en) Automatic cutting-out electro-erosion machine
JPS639933B2 (en)