JPS6158174B2 - - Google Patents

Info

Publication number
JPS6158174B2
JPS6158174B2 JP59085118A JP8511884A JPS6158174B2 JP S6158174 B2 JPS6158174 B2 JP S6158174B2 JP 59085118 A JP59085118 A JP 59085118A JP 8511884 A JP8511884 A JP 8511884A JP S6158174 B2 JPS6158174 B2 JP S6158174B2
Authority
JP
Japan
Prior art keywords
shock wave
wave generation
explosive
micro
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59085118A
Other languages
Japanese (ja)
Other versions
JPS60232140A (en
Inventor
Kazuyoshi Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YACHODA SANGYO KK
Original Assignee
YACHODA SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YACHODA SANGYO KK filed Critical YACHODA SANGYO KK
Priority to JP59085118A priority Critical patent/JPS60232140A/en
Publication of JPS60232140A publication Critical patent/JPS60232140A/en
Publication of JPS6158174B2 publication Critical patent/JPS6158174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)

Description

【発明の詳細な説明】 本発明は、人体内に存在する結石を非侵襲的に
除去するために、非経皮的に結石を破砕する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for non-percutaneously crushing stones in order to non-invasively remove stones existing within the human body.

従来、人体内に存在する結石を除去するために
外科手術による観血的治療が行なわれてきた。一
方、近年、高電圧放電等により直接的に結石を破
砕し、体外に除去する方法が開発された。これ等
の直接的に結石を除去する方法によれば、結石の
ある人体の部位が体外より近い距離にある場合、
例えば膀胱結石に至る経路に充分な開口部と通路
があつてカテーテル等の器具を侵入させることが
できる場合には非経皮的にできるが、これらの器
具を体内に挿入する時に患者に精神的、肉体的に
苦痛を強いる。人体の深部例えば腎臓に結石があ
る場合には外科手術によるから、長期入院治療を
余儀なくされる。
Conventionally, open surgical treatment has been performed to remove stones existing in the human body. On the other hand, in recent years, methods have been developed to directly crush stones using high-voltage discharge or the like and remove them from the body. According to these methods of directly removing stones, if the part of the human body where the stone is located is closer than outside the body;
For example, it can be done non-percutaneously if there is a sufficient opening and passageway in the path leading to the bladder stone to allow the entry of instruments such as catheters, but it may be possible to do so non-percutaneously if the path leading to the bladder stone has a sufficient opening and passageway to allow the entry of instruments such as catheters. , causing physical pain. If the stone is located deep in the human body, such as in the kidney, surgery is required, requiring long-term hospital treatment.

また、近年、水中において12〜15KVの高電圧
放電により発生させた衝撃波を回転楕円体形状の
反射面によりフオーカスさせて人体外から結石に
当て破砕する方法が開発された。
In addition, in recent years, a method has been developed in which a shock wave generated by a high voltage discharge of 12 to 15 KV underwater is focused by a spheroid-shaped reflective surface and is applied to stones from outside the human body to crush them.

この方法は、間接的に結石を除去する方法であ
り、非侵襲的に結石を除去できるので、患者に精
神的、肉体的に苦痛を強いることがなく、長期入
院加療を要しない利点があるが、高電圧放電時の
漏洩により人体に電流が流れて感電傷害や必臓の
生理的収縮に影響を及ぼす恐れがあり、また、術
中患者の心臓、肺臓、脳等を監視及び管理する電
子計測器類に予期しない電気信号が入つて測定誤
差を生ずる。これらの不都合を無くそうとすると
特殊な回路装置を付加しなければならないから装
置全体が複雑になり、より高価となる。また、高
電圧放電による水中衝撃波は衝撃波の形状及びエ
ネルギを制御するのが困難なため、衝撃波をフオ
ーカスする領域に理想的に瞬間的に制御された高
圧を発生させることは不利である。
This method indirectly removes stones, and since stones can be removed non-invasively, it does not cause mental or physical pain to the patient, and has the advantage of not requiring long-term hospital treatment. , current may flow through the human body due to leakage during high-voltage discharge, causing electrical shock injuries and affecting essential physiological contractions, and electronic measuring instruments used to monitor and manage the patient's heart, lungs, brain, etc. during surgery. An unexpected electrical signal may enter the device, causing a measurement error. If these inconveniences are to be eliminated, a special circuit device must be added, making the entire device complex and expensive. Furthermore, since it is difficult to control the shape and energy of underwater shock waves caused by high voltage discharge, it is disadvantageous to ideally and instantaneously generate a controlled high pressure in the region where the shock waves are focused.

更にまた、衝撃波が結石以外の臓器、骨を破砕
したり影響を及ぼさないようにするために低いエ
ネルギ域で安定した放電を行なわせるには装置が
複雑になる。
Furthermore, in order to prevent the shock wave from crushing or affecting organs and bones other than stones, the device becomes complicated in order to perform stable discharge in a low energy range.

本発明は、以上に記述した欠点の無い水中衝撃
波による結石破砕装置を提供することをその目的
としたもので、内部が回転楕円体の一部の形状に
形成された衝撃波発生室と、該衝撃波発生室の開
口に連なり槽内に前記回転楕円体の第2焦点が形
成される人体浸漬用液槽とから成り、前記衝撃波
発生室内の第1焦点位置に衝撃波発生源が配置さ
れたものにおいて、該衝撃波発生源は微小爆薬か
ら成り、該微小爆薬を起爆手段により爆発させる
ようにしたことを特徴とする。
An object of the present invention is to provide a stone crushing device using underwater shock waves that does not have the drawbacks described above. comprising a human body immersion liquid tank connected to an opening of the generation chamber and in which a second focal point of the spheroid is formed, and a shock wave generation source is disposed at the first focal point within the shock wave generation chamber, The shock wave generation source is comprised of a micro-explosive, and the micro-explosive is detonated by a detonator.

以下本発明の実施例を図面につき説明する。図
において、1は金属又は合成樹脂製で内部が回転
楕円体の一部に形成された衝撃波発生室で、該衝
撃波発生室1の底部に光フアイバ2の一端を導入
し、前記回転楕円体の第1焦点位置に、側壁を貫
通するワイヤ3に取付けた微小爆薬4を配置する
ようにした。
Embodiments of the present invention will be described below with reference to the drawings. In the figure, reference numeral 1 denotes a shock wave generation chamber made of metal or synthetic resin and whose interior is formed as a part of a spheroid.One end of an optical fiber 2 is introduced into the bottom of the shock wave generation chamber 1, and the inside of the shock wave generation chamber 1 is formed into a part of a spheroid. A micro explosive 4 attached to a wire 3 penetrating the side wall was placed at the first focal point.

適宜間隔を置いて多数の微小爆薬4が取付けら
れたワイヤ3は滑車5により左右に移動自在と
し、複数個の微小爆薬4の爆発による大きな結石
の破砕が容易に行なえるようにした。
A wire 3 to which a large number of micro-explosives 4 are attached at appropriate intervals is movable left and right by a pulley 5, so that large stones can be easily crushed by exploding a plurality of micro-explosives 4.

前記光フアイバ2の他端はレーザ光発生装置6
に連なる。レーザ光発生装置6として、例えば容
量が50ミリジユール、パルス幅20ナノ砂のQスイ
ツチ付きルビーレーザあるいはQスイツチ付き
YAGレーザ等を使用する。
The other end of the optical fiber 2 is connected to a laser beam generator 6
Continuing to. As the laser light generator 6, for example, a ruby laser with a Q switch or a Q switch with a capacity of 50 millijoules and a pulse width of 20 nanometers is used.
Use YAG laser etc.

爆薬4として、アジ化鉛、トリシネート、デイ
アゾデイニトロフエノール(Diazo Dinitro
Phenol,D.D.N.P.)等の起爆薬を使用する。
Explosives 4 include lead azide, tricinate, and Diazo Dinitrophenol.
Use a detonator such as Phenol, DDNP).

また、図において7は底部の開口が衝撃波発生
室1の開口に連なる人体浸漬用液槽で、該液槽7
は、満たした液体8内に前記回転楕円体の第2焦
点9が形成されるような大きさで人体内の結石が
該第2焦点9に位置することができるものとし
た。10は一端が衝撃波発生室1の内壁面に沿つ
て向けられ、他端が液体タンクに連なる気泡除去
用水流ジエツトである。
In addition, in the figure, 7 is a human body immersion liquid tank whose bottom opening is connected to the opening of the shock wave generation chamber 1;
It is assumed that the size of the stone in the human body is such that the second focal point 9 of the spheroid is formed in the filled liquid 8 and that a stone in the human body can be located at the second focal point 9. Reference numeral 10 designates a water jet for removing air bubbles, with one end directed along the inner wall surface of the shock wave generation chamber 1 and the other end connected to the liquid tank.

次にその作動について説明する。 Next, its operation will be explained.

爆薬4の薬種により発生するエネルギーは、次
のような値である。すなわち、 1 アジ化鉛 1.5ジユール/mg、比重2g/cm3 2 トリシネート 1.8ジユール/mg 比重2g/cm3 3 D.D.N.P. 3.3ジユール/mg、 比重1.58g/cm3 また、爆薬の重量を変えて爆発時のフオーカス
域における圧力を測つたとき、例えば、アジ化鉛
5mgでは約2500気圧、10mgでは3000気圧の高圧が
発生し、圧力が爆薬の重量の立方根に比例するこ
とが判明している。
The energy generated by the type of explosive 4 is as follows. That is, 1. Lead azide 1.5 joules/mg, specific gravity 2 g/cm 3 2. Tricinate 1.8 joules/mg, specific gravity 2 g/cm 3 3. DDNP 3.3 joules/mg, specific gravity 1.58 g/cm 3 . When measuring the pressure in the focus region, for example, 5 mg of lead azide generates a high pressure of approximately 2,500 atmospheres, and 10 mg of lead azide generates a high pressure of 3,000 atmospheres, and it has been found that the pressure is proportional to the cube root of the weight of the explosive.

したがつて薬種と薬量を変更することにより、
予め最適なエネルギ量即ち圧力値を設定すること
ができる。加えて、爆薬の爆発による水中衝撃波
の圧力分布は、そのフオーカス後結石を破砕する
のに必要且つ十分な特性を有している。かくて、
例えばアジ化鉛5mgの微小爆薬4をワイヤ3上に
所定間隔を置いて多数個取付け、その1つを衝撃
波発生室1内の第1焦点に配置し、人体を液槽7
内の液体8に浸漬し、所定の手段により結石が第
2焦点9に位置するようにする。また水流ジエツ
ト10から水流を噴射させて衝撃波発生室1の内
壁に付着する気泡を除去し、衝撃波が気泡のため
に弱まらないようにする。次いで、レーザ光発生
装置6例えばQスイツチ付きルビーレーザを作動
させ、衝撃波発生室1に導入させる光フアイバ2
からパルス状レーザ光を放射させて爆薬4に照射
し、これを爆発させる。
Therefore, by changing the drug type and dosage,
An optimal energy amount, ie, pressure value, can be set in advance. In addition, the pressure distribution of the underwater shock wave caused by the explosion of the explosive has the necessary and sufficient characteristics to fragment the stone after its focus. Thus,
For example, a large number of micro-explosives 4 containing 5 mg of lead azide are attached to the wire 3 at predetermined intervals, one of them is placed at the first focal point in the shock wave generation chamber 1, and the human body is placed in the liquid tank 7.
The stone is immersed in the liquid 8 in the liquid 8, and the stone is positioned at the second focal point 9 by a predetermined means. In addition, a water jet 10 injects water to remove air bubbles adhering to the inner wall of the shock wave generating chamber 1, so that the shock wave is not weakened by the air bubbles. Next, the laser light generating device 6, for example, a ruby laser with a Q switch is activated, and the optical fiber 2 is introduced into the shock wave generating chamber 1.
The explosive 4 is irradiated with a pulsed laser beam and exploded.

例えばアジ化鉛5mgを爆発させた時、直径5mm
大のしゆう酸カルシウムから成る結石は1回でぐ
ずぐずとくずれるように粉砕された。
For example, when 5 mg of lead azide is exploded, the diameter is 5 mm.
A large stone made of calcium oxalate was shattered into pieces in one go.

更に大きな結石の場合には、ワイヤ3を滑車5
を回転させて移動し、爆薬4を結石が破砕される
までの間、次々に第1焦点位置に配置し、爆発さ
せる。1回当りの爆発エネルギは出来るだけ小さ
い方が結石以外の臓器等を破砕したり影響を及ぼ
すことが少ないので好ましい。
In the case of a larger stone, the wire 3 is connected to the pulley 5.
is rotated and moved, and the explosives 4 are successively placed at the first focal position and detonated until the stone is crushed. It is preferable that the explosive energy per blast be as small as possible, since it is less likely to crush or affect organs other than stones.

尚、前記実施例では微小爆薬の起爆手段として
レーザ光発生装置を使用したが、この代りに爆薬
の起爆手段として周知の電気加熱による起爆、導
火線による起爆、機械的衝撃による起爆の各手段
を使用してもよい。
In the above embodiment, a laser beam generator was used as a means for detonating the micro-explosive, but instead, well-known methods such as detonation by electric heating, detonation by a fuse, and detonation by mechanical shock are used as means for detonating the explosive. You may.

このように本発明によれば、衝撃波発生源とし
て、微小爆薬4を使用したので、従来の高電圧放
電による場合より衝撃波のエネルギ値を応範囲に
亘つて所定値に制御することが容易であり、ま
た、微小爆薬及びこれを爆発させるためのレーザ
光発生装置を使用したので、感電傷害や心臓の生
理的収縮を起す恐れがなく、また患者の心臓等を
監視する電子計測器類に測定誤差を与えることが
なく、更に装置の構成が簡単で安価である等の効
果を有する。
As described above, according to the present invention, since the micro explosive 4 is used as a shock wave generation source, it is easier to control the energy value of the shock wave to a predetermined value over a corresponding range than in the case of conventional high voltage discharge. In addition, because micro-explosives and a laser light generator to detonate them are used, there is no risk of electrical shock or physiological contraction of the heart, and there is no risk of measurement errors in electronic measuring instruments that monitor the patient's heart. Furthermore, the device has the advantage of being simple and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の線図である。 1……衝撃波発生室、2……光フアイバ、3…
…ワイヤ、4……爆薬、5……滑車、6……レー
ザ光発生装置、7……人体浸漬用液槽、8……液
体、9……回転楕円体の第2焦点、10……水流
ジエツト。
The drawing is a diagram of an embodiment of the invention. 1... Shock wave generation chamber, 2... Optical fiber, 3...
... Wire, 4 ... Explosive, 5 ... Pulley, 6 ... Laser light generator, 7 ... Liquid tank for human body immersion, 8 ... Liquid, 9 ... Second focus of spheroid, 10 ... Water flow Jet.

Claims (1)

【特許請求の範囲】 1 内部が回転楕円体の一部の形状に形成された
衝撃波発生室と、該衝撃波発生室の開口に連なり
槽内に前記回転楕円体の第2焦点が形成される人
体浸漬用液槽とから成り、前記衝撃波発生室内の
第1焦点位置に衝撃波発生源が配置されたものに
おいて、該衝撃波発生源は微小爆薬から成り、該
微小爆薬を起爆手段により爆発させるようにした
ことを特徴とする水中衝撃波による結石破砕装
置。 2 前記微小爆薬はアジ化鉛、トリシネート、デ
イアゾデイニトロフエノール等の起爆薬であるこ
とを特徴とする特許請求の範囲第1項記載の水中
衝撃波による結石破砕装置。
[Scope of Claims] 1. A shock wave generation chamber whose interior is formed in the shape of a part of a spheroid, and a human body in which a second focal point of the spheroid is formed in a tank connected to an opening of the shock wave generation chamber. and a liquid tank for immersion, and a shock wave generation source is disposed at a first focal point in the shock wave generation chamber, the shock wave generation source is composed of a micro-explosive, and the micro-explosive is detonated by a detonating means. A stone crushing device that uses underwater shock waves. 2. The stone crushing device using underwater shock waves according to claim 1, wherein the micro-explosive is an initiator such as lead azide, tricinate, diazodeinitrophenol, or the like.
JP59085118A 1984-04-28 1984-04-28 Stone crusher by underwater shock wave Granted JPS60232140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085118A JPS60232140A (en) 1984-04-28 1984-04-28 Stone crusher by underwater shock wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085118A JPS60232140A (en) 1984-04-28 1984-04-28 Stone crusher by underwater shock wave

Publications (2)

Publication Number Publication Date
JPS60232140A JPS60232140A (en) 1985-11-18
JPS6158174B2 true JPS6158174B2 (en) 1986-12-10

Family

ID=13849712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085118A Granted JPS60232140A (en) 1984-04-28 1984-04-28 Stone crusher by underwater shock wave

Country Status (1)

Country Link
JP (1) JPS60232140A (en)

Also Published As

Publication number Publication date
JPS60232140A (en) 1985-11-18

Similar Documents

Publication Publication Date Title
US3942531A (en) Apparatus for breaking-up, without contact, concrements present in the body of a living being
US20040162508A1 (en) Shock wave therapy method and device
Dretler Laser lithotripsy: a review of 20 years of research and clinical applications
US4887600A (en) Use of lasers to break down objects
US5409002A (en) Treatment system with localization
US8535249B2 (en) Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
US5071422A (en) Use of lasers to break down objects
EP0454312A2 (en) Method and apparatus for laser lithotripsy
JPH02252449A (en) Selective destruction apparatus for cell containing soft tissue and bone in vivo by internal destruction of bubble
WO1991010403A1 (en) Method and apparatus for fragmentation of hard substances
JPS635096B2 (en)
KR940000858B1 (en) Use of lazers to break down objects
US5407443A (en) Laser operation device
JP2004215862A (en) Shock wave producing device
Kuwahara et al. Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves
US4945898A (en) Power supply
Watanabe et al. Micro-explosion cystolithotripsy
JPS6158174B2 (en)
WO1990012545A1 (en) Method and apparatus for the removal of tattoos
Hayes et al. The effects of laser irradiation on the central nervous system: I. Preliminary studies
JPS61293447A (en) Apparatus for crushing stone by impact wave
KR100521247B1 (en) A thermo-hydraulic shock wave generator
JPH0611264B2 (en) Calculus crusher
Uchida et al. Percutaneous microexplosion nephrolithotripsy
JP2566776B2 (en) Shock wave therapy device