JPS6157406A - Tire for airplane - Google Patents
Tire for airplaneInfo
- Publication number
- JPS6157406A JPS6157406A JP59181432A JP18143284A JPS6157406A JP S6157406 A JPS6157406 A JP S6157406A JP 59181432 A JP59181432 A JP 59181432A JP 18143284 A JP18143284 A JP 18143284A JP S6157406 A JPS6157406 A JP S6157406A
- Authority
- JP
- Japan
- Prior art keywords
- cord
- tire
- carcass
- belt layer
- aircraft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C2200/00—Tyres specially adapted for particular applications
- B60C2200/02—Tyres specially adapted for particular applications for aircrafts
Landscapes
- Tires In General (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は十分な負荷能力を存し、航空機の離着陸速度
に耐え、且つ機体の緩衝が効果的に達成できる航空機用
タイヤに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aircraft tire that has sufficient load capacity, can withstand aircraft takeoff and landing speeds, and can effectively achieve airframe cushioning.
(従来技術)
最近航空機の発達は目覚ましいものがあり、機体重加及
び飛行速度の増大に伴い高速時の安全な離着陸とともに
高荷重、高速度に耐えうる特性は一層厳しくなっている
。特に航空機用タイヤが一般のタイヤと異なる要求特性
として次のものがある。(Prior Art) Aircraft have made remarkable progress in recent years, and as aircraft weight increases and flight speeds increase, the characteristics of safely taking off and landing at high speeds as well as withstanding high loads and high speeds are becoming increasingly strict. In particular, the following characteristics are required for aircraft tires that differ from general tires.
イ)航空機用タイヤは航空機が滑走路面に着陸する際の
衝撃を緩和し、かつ航空機を安全に停止させ、離陸を容
易ならしめることが必要であり、そのためこれらの観点
からタイヤの構造設計、タイヤ補強材の選定を行う必要
がある。b) Aircraft tires need to alleviate the impact when an aircraft lands on a runway, stop the aircraft safely, and facilitate takeoff. It is necessary to select reinforcing materials.
口)航空機用タイヤは機体の緩衝を効果的かつ離着陸を
安全ならしめるためタイヤの負荷時のたわみmが大きく
、例えば28%〜38%程度になるように設計されてい
る。そのため大きな繰り返し変形に充分耐えうるタイヤ
構造及び補強材の材質を選定する必要がある。Aircraft tires are designed to have a large deflection m under load, for example, about 28% to 38%, in order to effectively cushion the aircraft body and ensure safe takeoff and landing. Therefore, it is necessary to select a tire structure and reinforcing material that can sufficiently withstand large repeated deformations.
ハ)航空機用タイヤは機体重量をなるべく軽くするため
にタイヤの重量及び大きさが制限されるのでタイヤ1本
当りの負荷は極めて大きい。c) Since the weight and size of aircraft tires are limited in order to reduce the weight of the aircraft as much as possible, the load on each tire is extremely large.
例えば、一般のタイヤでは、標準状態における単位重量
当りの負担荷重は約50倍程度で有るのに対して、航空
機用タイヤの場合130〜360倍である。又使用内圧
についても一般タイヤではせいぜい8kg/cnf程度
までであるのに対して、航空機用タイヤの場合10〜1
6kg/cnlの極めて高圧である。したがってタイヤ
は充分これに耐えうる強度が必要である。For example, in a general tire, the load per unit weight in a standard state is about 50 times, whereas in the case of an aircraft tire, it is 130 to 360 times. Also, regarding the internal pressure used, general tires are at most about 8 kg/cnf, while aircraft tires are at about 10 to 1 kg/cnf.
The pressure is extremely high at 6 kg/cnl. Therefore, tires need to be strong enough to withstand this.
以上のごとく航空機用タイヤはこれらのすべての要求特
性を満足することが必要であるが、従来、この種のタイ
ヤとしてカーカスコードをプライ間で相互に交差するよ
うに構成したクロスプライ構造が多用されている。この
種の構造のタイヤはカーカスコードの配列方向に起因し
、トレンド部の剛性がひ<<、耐摩耗性及び発熱性の面
で好ましくない。更にタイヤの高速回転に伴う遠心力に
よりトレンド中央部が突出し、一時的、永久性なタイヤ
成長が起こりタイヤの耐久寿命の点で満足できるもので
はない。そこでカーカスコードをタイヤ半径方向に配列
したいわゆるラジアル構造を採用し、かつトレッド部内
側にタイヤ周方向に比較的浅い角度の高弾性コードを配
列したベルト層を配置することによりトレッド部の剛性
を高めたラジアルタイヤが最近使用されることとなった
。この種のラジアルタイヤはそのカーカスコードがラジ
アル方向に配列され、しかもベルト層の高弾性コードが
タイヤ周方向に浅い角度で配列されているため離着陸時
の衝%?$1和効果に劣るという問題があり、またベル
ト層の両端部における大きな歪み量に起因する損傷の発
生という問題がある。As mentioned above, it is necessary for aircraft tires to satisfy all of these required characteristics, but conventionally, this type of tire has often used a cross-ply structure in which the carcass cords are configured to cross each other between the plies. ing. Due to the direction in which the carcass cords are arranged, tires with this type of structure have low rigidity in the trend section, which is unfavorable in terms of wear resistance and heat generation. Furthermore, the center of the trend protrudes due to centrifugal force accompanying high-speed rotation of the tire, causing temporary and permanent tire growth, which is unsatisfactory in terms of tire durability. Therefore, we adopted a so-called radial structure in which carcass cords are arranged in the tire's radial direction, and by placing a belt layer on the inside of the tread in which highly elastic cords are arranged at a relatively shallow angle in the circumferential direction of the tire, we increase the rigidity of the tread. Recently, radial tires have come into use. In this type of radial tire, the carcass cords are arranged in the radial direction, and the high-elastic cords in the belt layer are arranged at a shallow angle in the tire circumferential direction, so the collision rate during takeoff and landing is low. There is a problem that the $1 sum effect is inferior, and there is also a problem that damage occurs due to a large amount of strain at both ends of the belt layer.
(解決しようとする問題点)
この発明はクロスプライ構造における耐摩耗性2発熱性
、タイヤの成長の問題点を解消したラジアル構造を基本
とし、カーカスコードの弾性率及びベルト層コードの弾
性率を特定し更にはベルト層を特定構造とすることによ
り従来のラジアル構造の欠点である航空機の離着陸時の
衝撃緩和効果を高めかつベルト層両端の損傷を防止した
航空機用タイヤを提供することを目的とする。(Problems to be Solved) This invention is based on a radial structure that solves the problems of wear resistance, heat generation, and tire growth in the cross-ply structure, and improves the elastic modulus of the carcass cord and the elastic modulus of the belt layer cord. It is an object of the present invention to provide an aircraft tire that improves the effect of mitigating shock during takeoff and landing of an aircraft and prevents damage to both ends of the belt layer, which is a disadvantage of conventional radial structures, by making the belt layer have a specific structure. do.
(問題点を解決するための技術手段)
この発明は左右一対のビードコアのまわりに両側を折り
返して係止され、コードがタイヤ赤道面に対して60°
〜90°の角度で配列されたカーカスと該カーカスの外
側に配置されコードがタイヤ赤道面に対して0°〜30
’ の角度で配列されたベルト層を備え、前記カーカス
および前記ベルト層のコードは引張弾性率が5000
kg/mm”以下の有機繊維コードであることを特徴と
する航空機用タイヤである。(Technical Means for Solving the Problems) In this invention, both sides are folded back and locked around a pair of left and right bead cores, and the cord is fixed at an angle of 60° with respect to the tire equatorial plane.
A carcass arranged at an angle of ~90° and a cord placed outside the carcass at an angle of 0° to 30° with respect to the tire equatorial plane.
The carcass and the cords of the belt layer have a tensile modulus of 5000.
This is an aircraft tire characterized by being made of an organic fiber cord having a weight of 1.5 kg/mm" or less.
以下図面にしたがって本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.
第1図は本発明のタイヤの断面図の右半分、第2図(イ
)及び第2図(ロ)はベルト層の概略図を示す。図にお
いてタイヤTはビードコア1のまわりを内側から外側に
がけて端部を折り返して係止される2枚のカーカスプラ
イ2.3とビードコア1のまわりを外側から内側にかけ
て端部を折り返して係止される1枚のカーカス4で構成
されるカーカスと該カーカスのクラウン部外側に有機繊
維コードよりなるベルト層5を有している。ここでカー
カス及びベルト層のコードの引張弾性率が5000 k
g/mm”以下、好ましくは1000 kg/mm”以
下の有機繊維コードで構成されている。航空機用タイヤ
は前述の如くタイヤ負荷時の撓み量が大きく、かつ高速
回転に伴なう繰り返し屈曲変形を受けることとなる。FIG. 1 shows the right half of the cross-sectional view of the tire of the present invention, and FIGS. 2(a) and 2(b) show schematic views of the belt layer. In the figure, the tire T consists of two carcass plies 2.3, which are secured by wrapping around the bead core 1 from the inside to the outside and folding back the ends. The carcass has a belt layer 5 made of organic fiber cords on the outside of the crown portion of the carcass. Here, the tensile modulus of the cord of the carcass and belt layer is 5000 k
It is composed of organic fiber cords with a weight of less than 1000 kg/mm, preferably less than 1000 kg/mm. As described above, aircraft tires have a large amount of deflection when loaded, and are subject to repeated bending deformation due to high-speed rotation.
したがって、航空機用タイヤは大変形下で子分な耐屈曲
疲労性を有することは勿論、カーカスとベルト層、両端
の境界付近における剛性の段差に起因する、カーカスと
ベル+−gの間のプライ剥離を防止することが重要とな
る。そこで本発明は、カーカスプライコード及びベルt
4コードのいずれにも比較的低い弾性率、特に5000
kg/mm”以下の有機繊維コードを用いることによ
り屈曲耐久性を高め、しかもカーカスコードとベルト層
コードの弾性率の値を近いものにしたためベルト層端部
における応力集中を効果的に抑制することを可能ならし
めたものである。Therefore, aircraft tires not only have excellent bending fatigue resistance under large deformations, but also the ply between the carcass and the belt layer due to the difference in stiffness near the boundary between the carcass and the belt layer at both ends. It is important to prevent peeling. Therefore, the present invention provides a carcass ply cord and a belt t-cord.
All four cords have relatively low modulus, especially 5000
By using an organic fiber cord with a weight of less than 100 kg/mm, the bending durability is increased, and the modulus of elasticity of the carcass cord and the belt layer cord are made close to each other, thereby effectively suppressing stress concentration at the end of the belt layer. This made it possible.
ここでカーカスコード及びベルト層コードとして一般に
用いられているコードの基本的物理特性を第1表に示す
。Table 1 shows the basic physical properties of cords commonly used as carcass cords and belt layer cords.
尚、本発明で用いられる有機繊維コードとして第1表に
記載のもののほか、ポリビニルアルコール系繊維、ポリ
塩化ビニリデン系繊維、ポリ塩化ビニル系繊維、ポリア
クリロニトリル系繊維、ポリエチレン系繊維、ポリウレ
タン系繊 ′維、セルローズ系繊維、セルロースエス
テル系繊維等の各種繊維が使用でき特に上記のうち引張
弾性率が1000 kg/mm”以下である有機繊維コ
ード、例えばナイロン66が好適である。In addition to the organic fiber cords listed in Table 1, organic fiber cords used in the present invention include polyvinyl alcohol fibers, polyvinylidene chloride fibers, polyvinyl chloride fibers, polyacrylonitrile fibers, polyethylene fibers, and polyurethane fibers. Various fibers such as fiber, cellulose fiber, and cellulose ester fiber can be used, and among the above organic fiber cords having a tensile modulus of 1000 kg/mm" or less, such as nylon 66, are particularly preferred.
そしてカーカスのコードとベルト層のコードは実質的に
同一の材質、例えばカーカスコード及びベルト層のコー
ドにいずれもナイロン66を用いることによりベルト層
のトレンド部から受ける繰り返し衝撃がカーカスによっ
て効果的に吸収緩和され、トレッド部の損傷が防止でき
る。The carcass cord and the belt layer cord are made of substantially the same material, for example, by using nylon 66 for both the carcass cord and the belt layer cord, the carcass effectively absorbs the repeated impact received from the trend part of the belt layer. This will help prevent damage to the tread.
尚、本発明ではベルト層のコードに比較的低弾性率のコ
ードを用いるためベルト層の“タガ効果”が低下する1
頃向にあり、したがって本発明ではベル)[を折り返し
たプライで構成することが好ましい。ここで折り返した
プライとは第3図(イ)〜第3図(ニ)に示す如く各種
の構成のものが採用できる。第3図(イ)はプライの両
端を一方の側に折り返した構造、第3図(ロ)は、プラ
イの一端のみを一方の側に折り返し短い折り返し部TI
を有する構造、第3図(ハ)は一端のみを折り返し、上
側のプライと下側のプライの長さをほぼ同じとした場合
、第3図(ニ)は1枚のプライで2ケ所の折り返し部を
形成した構造、第3図(ホ)はプライの両端をそれぞれ
反対方向に折り返して短い折り返し部Ta、Tbを形成
した構造を示している。In addition, in the present invention, since a cord with a relatively low elastic modulus is used for the cord of the belt layer, the "tag effect" of the belt layer is reduced1.
Therefore, according to the present invention, it is preferable to construct the bell) with a folded ply. Here, the folded ply can have various configurations as shown in FIGS. 3(a) to 3(d). Figure 3 (a) shows a structure in which both ends of the ply are folded back to one side, and Figure 3 (b) shows a short folded part TI in which only one end of the ply is folded back to one side.
Figure 3 (C) shows a structure in which only one end is folded back, and the upper and lower ply lengths are approximately the same. Figure 3 (D) shows a structure in which one ply is folded in two places. FIG. 3(E) shows a structure in which both ends of the ply are folded back in opposite directions to form short folded sections Ta and Tb.
本発明はこれらのプライ1種類以上、更にこれらのプラ
イに折り返していないプライを混在させて、ベルト層が
形成されるが、該ベルト層の両端部は前記折り返しプラ
イの折り返し部が位置するように形成することが好まし
い。In the present invention, a belt layer is formed by mixing one or more of these plies with unfolded plies, and both ends of the belt layer are formed such that the folded portions of the folded plies are located. It is preferable to form.
次に前記ベルト層のコードの角度はタイヤ周方向に対し
て30°以下、好ましくは10°〜20°の範囲に配列
される。一般にベルト層のコードは“タガ効果”とトレ
ンド部の“エンヘロープ効果”の調整を図って15°〜
45°の範囲に設定されていたが、特に航空機用タイヤ
では超高速回転にともなう遠心力によってタイヤクラウ
ン部が突出する現象、タイヤの成長の問題があり、この
現象を長時間41続するとタイヤの成長状態で永久セッ
トされ、発熱性が大きくなり耐久寿命は著しく低下する
ことになる。Next, the cords of the belt layer are arranged at an angle of 30° or less, preferably 10° to 20°, with respect to the tire circumferential direction. Generally, the cord of the belt layer is adjusted from 15 degrees to adjust the "tag effect" and the "engel rope effect" of the trend part.
It was set within a range of 45 degrees, but aircraft tires in particular have a phenomenon in which the tire crown protrudes due to the centrifugal force that accompanies ultra-high speed rotation, and there is a problem with tire growth, and if this phenomenon continues for a long time, the tire will deteriorate. It is permanently set in the growing state, and the heat generation increases, resulting in a significantly reduced durability life.
したがって上記観点からベルト層のコードをタイヤ周方
向に対して上述の如く比較的低い範囲に配列すること、
更にタイヤ周方向にコードを0゛に配列したバンドと併
用することが一層好ましい。Therefore, from the above point of view, arranging the cords of the belt layer in a relatively low range with respect to the tire circumferential direction as described above,
Furthermore, it is more preferable to use a band in which the cords are arranged at 0° in the circumferential direction of the tire.
尚、本発明のカーカスのコードはタイヤ周方向に対して
60°〜90°、好ましくは85゜以上に配列したラジ
アル又はセミラジアル構造である。ここでカーカスのコ
ード角度に90゜よりも小さい角度を存するプライを2
枚以上採用する場合はプライ間でコードが交差するよう
に配置することが好ましい。The carcass cords of the present invention have a radial or semi-radial structure arranged at an angle of 60° to 90°, preferably 85° or more, with respect to the tire circumferential direction. Here, two plies with an angle smaller than 90° in the cord angle of the carcass are
If more than one ply is used, it is preferable to arrange the cords so that they intersect between the plies.
尚、本発明ではベルト層端部下方でカーカスとの間にベ
ルト層端部を中心に両方に厚さを漸減するクッションゴ
ム6を配置することによりベルト層両端部における応力
集中を効果的に吸収、yi和することができる。クッシ
ョンゴム6は300%モジュラスが70〜150kg/
a(の範囲のものが使用される。更に本発明ではビード
コア1の上辺からサイドウオール方向に舌状のビードエ
ーペックス7を延設することができるが、このビードエ
ーペックス7はJIS硬度70〜95°でその高さはタ
イヤ断面高さの15〜50%の範囲に設定することが好
ましい。In addition, in the present invention, stress concentration at both ends of the belt layer is effectively absorbed by arranging the cushion rubber 6 whose thickness gradually decreases from both ends of the belt layer between the belt layer end and the carcass. , yi can be summed. Cushion rubber 6 has a 300% modulus of 70 to 150 kg/
In the present invention, a tongue-shaped bead apex 7 can be extended from the upper side of the bead core 1 toward the sidewall, but this bead apex 7 has a JIS hardness of 70 to 95 degrees. The height is preferably set within a range of 15 to 50% of the tire cross-sectional height.
又本発明ではカーカス及びヘルド層のトッピングゴムの
モジュラスはそのコードの弾性率に対応して比較的軟ら
かいゴム、例えば、300%gモジュラスが80〜16
0kg/cm、好ましくは90〜110kg/cJIl
の範囲のものが使用される。Further, in the present invention, the modulus of the topping rubber of the carcass and heald layer is a relatively soft rubber corresponding to the elastic modulus of the cord, for example, a 300% g modulus of 80 to 16.
0kg/cm, preferably 90-110kg/cJIl
range is used.
実施例
タイヤサイズ26 X 6.6の航空機用タイヤについ
て第1図に示す基本構造で、第2表の各仕様のタイヤを
試作して、各タイヤの耐久性を評価した。耐久性試験は
米国航空局規格で定めるTSO−C62Cテストに従っ
て破壊に至る離陸及びタクシ−シミュレーション回数を
示す。EXAMPLE Aircraft tires with a tire size of 26 x 6.6 had the basic structure shown in FIG. 1, and tires with various specifications shown in Table 2 were manufactured as prototypes, and the durability of each tire was evaluated. The durability test indicates the number of take-offs and taxi simulations leading to failure according to the TSO-C62C test defined by the National Civil Aviation Administration standard.
評価結果を示す第2表においてカーカス及びベルト層コ
ードのいずれにもナイロン66を用いた実施例1及び2
、カーカスコードにポリニスf)Lt、 ベルト層コー
ドにナイロン66’c用いた実施例3はいずれも耐久性
試験の規格に合格するものであることが認められる。In Table 2 showing the evaluation results, Examples 1 and 2 in which nylon 66 was used for both the carcass and the belt layer cord
, polyvarnish f) Lt for the carcass cord, and Example 3 in which nylon 66'c was used for the belt layer cord, all of which were found to pass the durability test standard.
(発明の効果)
上述の如く本発明の航空機用タイヤはカーカスコード及
びベルト層のコードのいずれにも比較的弾性率の低い特
定の有機繊維コードを用いたため、航空機の離着陸時の
高速回転下での機体の緩衝を効果的に達成し、しかも発
熱を抑制することにより耐久性に優れた航空機用タイヤ
が得られる。(Effects of the Invention) As described above, the aircraft tire of the present invention uses a specific organic fiber cord with a relatively low elastic modulus for both the carcass cord and the cord of the belt layer, so that it can withstand high speed rotation during takeoff and landing of an aircraft. By effectively achieving cushioning of the aircraft body and suppressing heat generation, an aircraft tire with excellent durability can be obtained.
第1図は本発明のタイヤの断面図の右半分、第2図(イ
)、第2図(ロ)及び第3図(イ)〜第3図(ホ)はベ
ルト層の断面図を示す。
T・・・タイヤ、
■・・・・ビードコア、
2.3.4・・・カーカスプライ
5・・・ベルト層
6・・・クッションゴム
7・・・ビードエーペックス
第1図Figure 1 shows the right half of the cross-sectional view of the tire of the present invention, and Figures 2 (A), 2 (B), and 3 (A) to 3 (E) show cross-sectional views of the belt layer. . T...Tire, ■...Bead core, 2.3.4...Carcass ply 5...Belt layer 6...Cushion rubber 7...Bead apex Figure 1
Claims (3)
て係止され、コードがタイヤ赤道面に対して60°〜9
0°の角度で配列されたカーカスと該カーカスの外側に
配置されコードがタイヤ赤道面に対して0°〜30°の
角度で配列されたベルト層を備え、前記カーカスおよび
前記ベルト層のコードは引張弾性率が5000kg/m
m^2以下の有機繊維コードであることを特徴とする航
空機用タイヤ。(1) Both ends are folded back and locked around a pair of left and right bead cores, and the cord is 60° to 90° to the tire equatorial plane.
A carcass arranged at an angle of 0° and a belt layer disposed outside the carcass and having cords arranged at an angle of 0° to 30° with respect to the tire equatorial plane, the carcass and the cords of the belt layer are arranged at an angle of 0° to 30° with respect to the tire equatorial plane. Tensile modulus is 5000kg/m
An aircraft tire characterized by being made of an organic fiber cord having a diameter of m^2 or less.
mm^2以下である特許請求の範囲第1項記載の航空機
用タイヤ。(2) The tensile modulus of the carcass cord is 1000 kg/
The aircraft tire according to claim 1, which has a diameter of mm^2 or less.
れている特許請求の範囲第1項記載の航空機用タイヤ。(3) The aircraft tire according to claim 1, wherein the belt layer is constituted by a folded ply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181432A JPH0741765B2 (en) | 1984-08-29 | 1984-08-29 | Aircraft tires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59181432A JPH0741765B2 (en) | 1984-08-29 | 1984-08-29 | Aircraft tires |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8017628A Division JPH08230410A (en) | 1996-02-02 | 1996-02-02 | Tire for airplane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6157406A true JPS6157406A (en) | 1986-03-24 |
JPH0741765B2 JPH0741765B2 (en) | 1995-05-10 |
Family
ID=16100668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59181432A Expired - Lifetime JPH0741765B2 (en) | 1984-08-29 | 1984-08-29 | Aircraft tires |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741765B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237204A (en) * | 1985-03-28 | 1987-02-18 | Sumitomo Rubber Ind Ltd | Tire for aircraft |
JPS6346902A (en) * | 1986-03-31 | 1988-02-27 | Sumitomo Rubber Ind Ltd | Radial tire for aircraft and manufacture thereof |
JPH01122304U (en) * | 1988-02-17 | 1989-08-18 | ||
US5176769A (en) * | 1988-10-14 | 1993-01-05 | Bridgestone Corporation | Radial tire for aircraft including both a circumferential breaker ply and an intersecting breaker ply |
JP2008031568A (en) * | 2006-07-26 | 2008-02-14 | Toray Ind Inc | Ultrafine acrylic fiber sheet material and method for producing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57201704A (en) * | 1981-02-12 | 1982-12-10 | Michelin & Cie | Large load tire and its manufacture |
-
1984
- 1984-08-29 JP JP59181432A patent/JPH0741765B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57201704A (en) * | 1981-02-12 | 1982-12-10 | Michelin & Cie | Large load tire and its manufacture |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237204A (en) * | 1985-03-28 | 1987-02-18 | Sumitomo Rubber Ind Ltd | Tire for aircraft |
JPS6346902A (en) * | 1986-03-31 | 1988-02-27 | Sumitomo Rubber Ind Ltd | Radial tire for aircraft and manufacture thereof |
JPH01122304U (en) * | 1988-02-17 | 1989-08-18 | ||
US5176769A (en) * | 1988-10-14 | 1993-01-05 | Bridgestone Corporation | Radial tire for aircraft including both a circumferential breaker ply and an intersecting breaker ply |
JP2008031568A (en) * | 2006-07-26 | 2008-02-14 | Toray Ind Inc | Ultrafine acrylic fiber sheet material and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0741765B2 (en) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0174147B1 (en) | Airplane tyre | |
JP2012061892A (en) | Heavy duty tire | |
JPH08156533A (en) | Radial tire for high speed heavy road | |
JP2793672B2 (en) | High speed heavy duty tire | |
JP2612330B2 (en) | Aircraft tires | |
US5522443A (en) | High speed heavy duty tire and rim assembly whose tire includes a buffer layer in each bead portion | |
JPS6157407A (en) | Tire for airplane | |
JPS6157406A (en) | Tire for airplane | |
JPS6237204A (en) | Tire for aircraft | |
JPH0382606A (en) | High-speed heavy-load tire | |
JP2007326418A (en) | Pneumatic radial tire | |
JPH07144516A (en) | Tire for high speed and heavy load | |
JPH0545441B2 (en) | ||
JPS61196804A (en) | Tire for aircraft | |
JPS6171206A (en) | Tire for airplane | |
JPH0592709A (en) | High speed and heavy load tire | |
EP0393912B1 (en) | Bias tyre for aircraft | |
JPH0332904A (en) | Radial tire for high speed and heavy load | |
JPH02225105A (en) | Radial tire for high speed heavy load | |
JPS6349502A (en) | Tire for aeroplane | |
JP3081732B2 (en) | Radial tire for high speed heavy load | |
JPH0268207A (en) | Radial tire for heavy load and high speed | |
JPH08230410A (en) | Tire for airplane | |
JPH0481301A (en) | Tire for high speed and heavy load | |
JPH03125611A (en) | Tire for high speed heavy load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |