JPS6157059B2 - - Google Patents

Info

Publication number
JPS6157059B2
JPS6157059B2 JP56130727A JP13072781A JPS6157059B2 JP S6157059 B2 JPS6157059 B2 JP S6157059B2 JP 56130727 A JP56130727 A JP 56130727A JP 13072781 A JP13072781 A JP 13072781A JP S6157059 B2 JPS6157059 B2 JP S6157059B2
Authority
JP
Japan
Prior art keywords
mixing ratio
gas
amount
value
average mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56130727A
Other languages
Japanese (ja)
Other versions
JPS5834026A (en
Inventor
Riichi Adachi
Takao Takagi
Toshiaki Matsumoto
Masanori Omoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP56130727A priority Critical patent/JPS5834026A/en
Publication of JPS5834026A publication Critical patent/JPS5834026A/en
Publication of JPS6157059B2 publication Critical patent/JPS6157059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【発明の詳細な説明】 この発明は、二つの反応気体の混合比率制御方
法、さらに詳しくは、二つの気体を反応させ、か
つ各気体の残存量を基準値以下にする際の混合比
率制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for controlling the mixing ratio of two reaction gases, more specifically, a method for controlling the mixing ratio when two gases are reacted and the remaining amount of each gas is lower than a reference value. Regarding.

発電所などで原動機として使用されるガスター
ビンの排ガスには通常50〜100ppmの窒素酸化物
(以下NOxという)が含まれ、高温の排ガスは廃
熱ボイラに導かれ、廃熱回収されて大気に放出さ
れる。ところが、この排ガス中のNOxは大気汚
染の原因物質となるので国、地方公共団体がその
排出基準値を定めており、NOxの排出量を基準
値以下に抑えるために、排ガス中にアンモニア
(以下NH3という)を注入し、廃熱ボイラに設け
られた触媒反応装置でNOxとNH3を反応させて無
害物質の窒素と水に変えている。この反応によ
り、NOxとNH3の混合比率(モル比)を約1:1
に保持すると残存NOx量は入口NOx量の約1/
10に低下させることができる。注入NH3量の比率
を増加させると、残存NOx量をさらに低下させ
ることができるが、未反応の残存NH3量を増加さ
せることになり、逆に注入NH3量の比率を減少さ
せると残存NOx量が増加する。また、NOxとNH3
の反応率は反応温度によつて大きく左右され、排
ガス温度が350〜400℃の通常温度範囲では反応率
((入口NOx量−残存NOx量)/入口NOx量)は
約90%に保持できるが、ガスタービン起動直後や
低負荷時のように300℃前後の低温度範囲では反
応率は低下する。触媒反応装置入口におけるNH3
とNOxの混合比率(NH3/NOx(モル比))と残
存NOx量(Nm3/h)および残存NH3量(Nm3
h)との関係が第1図に示されており、曲線Aお
よびBは350〜400℃の通常温度範囲における残存
NOx量および残存NH3量を、曲線CおよびDは
250〜330℃の低温度範囲における残存NOx量お
よび残存NH3量をそれぞれ示している。また、Po
はNOxおよびNH3の排出基準値(たとえば5N
m3/h)を示している。R11およびR12は、それぞ
れ通常温度範囲において残存NOx量が基準値Po
と等しくなるときの混合比率および残存NH3量が
基準値Poと等しくなるときの混合比率を示し、
MR1はこれらの混合比率R11,R12の平均値(R11
+R12/2)(以下平均混合比率という)を示して
いる。またR21およびR22は、それぞれ低温度範囲
において残存NOx量が基準値Poと等しくなると
きの混合比率および残存NH3量が基準値Poと等し
くなるときの混合比率を示し、MR2はこれらの混
合比率R21,R22の平均混合比率(R21+R22/2)
を示している。ガスタービンの排ガスにNH3を注
入する場合、従来は、廃熱ボイラ出口のNOx排
出量を測定し、この測定値が設定基準値より大き
い場合には注入NH3量を増加させ、測定値が設定
基準値より小さい場合には注入NH3量を減少させ
ている。ところが、NOxとNH3の排出量をできる
だけ少なくし、かつNH3を増加させる方向と減少
させる方向の調整余裕a,bを等しくするために
は、NOxとNH3の混合比率が平均混合比率MR1
MR2となるように注入NH3量を制御するのが好ま
しい。また、排ガス温度が通常温度範囲にある場
合と低温度範囲にある場合とで平均混合比率
MR1,MR2が変化し、たとえば低温度範囲にある
にもかかわらず通常温度範囲の平均混合比率MR1
を用いて制御した場合には、残存NH3量P1が低温
度範囲の平均混合比率MR2を用いて制御した場合
の残存NH3量P2より大きくなり、好ましくない。
The exhaust gas from gas turbines used as prime movers in power plants, etc. usually contains 50 to 100 ppm of nitrogen oxides (hereinafter referred to as NOx), and the high-temperature exhaust gas is led to a waste heat boiler, where the waste heat is recovered and released into the atmosphere. released. However, since NOx in this exhaust gas is a substance that causes air pollution, the national and local governments have established emission standard values for it. NOx and NH 3 are injected into the waste heat boiler, and NOx and NH 3 are reacted in a catalytic reaction device installed in the waste heat boiler, converting them into the harmless substances nitrogen and water. This reaction increases the mixing ratio (molar ratio) of NOx and NH 3 to approximately 1:1.
When maintained at
Can be lowered to 10. Increasing the ratio of the amount of NH 3 injected can further reduce the amount of residual NOx, but this will increase the amount of unreacted residual NH 3 ; conversely, decreasing the ratio of the amount of NH 3 injected will reduce the amount of residual NOx. NOx amount increases. Also, NOx and NH3
The reaction rate is greatly affected by the reaction temperature, and the reaction rate ((inlet NOx amount - residual NOx amount) / inlet NOx amount) can be maintained at approximately 90% at the normal exhaust gas temperature range of 350 to 400°C. The reaction rate decreases in the low temperature range of around 300°C, such as immediately after the gas turbine starts up or under low load. NH3 at the catalytic reactor inlet
and NOx mixing ratio (NH 3 /NOx (molar ratio)), residual NOx amount (Nm 3 /h), and residual NH 3 amount (Nm 3 /
h) is shown in Figure 1, where curves A and B represent the residual temperature in the normal temperature range of 350 to 400°C.
Curves C and D represent the NOx amount and residual NH3 amount.
It shows the amount of residual NOx and the amount of residual NH3 in the low temperature range of 250 to 330°C. Also, Po
is the emission standard value for NOx and NH3 (e.g. 5N
m 3 /h). R 11 and R 12 each have a residual NOx amount at the standard value Po in the normal temperature range.
Indicates the mixing ratio when it becomes equal to and the mixing ratio when the amount of residual NH3 becomes equal to the reference value Po,
MR 1 is the average value of these mixing ratios R 11 and R 12 (R 11
+R 12 /2) (hereinafter referred to as average mixing ratio). Furthermore, R 21 and R 22 indicate the mixing ratio when the amount of residual NOx becomes equal to the reference value Po and the mixing ratio when the amount of residual NH 3 becomes equal to the reference value Po in the low temperature range, respectively. Average mixing ratio of R 21 and R 22 (R 21 + R 22 /2)
It shows. Conventionally, when injecting NH3 into the exhaust gas of a gas turbine, the amount of NOx emissions at the outlet of the waste heat boiler is measured, and if this measured value is larger than a set standard value, the amount of NH3 injected is increased and the measured value is increased. If it is smaller than the set standard value, the amount of NH 3 injected is reduced. However, in order to minimize the emissions of NOx and NH 3 and to equalize the adjustment margins a and b in the direction of increasing and decreasing NH 3 , the mixing ratio of NOx and NH 3 must be adjusted to the average mixing ratio MR. 1 ,
It is preferable to control the amount of NH 3 injected so that MR 2 is achieved. Also, the average mixing ratio when the exhaust gas temperature is in the normal temperature range and when it is in the low temperature range.
MR 1 and MR 2 change, for example, even though it is in the low temperature range, the average mixing ratio MR 1 in the normal temperature range
When controlled using MR, the residual NH 3 amount P 1 becomes larger than the residual NH 3 amount P 2 when controlled using the average mixing ratio MR 2 in the low temperature range, which is not preferable.

この発明の目的は、二つの気体を反応させる場
合に、気体温度が変動しても、両方の気体の残存
量をできるだけ少なくすることができる二つの反
応気体の混合比率制御方法を提供することにあ
る。
An object of the present invention is to provide a method for controlling the mixing ratio of two reaction gases, which can minimize the remaining amount of both gases even if the gas temperature fluctuates when the two gases are reacted. be.

この発明による制御方法は、上記の目的を達成
するため、第1の気体と第2の気体を反応させ、
かつ各気体の残存量を基準値以下にするに際し、
第1の気体の残存量が基準値と等しくなるときの
二つの気体の混合比率と第2の気体の残存量が基
準値と等しくなるときの二つの気体の混合比率と
の平均を平均混合比率とし、一定の温度範囲にお
ける第1の気体の残存量と平均混合比率との関係
および基準値に対する平均混合比率と気体温度と
の関係を求めておき、気体温度、反応前の第1の
気体の量および反応後の第1の気体の残存量を測
定し、設定された基準値に対する平均混合比率を
求め、気体温度の測定値によりこの平均混合比率
を修正して平均混合比率の目標値を求め、第1の
気体の残存量の測定値より平均混合比率の測定値
を求め、この平均混合比率の測定値と平均混合比
率の目標値より平均混合比率の設定値を求め、こ
の設定値と反応前の第1の気体の量の測定値に基
いて第2の気体の供給量を制御することを特徴と
する。
In order to achieve the above object, the control method according to the present invention causes a first gas and a second gas to react,
And when reducing the residual amount of each gas to below the standard value,
The average mixing ratio is the average of the mixing ratio of the two gases when the remaining amount of the first gas becomes equal to the reference value and the mixing ratio of the two gases when the remaining amount of the second gas becomes equal to the reference value. The relationship between the residual amount of the first gas and the average mixing ratio in a certain temperature range and the relationship between the average mixing ratio and the gas temperature with respect to the reference value are determined, and the gas temperature and the amount of the first gas before the reaction are determined. The remaining amount of the first gas after the reaction is measured, the average mixing ratio is determined with respect to the set reference value, and this average mixing ratio is corrected based on the measured value of the gas temperature to determine the target value of the average mixing ratio. , find the measured value of the average mixing ratio from the measured value of the residual amount of the first gas, find the set value of the average mixing ratio from the measured value of this average mixing ratio and the target value of the average mixing ratio, and react with this set value. The method is characterized in that the supply amount of the second gas is controlled based on the previously measured value of the amount of the first gas.

以下図面を参照してこの発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は発電所などの大気汚染防止装置を示
し、この装置は、ガスタービン1の排ガスの流量
計およびNOx分析計2、排ガスにNH3を注入して
廃熱ボイラ3に送るNH3注入装置4、NH3供給管
5より供給されるNH3を希釈して注入装置4に送
るNH3混合希釈室6および希釈フアン7、NH3
給管5に設けられたNH3流量計8およびNH3流量
調節弁9、廃熱ボイラ3に設けられ排ガス中の
NOxとNH3を反応させて窒素と水を生成する触媒
反応装置10、触媒反応装置10の入口に設けら
れた温度計11、廃熱ボイラ3のガス排出管12
に設けられた残存NOx分析計13、ならびに排
ガスの流量計、NOx分析計2,13、NH3流量計
8および温度計11の出力に基いてNH3流量調節
弁9の開度を制御する制御装置14より構成され
ている。
Figure 2 shows an air pollution prevention device at a power plant, etc. This device includes a gas turbine 1 exhaust gas flow meter and NOx analyzer 2, an NH 3 injection device that injects NH 3 into the exhaust gas and sends it to a waste heat boiler 3 . A device 4, an NH 3 mixing dilution chamber 6 and a dilution fan 7, which dilute NH 3 supplied from the NH 3 supply pipe 5 and send it to the injection device 4, an NH 3 flow meter 8 provided in the NH 3 supply pipe 5, and an NH 3 3 Flow control valve 9 is installed in the waste heat boiler 3 to control the flow rate in the exhaust gas.
A catalytic reaction device 10 that generates nitrogen and water by reacting NOx and NH 3 , a thermometer 11 installed at the inlet of the catalytic reaction device 10 , and a gas discharge pipe 12 of the waste heat boiler 3
control for controlling the opening degree of the NH 3 flow rate control valve 9 based on the outputs of the residual NOx analyzer 13 provided in the NH 3 flow meter 13, the exhaust gas flow meter, the NOx analyzers 2, 13, the NH 3 flow meter 8, and the thermometer 11; It is composed of a device 14.

制御装置14の構成は第3図に示されている。
次にこれを参照して制御装置14の動作すなわち
この発明の制御方法の1例を説明する。
The configuration of the control device 14 is shown in FIG.
Next, with reference to this, the operation of the control device 14, that is, one example of the control method of the present invention will be explained.

ガスタービン1の排ガスの流量計15の出力
(Nm3/h)および廃ガスボイラ3出口のNOx分
析計13の出力(ppm)は乗算器16に送ら
れ、これにより廃ガスボイラ3出口のNOxの流
量すなわち排出される残存NOx量Q1(Nm3
h)が求められる。この残存NOx量の測定値Q1
は中央制御装置および現場に設置された排出基準
値設定器17,18の流量指示計19,20にそ
れぞれ送られる。二つの設定器17,18には
NOxの排出基準値を別々に設定することがで
き、切換器21によりこれらの設定値のいずれか
一方が選択されて演算器22に送られる。この演
算器22には第4図に示されているような通常温
度範囲における残存NOx量と平均混合比率との
関係が記憶されており、まず触媒反応装置10の
入口温度が通常温度範囲にあると仮定して平均混
合比率の参考値MRrが求められる。第1図のグ
ラフより明らかなように、通常温度範囲における
残存NOx量と平均混合比率との間には一定の関
係があり、第1図の曲線A,Bを使用し残存
NOx量を変化させてこれに対する平均混合比率
をプロツトすれば、第4図の曲線が得られる。な
お、第4図の残存NOx量と平均混合比率の関係
は、触媒反応装置10の脱硝触媒の劣化などによ
つて若干変化するので、経時変化を考慮してこれ
らの関係を適宜補正する。このようにして求めら
れた平均混合比率の参考値MRrおよび触媒反応
装置10の入口の温度計11の出力(℃)が温度
補償用の演算器23に送られ、これらに基いて平
均混合比率の目標値MRoが求められる。この演
算器23には第5図に示されているような反応温
度に対する平均混合比率の目標値MRoと参考値
MRrの比(以下温度補償係数という)の関係が
記憶されており、入力された参考値MRrと反応
温度測定値に対する温度補償係数の乗算により平
均混合比率の目標値MRoが求められる。前述の
ように、第1図において、反応温度が変化すると
残存NOx量を表わす曲線A,Cおよび残存NH3
を表わす曲線B,Dが変化し、一定の排出基準値
に対する平均混合比率もこれに従つて変化する。
そして、一定の排出基準値(たとえばP0)に対
し、各反応温度における平均混合比率を求めてこ
れと通常温度範囲における平均混合比率(たとえ
ばMR1)との比をプロツトすることにより第5図
のグラフが得られる。このようにして得られた反
応温度と温度補償係数との関係は、排出基準値が
変化してもほぼ一定であり、係数は、約330℃以
上の通常温度範囲では1に近い一定値であり、
330〜250℃の間では反応温度の低下に従つて若干
小さくなり、250℃以下では0である。また、こ
れらの関係も、経時変化によつて若干変化するの
で、前記演算器22の場合と同様に適宜補正す
る。一方、残存NOx量の測定値Q1は、前記演算
器22と同一の演算器24にも送られ、この出力
がさらに前記温度補償用の演算器23と同一の演
算器25に送られる。この演算器25には前記温
度計11の出力が入力しており、これらにより平
均混合比率の測定値MRcが求められる。平均混
合比率の目標値MRoおよび測定値MRcは平均混
合比率調節計26に送られ、この調節計26は、
測定値MRcが目標値MRoに近づくように平均混
合比率の設定値MRmを出力する。この設定値
MRmは、たとえば、測定値MRcが目標値MRoよ
り大きい場合にはその差に応じて目標値MRoよ
り小さい値に、測定値MRcが目標値MRoより小
さい場合にはその差に応じて目標値MRoより大
きい値に決められる。平均混合比率の設定値
MRmは、リミツタ27により一定範囲内に抑え
られ、乗算器28に送られる。一方、この乗算器
28には排ガス中のNOx分析計2の出力が送ら
れており、これらにより注入NH3量の設定値Q2
(Nm3/h)が求められてNH3流量指示調節計2
9に送られる。この調節計29には、NH3供給管
5の流量計8の出力(Nm3/h)が送られてお
り、調節計29は、流量計8による測定値が設定
値Q2と等しくなるようにNH3供給管5の流量調節
弁9の開度を制御し、かつ流量を指示する。ま
た、NH3供給管5には、通常開いている緊急遮断
弁30および通常閉じている緊急開放弁31が設
けられており、通常はNH3をNH3注入装置4に流
しているが、たとえば反応温度が250℃以下にな
つた場合など緊急時には、緊急遮断弁30を閉じ
るとともに緊気開放弁31を開いて、NH3注入装
置4にNH3が流れないようにする。
The output (Nm 3 /h) of the flow meter 15 of the exhaust gas of the gas turbine 1 and the output (ppm) of the NOx analyzer 13 at the outlet of the waste gas boiler 3 are sent to the multiplier 16, and thereby the flow rate of NOx at the outlet of the waste gas boiler 3 is In other words, the residual NOx amount Q 1 (Nm 3 /
h) is required. This measured value of residual NOx amount Q 1
is sent to the central control unit and flow rate indicators 19, 20 of discharge standard value setters 17, 18 installed at the site, respectively. The two setting devices 17 and 18 have
The NOx emission standard values can be set separately, and one of these set values is selected by the switch 21 and sent to the calculator 22. This calculator 22 stores the relationship between the amount of residual NOx and the average mixing ratio in the normal temperature range as shown in FIG. Assuming that, the reference value MRr of the average mixture ratio is calculated. As is clear from the graph in Figure 1, there is a certain relationship between the amount of residual NOx and the average mixing ratio in the normal temperature range.
By changing the amount of NOx and plotting the average mixing ratio against it, the curve shown in FIG. 4 is obtained. Note that the relationship between the amount of residual NOx and the average mixing ratio shown in FIG. 4 changes slightly due to deterioration of the denitrification catalyst in the catalytic reaction device 10, so these relationships are corrected as appropriate in consideration of changes over time. The reference value MRr of the average mixing ratio obtained in this way and the output (°C) of the thermometer 11 at the inlet of the catalytic reaction device 10 are sent to the temperature compensation calculator 23, and based on these, the average mixing ratio is calculated. The target value MRo is calculated. This calculator 23 stores the target value MRo and reference value of the average mixing ratio for the reaction temperature as shown in FIG.
The relationship between the ratio of MRr (hereinafter referred to as temperature compensation coefficient) is stored, and the target value MRo of the average mixing ratio is obtained by multiplying the input reference value MRr and the measured reaction temperature value by the temperature compensation coefficient. As mentioned above, in Fig. 1, when the reaction temperature changes, curves A and C representing the amount of residual NOx and curves B and D representing the amount of residual NH 3 change, and the average mixing ratio for a fixed emission standard value also changes. It changes according to.
Then, for a fixed emission standard value (for example, P 0 ), the average mixing ratio at each reaction temperature is determined and the ratio of this to the average mixing ratio in the normal temperature range (for example, MR 1 ) is plotted as shown in Figure 5. A graph of is obtained. The relationship between the reaction temperature and the temperature compensation coefficient obtained in this way is almost constant even if the emission standard value changes, and the coefficient is a constant value close to 1 in the normal temperature range of about 330°C or higher. ,
It becomes slightly smaller as the reaction temperature decreases between 330 and 250°C, and becomes 0 below 250°C. Furthermore, since these relationships change slightly over time, they are corrected as appropriate, as in the case of the arithmetic unit 22. On the other hand, the measured value Q 1 of the amount of residual NOx is also sent to the computing unit 24 which is the same as the computing unit 22, and the output thereof is further sent to the computing unit 25 which is the same as the computing unit 23 for temperature compensation. The output of the thermometer 11 is input to this calculator 25, and from these, the measured value MRc of the average mixing ratio is determined. The target value MRo and the measured value MRc of the average mixing ratio are sent to the average mixing ratio controller 26, and this controller 26
The set value MRm of the average mixing ratio is output so that the measured value MRc approaches the target value MRo. This setting value
For example, when the measured value MRc is larger than the target value MRo, MRm is set to a smaller value than the target value MRo according to the difference, and when the measured value MRc is smaller than the target value MRo, the target value MRo is set to a smaller value according to the difference. can be set to a larger value. Average mixing ratio setting value
MRm is suppressed within a certain range by a limiter 27 and sent to a multiplier 28. On the other hand, the output of the exhaust gas NOx analyzer 2 is sent to this multiplier 28, and the set value Q 2 of the amount of NH 3 to be injected is determined by these outputs.
(Nm 3 /h) is determined and the NH 3 flow rate indicator controller 2
Sent to 9th. The output (Nm 3 /h) of the flow meter 8 of the NH 3 supply pipe 5 is sent to this controller 29, and the controller 29 is configured so that the measured value by the flow meter 8 is equal to the set value Q 2 . The opening of the flow control valve 9 of the NH 3 supply pipe 5 is controlled and the flow rate is instructed. Further, the NH 3 supply pipe 5 is provided with an emergency shutoff valve 30 that is normally open and an emergency release valve 31 that is normally closed, and normally flows NH 3 to the NH 3 injection device 4, but for example, In an emergency such as when the reaction temperature falls below 250° C., the emergency shutoff valve 30 is closed and the emergency release valve 31 is opened to prevent NH 3 from flowing into the NH 3 injection device 4.

上記のような制御により、たとえば排出基準値
を第1図のPoに設定した場合、曲線A,Bで表
わされる通常温度範囲では、平均混合比率はMR1
に、残存NOx量はP3になり、曲線C,Dで表わ
される低温度範囲では、平均混合比率はMR2に、
残存NOx量はP4に、残存NH3量はP2になる。そし
て、いずれの場合にも、注入NH3量を増加させる
方向と減少させる方向の両方に等しい調節余裕
a,bが与えられる。
Through the above control, for example, if the emission standard value is set to Po in Figure 1, the average mixing ratio will be MR 1 in the normal temperature range represented by curves A and B.
, the residual NOx amount becomes P 3 , and in the low temperature range represented by curves C and D, the average mixing ratio becomes MR 2 ,
The amount of remaining NOx becomes P 4 , and the amount of remaining NH 3 becomes P 2 . In either case, equal adjustment margins a and b are provided both in the direction of increasing and in the direction of decreasing the amount of injected NH 3 .

以上のように、この発明の制御方法によれば、
第1の気体の残存量が基準値と等しくなるときの
二つの気体の混合比率と第2の気体の残存量が基
準値と等しくなるときの二つの気体の混合比率と
の平均を平均混合比率とし、二つの気体の混合比
率をこの平均混合比率となるように制御している
ので、二つの気体の残存量を両方ともできるだけ
少なくすることができる。また、一定の温度範囲
における第1の気体の残存量と平均混合比率との
関係および基準値に対する平均混合比率と気体温
度との関係を求めておき、気体温度、反応前の第
1の気体の量および反応後の第1の気体の残存量
を測定し、設定された基準値に対する平均混合比
率を求め、気体温度の測定値によりこの平均混合
比率を修正して平均混合比率の目標値を求め、第
1の気体の残存量の測定値より平均混合比率の測
定値を求め、この平均混合比率の測定値と平均混
合比率の目標値より平均混合比率の設定値を求
め、この設定値と反応前の第1の気体の量の測定
値に基いて第2の気体の供給量を制御するので、
気体温度が変化しても、常に両方の気体の残存量
をできるだけ少なくすることができる。
As described above, according to the control method of the present invention,
The average mixing ratio is the average of the mixing ratio of the two gases when the remaining amount of the first gas becomes equal to the reference value and the mixing ratio of the two gases when the remaining amount of the second gas becomes equal to the reference value. Since the mixing ratio of the two gases is controlled to be the average mixing ratio, the remaining amounts of both the two gases can be minimized as much as possible. In addition, the relationship between the residual amount of the first gas and the average mixing ratio in a certain temperature range and the relationship between the average mixing ratio and the gas temperature with respect to the reference value are determined, and the relationship between the gas temperature and the first gas before the reaction is determined. The remaining amount of the first gas after the reaction is measured, the average mixing ratio is determined with respect to the set reference value, and this average mixing ratio is corrected based on the measured value of the gas temperature to determine the target value of the average mixing ratio. , find the measured value of the average mixing ratio from the measured value of the residual amount of the first gas, find the set value of the average mixing ratio from the measured value of this average mixing ratio and the target value of the average mixing ratio, and react with this set value. Since the supply amount of the second gas is controlled based on the previously measured value of the amount of the first gas,
Even if the gas temperature changes, the remaining amount of both gases can always be kept as small as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二つの反応気体の混合比率とこれらの
気体の残存量との関係を表わすグラフ、第2図は
この発明を実施するための大気汚染防止装置の構
成図、第3図はその制御装置の構成図、第4図は
平均混合比率と残存NOx量との関係を表わすグ
ラフ、第5図は反応温度と温度補償係数との関係
を表わすグラフである。 1…ガスタービン、2,13…NOx分析計、
3…廃熱ボイラ、4…NH3注入装置、8…NH3
量計、9…NH3流量調節弁、10…触媒反応装
置、11…温度計、14…制御装置、17,18
…排出基準値設定器、22,23,24,25…
演算器、26…平均混合比率調節計。
Figure 1 is a graph showing the relationship between the mixing ratio of two reaction gases and the residual amount of these gases, Figure 2 is a block diagram of an air pollution prevention device for carrying out this invention, and Figure 3 is its control. FIG. 4 is a graph showing the relationship between the average mixing ratio and the amount of residual NOx, and FIG. 5 is a graph showing the relationship between the reaction temperature and the temperature compensation coefficient. 1...Gas turbine, 2,13...NOx analyzer,
3... Waste heat boiler, 4... NH 3 injection device, 8... NH 3 flow meter, 9... NH 3 flow control valve, 10... Catalyst reaction device, 11... Thermometer, 14... Control device, 17, 18
...Emission standard value setter, 22, 23, 24, 25...
Arithmetic unit, 26...average mixing ratio controller.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の気体と第2の気体を反応させ、かつ各
気体の残存量を基準値以下にするに際し、第1の
気体の残存量が基準値と等しくなるときの二つの
気体の混合比率と第2の気体の残存量が基準値と
等しくなるときの二つの気体の混合比率との平均
を平均混合比率とし、一定の温度範囲における第
1の気体の残存量と平均混合比率との関係および
基準値に対する平均混合比率と気体温度との関係
を求めておき、気体温度、反応前の第1の気体の
量および反応後の第1の気体の残存量を測定し、
設定された基準値に対する平均混合比率を求め、
気体温度の測定値によりこの平均混合比率を修正
して平均混合比率の目標値を求め、第1の気体の
残存量の測定値より平均混合比率の測定値を求
め、この平均混合比率の測定値と平均混合比率の
目標値より平均混合比率の設定値を求め、この設
定値と反応前の第1の気体の量の測定値に基いて
第2の気体の供給量を制御することを特徴とする
二つの反応気体の混合比率制御方法。
1. When reacting the first gas and the second gas and reducing the remaining amount of each gas to below the reference value, the mixing ratio of the two gases when the remaining amount of the first gas becomes equal to the reference value. The average mixing ratio of the two gases when the remaining amount of the second gas becomes equal to the reference value is defined as the average mixing ratio, and the relationship between the remaining amount of the first gas and the average mixing ratio in a certain temperature range. Determine the relationship between the average mixing ratio and gas temperature with respect to the reference value, measure the gas temperature, the amount of the first gas before the reaction, and the residual amount of the first gas after the reaction,
Find the average mixing ratio for the set standard value,
Correct this average mixing ratio based on the measured value of the gas temperature to obtain a target value of the average mixing ratio, obtain a measured value of the average mixing ratio from the measured value of the residual amount of the first gas, and calculate the measured value of this average mixing ratio. A set value of the average mixing ratio is determined from the target value of the average mixing ratio, and the supply amount of the second gas is controlled based on this set value and the measured value of the amount of the first gas before the reaction. A method for controlling the mixing ratio of two reaction gases.
JP56130727A 1981-08-19 1981-08-19 Method for controlling mixing ratio of two kinds of reactant gases Granted JPS5834026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130727A JPS5834026A (en) 1981-08-19 1981-08-19 Method for controlling mixing ratio of two kinds of reactant gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130727A JPS5834026A (en) 1981-08-19 1981-08-19 Method for controlling mixing ratio of two kinds of reactant gases

Publications (2)

Publication Number Publication Date
JPS5834026A JPS5834026A (en) 1983-02-28
JPS6157059B2 true JPS6157059B2 (en) 1986-12-05

Family

ID=15041181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130727A Granted JPS5834026A (en) 1981-08-19 1981-08-19 Method for controlling mixing ratio of two kinds of reactant gases

Country Status (1)

Country Link
JP (1) JPS5834026A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146606U (en) * 1984-08-30 1986-03-28 横河電機株式会社 process control equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673533A (en) * 1979-08-14 1981-06-18 Crosweller & Co Ltd W Liquid mixer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673533A (en) * 1979-08-14 1981-06-18 Crosweller & Co Ltd W Liquid mixer

Also Published As

Publication number Publication date
JPS5834026A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US4188190A (en) Input control method and means for nitrogen oxide removal means
JPH0342930B2 (en)
CN110501901B (en) SCR ammonia injection regulation optimization method based on full-load accurate denitration requirement
CN102654776A (en) Smoke denitration ammonia injection amount control method and device
US8783013B2 (en) Feedforward selective catalytic reduction system for turbine engines
CN107670474B (en) SNCR (selective non-catalytic reduction) denitration system control device and denitration control method
CN114307627B (en) Denitration adjusting method based on theoretical ammonia consumption
JP3574889B2 (en) Ammonia injection amount control method for denitration equipment
CN108919845B (en) Automatic control method for nitrogen oxide concentration of denitration system
JPS6157059B2 (en)
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JPH03264732A (en) Diesel engine
CN104791107A (en) Gas turbine combustion control device and method
JP2635643B2 (en) Denitration control device for gas turbine plant
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
JP3565607B2 (en) Method and apparatus for controlling amount of ammonia injection into denitration device
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
JP2797943B2 (en) Mixed gas calorie control device
JPH03196817A (en) Method for controlling amount of aqueous urea to be added to exhaust gas denitrator
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
CN113912083B (en) Method for improving urea pyrolysis rate of SCR pyrolysis furnace
JPH11218004A (en) Gas turbine operation monitoring device
JPS6114844B2 (en)
JPH0194924A (en) Method for controlling nh3 injection amount into dry denitration apparatus
JPS6342721A (en) Controlling device for injection amount of ammonia