JPS6156895B2 - - Google Patents
Info
- Publication number
- JPS6156895B2 JPS6156895B2 JP53147654A JP14765478A JPS6156895B2 JP S6156895 B2 JPS6156895 B2 JP S6156895B2 JP 53147654 A JP53147654 A JP 53147654A JP 14765478 A JP14765478 A JP 14765478A JP S6156895 B2 JPS6156895 B2 JP S6156895B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- surface acoustic
- acoustic wave
- input
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010897 surface acoustic wave method Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02818—Means for compensation or elimination of undesirable effects
- H03H9/02842—Means for compensation or elimination of undesirable effects of reflections
- H03H9/0285—Means for compensation or elimination of undesirable effects of reflections of triple transit echo
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02637—Details concerning reflective or coupling arrays
- H03H9/02685—Grating lines having particular arrangements
- H03H9/02708—Shifted grating lines
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】
本発明は弾性表面波装置のトリプル・トランジ
ツト・エコー(以下TTEと略す)の抑圧に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to suppressing triple transit echoes (hereinafter abbreviated as TTE) in surface acoustic wave devices.
弾性表面波装置は弾性表面波の速度が光速の約
1/105と小さく、また電極自身が周波数選択特性
をもつことから、小型で安定な遅延線、バンド・
パス・フイルタ等へ応用すべく、研究が行なわれ
ているが、その電気的特性で最も障害となるもの
の一つにTTEがある。これは希望波の遅延時間
の3倍の遅延時間で現われる妨害波で、通過域の
振幅・位相特性にリツプルとなつて現われる。
TTEには音響インピーダンスの不連続によつて
表面波がIDTの各電極で反射するMEL(Mass
Electrical Loading)と電気的負荷からの反射
RW(Regenerated Wave)の2つがあり、前者
はいわゆるスプリツト電極等によつて容易に除く
ことができるが、後者は仲々小さくできず、電気
的不整合によつて挿入損失を増やして小さくして
いる事が多い。 In surface acoustic wave devices, the speed of surface acoustic waves is approximately the speed of light.
Because it is small at 1/10 5 and the electrode itself has frequency selection characteristics, it can be used as a small and stable delay line, band
Research is being carried out to apply it to pass filters, etc., but one of the electrical characteristics that poses the greatest obstacle is TTE. This is an interference wave that appears with a delay time three times the delay time of the desired wave, and appears as ripples in the amplitude and phase characteristics of the passband.
In TTE, MEL (Mass
Electrical Loading) and reflections from electrical loads
There are two types of RW (Regenerated Wave), and the former can be easily removed using so-called split electrodes, but the latter cannot be reduced at all, and can be reduced by increasing insertion loss through electrical mismatch. There are many things.
しかし、スプリツト電極はその線幅の通常のソ
リツド電極の1/2になつてしまうので微細加工上
不利であり、またRWを抑圧するために電気的不
整合をとると通常5〜10dBの大きな挿入損失の
劣化を伴うという欠点がある。 However, split electrodes are disadvantageous in terms of microfabrication because their line width is half that of a normal solid electrode, and if electrical mismatch is made to suppress RW, a large insertion of 5 to 10 dB is usually required. It has the disadvantage of accompanied by loss deterioration.
第1図は従来の弾性表面波装置の基本的構成例
で、1は圧電基板、2は送信電極、3は受信電極
で、通常電極は図のように相互にくし形にかみ合
つた構造でIDT(Interdigital Transducer)すな
わち交叉指電極あるいはすだれ状電極と呼ばれ
る。4は弾性表面波、5は負荷抵抗である。動作
は、まず送信電極2に印加された交流電気信号は
弾性表面波4に変換され、圧電基板1の上を伝搬
して受信電極3に到着し、再びそこで電気信号に
変換されて負荷5に達する。 Figure 1 shows an example of the basic configuration of a conventional surface acoustic wave device. 1 is a piezoelectric substrate, 2 is a transmitting electrode, and 3 is a receiving electrode. Normally, the electrodes are interlocked with each other in a comb shape as shown in the figure. It is called an IDT (Interdigital Transducer), or interdigital electrode or interdigital electrode. 4 is a surface acoustic wave, and 5 is a load resistance. In operation, an alternating current electrical signal applied to the transmitting electrode 2 is first converted into a surface acoustic wave 4, propagates on the piezoelectric substrate 1, reaches the receiving electrode 3, where it is again converted into an electrical signal and transmitted to the load 5. reach
本発明はこれらの欠点を除去するため、電極指
の線幅を細くすることなしに、また挿入損失を大
きく劣化させることなしにTTEの抑圧をはかる
ことを目的としたもので、以下詳細に説明する。 In order to eliminate these drawbacks, the present invention aims to suppress TTE without narrowing the line width of electrode fingers or significantly deteriorating insertion loss, and will be described in detail below. do.
TTEは弾性表面波装置を実用化する上で大き
な障害となるので、十分抑圧する必要がある。 TTE is a major hindrance to putting surface acoustic wave devices into practical use, so it must be sufficiently suppressed.
第2図は本発明の実施例で、1〜4は第1図と
同一部品である。6は格子状のシールド電極であ
り、6′を上部、6″を下部とする。A,B,C,
D,E,F及びA′,B′,C′,D′,E′,F′はそれ
ぞれ弾性表面波の一部を表わす。通常送受信電極
2及び3の間に置かれるシールド電極6は、送受
信電極2及び3の間で直接電気的に結合するいわ
ゆる直達波を抑圧するのに用いられ、弾性表面波
フイルタにおいては阻止域の改善に効果がある。
その形状は通常単純な棒状(長方形)をとる事が
多い。 FIG. 2 shows an embodiment of the present invention, and numerals 1 to 4 are the same parts as in FIG. 1. 6 is a grid-shaped shield electrode, with 6' as the upper part and 6'' as the lower part.A, B, C,
D, E, F and A', B', C', D', E', F' each represent a part of the surface acoustic wave. The shield electrode 6, which is usually placed between the transmitting and receiving electrodes 2 and 3, is used to suppress so-called direct waves that are directly electrically coupled between the transmitting and receiving electrodes 2 and 3. Effective for improvement.
Its shape is usually a simple rod (rectangle).
しかし、本発明ではその長方形を変形し、第2
図の6の様に上部6′と下部6″をλ0/4(λ:
送信波長)だけくびれさせた格子状のシールド電
極を入出力電極の間に設けることにより、TTE
を十分に抑圧したものである。第2図において
は、2を送信電極、3を受信電極とすれば、A〜
F及びA′〜F′は受信電極3で反射した反射波
MEL及び第1図の負荷5で反射した反射波RWの
反射である。ここでE,E′はF,F′の反射もれ
の一部を、以下D,D′はE,E′の、C,C′は
D,D′の、B,B′はC,C′の、A,A′はB,
B′の反射もれの一部を反射する。AとA′は位相
差が180゜となつて打消し合い、以下シールド電
極6が板状であると反射は2回だけであるが、格
子状であれば格子の数の2倍回反射を行わせるこ
とができるので、十分に抑圧することができる。
BとB′〜FとF′はすべて打消し合つて消滅す
る。MELとRWのベクトル和である。TTEは上
記の過程を3度繰り返すため、相当量減衰する。 However, in the present invention, the rectangle is transformed and the second
As shown in figure 6, the upper part 6' and lower part 6'' are λ 0 /4 (λ:
By installing a grid-shaped shield electrode constricted by the transmission wavelength) between the input and output electrodes, TTE
has been sufficiently suppressed. In Fig. 2, if 2 is the transmitting electrode and 3 is the receiving electrode, then A~
F and A′ to F′ are the reflected waves reflected by the receiving electrode 3.
This is the reflection of the reflected wave RW reflected by the MEL and the load 5 in FIG. Here, E, E' are part of the reflection leakage of F, F', D, D' are E, E', C, C' are D, D', B, B' are C, C', A, A' is B,
A part of the reflection leakage of B′ is reflected. A and A' have a phase difference of 180° and cancel each other out.If the shield electrode 6 is plate-shaped, there will be only two reflections, but if it is grid-shaped, it will be reflected twice as many times as the number of grids. Since it can be made to occur, it can be sufficiently suppressed.
B and B' to F and F' all cancel each other out and disappear. It is the vector sum of MEL and RW. Since TTE repeats the above process three times, it is attenuated by a considerable amount.
一方、送信電極2より出た希望波は、同様にシ
ールド電極6でその一部が反射されるが、その成
分は上記と同様の原理で打消し合い、また、希望
波のシールド電極6の通過回数は1回であるから
減衰量はTTEのそれに比べ少なくてすむ。 On the other hand, a part of the desired wave emitted from the transmitting electrode 2 is similarly reflected by the shield electrode 6, but the components cancel each other out based on the same principle as above, and the desired wave passes through the shield electrode 6. Since the number of times is one, the amount of attenuation is smaller than that of TTE.
また、第2図中のxは送受信電極のピツチ(=
λ0/2)に比べ大きめに設計しておけば、中心
周波数付近のトラツプ現象も生じないので通過域
振幅位相特性を乱すことはない。更に、上記のよ
うな構造のシールド電極では従来のスプリツト電
極では抑圧できなかつたRWをもMELと同様に抑
圧できる利点がある上に、スプリツト電極のよう
に電極指の線幅をλ0/8にする必要がないので
製造の歩留りもよいという利点がある。その上、
送受信電極は何らTTE抑圧対策を施す必要がな
いので設計上も極めて有利である。 In addition, x in Fig. 2 is the pitch of the transmitting and receiving electrodes (=
If it is designed to be larger than λ 0 /2), a trap phenomenon near the center frequency will not occur and the passband amplitude phase characteristics will not be disturbed. Furthermore, the shield electrode with the above structure has the advantage of being able to suppress RW, which could not be suppressed with conventional split electrodes, in the same way as MEL . There is an advantage that the manufacturing yield is also good because there is no need to do this. On top of that,
Since there is no need to take any TTE suppression measures for the transmitting and receiving electrodes, this is extremely advantageous in terms of design.
以上説明したように本発明では、λ0/4だけ
くびれのある格子状のシールド電極を表面波伝搬
路上に設けることにより、板状のシールド電極以
上のTTEの抑圧が実現できる。従つて弾性表面
波装置の実用化に極めて有効と考えられる。 As described above, in the present invention, by providing a lattice-shaped shield electrode constricted by λ 0 /4 on the surface wave propagation path, TTE can be suppressed to a greater extent than with a plate-shaped shield electrode. Therefore, it is considered to be extremely effective for practical application of surface acoustic wave devices.
第1図は通常の弾性表面波装置の基本構成と電
源及び負荷の接続図であり、第2図は本発明の実
施例を示す図である。
1……圧電基板、2……送信電極、3……受信
電極、4……弾性表面波、6……シールド電極、
A〜F及びA′〜F′……TTEの反射成分。
FIG. 1 is a diagram showing the basic configuration of a conventional surface acoustic wave device and connections between a power source and a load, and FIG. 2 is a diagram showing an embodiment of the present invention. 1... Piezoelectric substrate, 2... Transmitting electrode, 3... Receiving electrode, 4... Surface acoustic wave, 6... Shielding electrode,
A to F and A' to F'...TTE reflection components.
Claims (1)
極を配設し、これら入出力電極間を表面波が伝搬
する弾性表面波装置において、前記入出力電極間
に格子状のシールド電極を設け、該シールド電極
の上部と下部にλ0/4(λ0:送信波長)距離差を もたせて入出力電極間における反射波の位相を
180゜異ならせしめ、反射波を減衰せしめること
を特徴とする弾性表面波装置。[Claims] 1. In a surface acoustic wave device in which input and output interdigital electrodes are arranged on a piezoelectric substrate and a surface wave propagates between these input and output electrodes, a grid-like structure is provided between the input and output electrodes. A shield electrode is provided, and the phase of the reflected wave between the input and output electrodes is adjusted by providing a distance difference of λ 0 /4 (λ 0 : transmission wavelength) between the upper and lower parts of the shield electrode.
A surface acoustic wave device characterized by attenuating reflected waves by making the waves differ by 180°.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14765478A JPS5574230A (en) | 1978-11-29 | 1978-11-29 | Surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14765478A JPS5574230A (en) | 1978-11-29 | 1978-11-29 | Surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5574230A JPS5574230A (en) | 1980-06-04 |
JPS6156895B2 true JPS6156895B2 (en) | 1986-12-04 |
Family
ID=15435232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14765478A Granted JPS5574230A (en) | 1978-11-29 | 1978-11-29 | Surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5574230A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4870312A (en) * | 1987-02-19 | 1989-09-26 | Hazeltine Corporation | Surface wave device having anti-reflective shield |
JP2001196898A (en) * | 2000-01-05 | 2001-07-19 | Fujitsu Ltd | Surface acoustic wave filter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5231347A (en) * | 1975-09-04 | 1977-03-09 | Furukawa Battery Co Ltd | Zinc plate |
JPS5231347B2 (en) * | 1972-07-14 | 1977-08-13 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5434555Y2 (en) * | 1975-08-26 | 1979-10-22 |
-
1978
- 1978-11-29 JP JP14765478A patent/JPS5574230A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5231347B2 (en) * | 1972-07-14 | 1977-08-13 | ||
JPS5231347A (en) * | 1975-09-04 | 1977-03-09 | Furukawa Battery Co Ltd | Zinc plate |
Also Published As
Publication number | Publication date |
---|---|
JPS5574230A (en) | 1980-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4162465A (en) | Surface acoustic wave device with reflection suppression | |
Solal et al. | A method to reduce losses in buried electrodes RF SAW resonators | |
EP0026114B1 (en) | Surface acoustic wave device | |
US3990023A (en) | Elastic surface wave device | |
US4406964A (en) | Acoustic surface wave transducer with improved inband frequency characteristics | |
US9667224B2 (en) | Electroacoustic filter comprising low-pass characteristics | |
JPS6156895B2 (en) | ||
US4370633A (en) | Acoustic wave bandpass electrical filters | |
JPS63215108A (en) | Surface elastic wave device | |
US4357584A (en) | Acoustic wave devices | |
US4237432A (en) | Surface acoustic wave filter with feedforward to reduce triple transit effects | |
JP3137064B2 (en) | Surface acoustic wave filter | |
US4426595A (en) | Acoustic surface wave device with improved band-pass characteristics | |
JPH026670Y2 (en) | ||
JPS5944802B2 (en) | surface acoustic wave device | |
JP2685537B2 (en) | Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same | |
US4205280A (en) | Surface wave device with suppressed boundary-reflected waves | |
JPS6216048B2 (en) | ||
US4663554A (en) | Surface acoustic wave device | |
JPS5937723A (en) | Surface acoustic wave resonator type filter device | |
RU2786183C1 (en) | Band-pass filter for surface acoustic waves with triple-pass signal compensation | |
JPS58156211A (en) | Surface acoustic wave resonator type filter | |
EP0028265B1 (en) | Acoustic surface wave device | |
JP3394362B2 (en) | Surface acoustic wave device | |
SU1039017A1 (en) | Filter using surface acoustic waves |