JPS6156802B2 - - Google Patents

Info

Publication number
JPS6156802B2
JPS6156802B2 JP12943381A JP12943381A JPS6156802B2 JP S6156802 B2 JPS6156802 B2 JP S6156802B2 JP 12943381 A JP12943381 A JP 12943381A JP 12943381 A JP12943381 A JP 12943381A JP S6156802 B2 JPS6156802 B2 JP S6156802B2
Authority
JP
Japan
Prior art keywords
current
circuit
state
controlled
rectifying element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12943381A
Other languages
Japanese (ja)
Other versions
JPS5831404A (en
Inventor
Hideo Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP12943381A priority Critical patent/JPS5831404A/en
Publication of JPS5831404A publication Critical patent/JPS5831404A/en
Publication of JPS6156802B2 publication Critical patent/JPS6156802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/14Automatic controllers electric in which the output signal represents a discontinuous function of the deviation from the desired value, i.e. discontinuous controllers
    • G05B11/18Multi-step controllers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Motor And Converter Starters (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 本発明は、ON・OFF形サーボ回路に関し、特
に、コンデンサ起動形のコントロールモータある
いは電動スライダツク等が負荷として接続される
サーボ回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ON/OFF type servo circuit, and more particularly to a servo circuit to which a capacitor actuated control motor or an electric slider is connected as a load.

コンデンサ起動形のコントロールモータあるい
は電動スライダツクは、正転より逆転、又は逆転
より正転に瞬時に切換ると、モータの慣性力ある
いは進相コンデンサ等のチヤージに対抗する電力
が瞬時に消費され、リレー接点に過大な電流が流
れて、劣化が速断され溶着に至るという問題があ
つた。
When a capacitor-activated control motor or electric slider switches instantaneously from forward rotation to reverse rotation, or from reverse rotation to forward rotation, the power to counteract the inertia of the motor or the charge of the phase advance capacitor, etc., is instantly consumed, and the relay There was a problem that excessive current flowed through the contacts, leading to rapid deterioration and welding.

本発明は以上のような点に鑑みて成されたもの
であり、共通の交流電源から供給される電流によ
り駆動される2個1対のリレーと、ゲートに電流
を供給することによりON、OFF状態を切換えて
前記交流電源から各リレーに供給する電流を制御
するSCRよりなる第1の制御整流素子および
SCRまたはRUTよりなる第2の制御整流素子
と、前記第1の制御整流素子がOFF状態に切換
わつたとき、前記第2の制御整流素子のゲートに
電流を遅延させて所定時間供給し、この間に第2
の制御整流素子をOFF状態とし、供給終了後は
該第2の制御整流素子をON状態にする第1の検
出回路および第1の時定数回路からなる第1の電
流制御回路と、前記第2の制御整流素子がOFF
状態に切換わつたとき、前記第1の制御整流素子
のゲートに電流を遅延させて所定時間供給し、こ
の間に第1の制御整流素子をOFF状態とし、供
給終了後は該第1の制御整流素子をON状態にす
る第2の検出回路および第2の時定数回路からな
る第2の電流制御回路と、を具備する構成とし
て、リレー接点の劣化、溶着を防止することを目
的とするものである。
The present invention has been made in view of the above points, and includes a pair of relays driven by current supplied from a common AC power source and a gate that can be turned on and off by supplying current to the gate. a first control rectifier consisting of an SCR that controls the current supplied from the AC power supply to each relay by switching the state;
When the second controlled rectifying element consisting of an SCR or RUT and the first controlled rectifying element are switched to the OFF state, a current is supplied to the gate of the second controlled rectifying element with a delay for a predetermined time, and during this time second to
a first current control circuit consisting of a first detection circuit and a first time constant circuit that turns the controlled rectifier into an OFF state and turns the second controlled rectifier into an ON state after the supply ends; Control rectifier is OFF
When the current is switched to the state, a current is delayed and supplied to the gate of the first controlled rectifying element for a predetermined time, the first controlled rectifying element is turned OFF during this time, and after the supply ends, the first controlled rectifying element is switched to the OFF state. The purpose of the relay is to prevent deterioration and welding of the relay contacts as a configuration that includes a second current control circuit consisting of a second detection circuit that turns the element into an ON state and a second time constant circuit. be.

次に、本発明を図示の実施例について説明す
る。
Next, the present invention will be described with reference to illustrated embodiments.

第1図は本発明に係るサーボ回路が用いられて
いる流量調節システムを示すブロツク図である。
図中1は流量センサあるいは反応槽等の温度セン
サであり、2はそのセンサ1の検出値が入力され
るPID動作回路である。3は定電圧回路であり、
この定電圧回路3にはポテンシヨメータ4が接続
され、該ポテンシヨメータ4で得られた電圧と上
記PID動作回路2の出力電圧は演算増幅器5に入
力されている。この演算増幅器5の出力は本発明
に係るサーボ回路6を介して負荷モータ7に加え
られており、該モータ7のロータ7aは流量調節
弁8のアクチユエータ8aと前記ポテンシヨメー
タ4に連結されている。
FIG. 1 is a block diagram showing a flow rate regulating system in which a servo circuit according to the present invention is used.
In the figure, 1 is a flow rate sensor or a temperature sensor such as a reaction tank, and 2 is a PID operation circuit into which the detected value of the sensor 1 is input. 3 is a constant voltage circuit,
A potentiometer 4 is connected to the constant voltage circuit 3, and the voltage obtained by the potentiometer 4 and the output voltage of the PID operation circuit 2 are input to an operational amplifier 5. The output of this operational amplifier 5 is applied to a load motor 7 via a servo circuit 6 according to the present invention, and a rotor 7a of the motor 7 is connected to an actuator 8a of a flow control valve 8 and the potentiometer 4. There is.

上記サーボ回路6は第2図に示すように、共通
の交流電源9から供給される電流により駆動され
る2個1対のリレーM1,M2と、ゲートに電流を
供給することによりON、OFF状態を切換えて前
記交流電源9から各リレーM1,M2に供給する電
流を制御する第1、第2の制御整流素子S1,S2
と、前記第1の制御整流素子S1がOFF状態に切
換わつたとき、前記第2の制御整流素子S2のゲー
トに電流を遅延させて所定時間供給し、この間に
第2の制御整流素子S2をOFF状態とし、供給終
了後は該第2の制御整流素子S2をON状態にする
第1の検出回路および第1の時定数回路11から
なる第1の電流制御回路15と、前記第2の制御
整流素子S2がOFF状態に切換わつたとき、前記
第1の制御整流素子S1のゲートに電流を遅延させ
て所定時間供給し、この間に第1の制御整流素子
S1をOFF状態とし、供給終了後は該第1の制御
整流素子S1をON状態にする第2の検出回路およ
び第2の時定数回路12からなる第2の電流制御
回路16とで大略構成されている。詳述すると前
記演算増幅器5の出力端と接続される入力端子1
3は、プラス方向の電流を通過させるダイオード
D3と抵抗R3を介してSCRを用いられている第1
の制御整流素子S1のゲートに接続されると共に、
マイナス方向の電流を通過させるダイオードD4
と抵抗R4を介してPUTが用いられている第2の
制御整流素子S2のゲートに接続されている。ま
た、上記第1の制御整流素子S1とリレーM1と交
流電源9は直列に接続されており、第1の制御整
流素子S1のアノードは、第1のダイオードD1
と、第1電流制御回路15を介して第2の制御整
流素子S2のゲートに接続されている。前記第1の
電流制御回路15は第1の検出回路をなすダイオ
ードD1と、第1の時定数回路11をなすコンデ
ンサC1と抵抗R1の直列回路とによつて構成され
るものである。一方、上記第2の制御整流素子S2
とリレーM2と交流電源9は直列に接続されてお
り、第2の制御整流素子S2のカソードは、第2の
電流制御回路16を介して第1の制御整流素子S1
のゲートに接続されている。前記第2の電流制御
回路16は第2の検出回路をなすダイオードD2
と、第2の時定数回路12をなすコンデンサC2
と抵抗R2の直列回路によつて構成されるもので
ある。さらに上記第1、第2の制御整流素子S1
S2の各ゲートと接地間にはそれぞれ平滑用のコン
デンサC3,C4と抵抗R5,R6が接続されており、
また、図中R7,R8は、各コンデンサC1,C2にチ
ヤージされた電荷を放電させる放電用抵抗であ
る。
As shown in FIG. 2, the servo circuit 6 includes a pair of relays M 1 and M 2 that are driven by current supplied from a common AC power source 9, and a gate that is turned on and off by supplying current to the gate. First and second control rectifier elements S 1 and S 2 that control the current supplied from the AC power supply 9 to each relay M 1 and M 2 by switching the OFF state
When the first controlled rectifying element S1 is switched to the OFF state, a current is supplied to the gate of the second controlled rectifying element S2 with a delay for a predetermined period of time, and during this period, the second controlled rectifying element S1 is switched to the OFF state. A first current control circuit 15 consisting of a first detection circuit and a first time constant circuit 11 that turns S 2 into an OFF state and turns the second control rectifier S 2 into an ON state after completion of supply; When the second controlled rectifying element S2 is switched to the OFF state, a current is supplied to the gate of the first controlled rectifying element S1 with a delay for a predetermined time, and during this period, the first controlled rectifying element
A second current control circuit 16 consisting of a second detection circuit and a second time constant circuit 12 turns S 1 into an OFF state and turns the first control rectifier S 1 into an ON state after the supply ends. It is configured. In detail, the input terminal 1 is connected to the output terminal of the operational amplifier 5.
3 is a diode that allows current to pass in the positive direction
The first is used SCR through D 3 and resistor R 3
is connected to the gate of the controlled rectifier S1 , and
Diode D 4 that passes current in the negative direction
and is connected via a resistor R 4 to the gate of a second controlled rectifying element S 2 in which PUT is used. Further, the first controlled rectifying element S1 , the relay M1 , and the AC power supply 9 are connected in series, and the anode of the first controlled rectifying element S1 is connected to the first diode D1.
and is connected to the gate of the second controlled rectifier S 2 via the first current control circuit 15 . The first current control circuit 15 is constituted by a diode D1 which constitutes a first detection circuit, and a series circuit of a capacitor C1 and a resistor R1 which constitutes a first time constant circuit 11. . On the other hand, the second controlled rectifying element S 2
The relay M 2 and the AC power supply 9 are connected in series, and the cathode of the second controlled rectifier S 2 is connected to the first controlled rectifier S 1 via the second current control circuit 16.
connected to the gate. The second current control circuit 16 includes a diode D 2 forming a second detection circuit.
and a capacitor C 2 forming the second time constant circuit 12.
and a resistor R2 in series. Furthermore, the first and second controlled rectifying elements S 1 ,
Smoothing capacitors C 3 and C 4 and resistors R 5 and R 6 are connected between each gate of S 2 and the ground, respectively.
Further, R 7 and R 8 in the figure are discharge resistors that discharge the charges charged in the respective capacitors C 1 and C 2 .

また、前記負荷モータ7は、第3図に示す進相
コンデンサ形交流モータの構造とされている。す
なわち図中14は交流電源であり、C5は進相コ
ンデンサであつて、このコンデンサC5の両端と
電源14との間に夫々に前記リレーM1,M2が接
続されている。
Further, the load motor 7 has a structure of a phase advance capacitor type AC motor shown in FIG. That is, in the figure, 14 is an AC power supply, C5 is a phase advance capacitor, and the relays M1 and M2 are connected between both ends of this capacitor C5 and the power supply 14, respectively.

以上の構成による流量調節システムの作用を以
下に説明する。
The operation of the flow rate adjustment system with the above configuration will be explained below.

まず、流量若しくは温度情報がセンサ1から
PID動作回路2に加えられ、ここで目標値との偏
差に応じた電圧信号が演算増幅器5の一方の入力
端に加えられる。この演算増幅器5の他方の入力
端にはポテンシヨメータ4による電圧信号が加え
られており、このポテンシヨメータ4による信号
と、上記PID動作回路2による信号とが演算増幅
器5により比較演算され、その差に応じてプラス
方向の電流、又はマイナス方向の電流が出力され
てサーボ回路6に加えられる。
First, flow rate or temperature information is sent from sensor 1.
The voltage signal is applied to the PID operation circuit 2, where a voltage signal corresponding to the deviation from the target value is applied to one input terminal of the operational amplifier 5. A voltage signal from the potentiometer 4 is applied to the other input terminal of the operational amplifier 5, and the signal from the potentiometer 4 and the signal from the PID operation circuit 2 are compared and calculated by the operational amplifier 5. Depending on the difference, a positive current or a negative current is output and applied to the servo circuit 6.

サーボ回路6にプラス方向の電流が加えられる
と、その電流はダイオードD3と抵抗R3を介して
第1の制御整流素子S1のゲートに供給され、第1
の制御整流素子S1はON状態となり、リレーM1
同時にON状態となる。このリレーM1のON状態
によりモータ7は正転して流量調節弁8を開放さ
せる。この調節弁8の動作に伴つてポテンシヨメ
ータ4も操作され、該ポテンシヨメータ4の出力
信号がPID動作回路2の信号と等しくなると、演
算増幅器5の出力が零となり、第1の制御整流素
子S1とリレーM1がOFF状態となつて、モータ7
は停止する。上記第1の制御整流素子S1がON状
態からOFF状態に変化すると、第1の制御整流
素子S1のアノードに加えられる電圧波形は第4図
Aに示す波形から第4図Bに示す波形に変化す
る。従つて、第1の制御整流素子S1がOFF状態
となると、そのアノードにはダイオードD1の順
方向の電流を流し得る電圧が発生し、このダイオ
ードD1の電流は第1の電流制御回路15を介し
て第2の制御整流素子S2のゲートに加えられる。
この第2の制御整流素子S2のゲートに加えられる
電流は、第1の電流制御回路15における第1の
時定数回路11のコンデンサC1と抵抗R1により
設定される時間中遅延して供給されるものであ
り、その間は第2の制御整流素子S2のゲートに
ON信号ができてもOFF状態が維持されることに
なる。すなわち演算増幅器5の出力が急に反転
し、サーボ回路6にマイナス方向の電流が加えら
れると、その電流はダイオードD4と抵抗R4を介
して第2の制御整流素子S2のゲート電流となるの
であるが、第1の時定数回路11からの電流によ
りキヤンセルされて第2の制御整流素子S2
OFF状態が維持される。この状態から所定の時
間が経過するとコンデンサC1充電が完了して第
1の時定数回路11の電流はストツプし、第2の
制御整流素子S2がON状態となり、リレーM2が同
時にON状態となる。このリレーM2のON状態に
よりモータ7は逆転して流量調節弁を閉鎖させ
る。また、この状態から演算増幅器5の出力が反
転すると、今度は第2の時定数回路12から第1
の制御整流素子S1のゲートに逆バイアス電流を遅
延させて設定時間中供給し、第1の制御整流素子
S1のOFF状態を一定時間維持することになる。
このようにサーボ回路6に加えられる信号が急に
反転した際に、所定時間OFF状態が維持された
後、切り換えが行われるのでリレー接点に過大な
負坦をかけるおそれがないものとなつている。な
お、上記第1、第2の時定数回路11,12を介
して供給される電流は脈流となつているが夫々平
滑コンデンサC3,C4により平滑化され、各ゲー
トには直流が供給されている。
When a positive current is applied to the servo circuit 6, the current is supplied to the gate of the first controlled rectifier S1 via the diode D3 and the resistor R3 , and the first
The controlled rectifying element S 1 is turned on, and the relay M 1 is turned on at the same time. The ON state of this relay M1 causes the motor 7 to rotate forward and open the flow control valve 8. The potentiometer 4 is also operated in conjunction with the operation of the control valve 8, and when the output signal of the potentiometer 4 becomes equal to the signal of the PID operating circuit 2, the output of the operational amplifier 5 becomes zero, and the first control rectifier When element S 1 and relay M 1 are turned off, motor 7
stops. When the first controlled rectifying element S1 changes from the ON state to the OFF state, the voltage waveform applied to the anode of the first controlled rectifying element S1 changes from the waveform shown in FIG. 4A to the waveform shown in FIG. 4B. Changes to Therefore, when the first controlled rectifying element S1 is turned off, a voltage is generated at its anode that allows the forward current of the diode D1 to flow, and the current of the diode D1 is transferred to the first current control circuit. 15 to the gate of the second controlled rectifier element S2 .
The current applied to the gate of this second controlled rectifying element S 2 is supplied with a delay during the time set by the capacitor C 1 and the resistor R 1 of the first time constant circuit 11 in the first current control circuit 15. During this period, the gate of the second controlled rectifier S2 is
Even if an ON signal is generated, the OFF state will be maintained. In other words, when the output of the operational amplifier 5 suddenly reverses and a negative current is applied to the servo circuit 6, the current flows through the diode D4 and the resistor R4 to the gate current of the second controlled rectifier S2 . However, the current from the first time constant circuit 11 cancels the second controlled rectifying element S2 .
The OFF state is maintained. When a predetermined period of time has elapsed from this state, charging of the capacitor C1 is completed, the current in the first time constant circuit 11 is stopped, the second control rectifier S2 is turned on, and the relay M2 is turned on at the same time. becomes. This ON state of relay M2 causes the motor 7 to rotate in the reverse direction and close the flow control valve. Moreover, when the output of the operational amplifier 5 is inverted from this state, the second time constant circuit
A delayed reverse bias current is supplied to the gate of the first controlled rectifier S1 for a set time, and the first controlled rectifier
The OFF state of S1 is maintained for a certain period of time.
In this way, when the signal applied to the servo circuit 6 suddenly reverses, switching is performed after the OFF state is maintained for a predetermined period of time, so there is no risk of applying an excessive load to the relay contacts. . Note that the currents supplied through the first and second time constant circuits 11 and 12 are pulsating currents, but are smoothed by smoothing capacitors C 3 and C 4 , respectively, and direct current is supplied to each gate. has been done.

上述した実施例では第1の制御整流素子S1とし
てSCRが用いられ、第2の制御整流素子S2とし
てPUTが用いられているが、一方のゲートにイ
ンバータを接続すれば、第1、第2の制御整流素
子S1,S2共にSCRを用いることができる。
In the embodiment described above, an SCR is used as the first controlled rectifying element S1 , and a PUT is used as the second controlled rectifying element S2 , but if an inverter is connected to one gate, the first and second controlled rectifying elements SCRs can be used for both of the second controlled rectifying elements S 1 and S 2 .

以上説明したように、本発明によれば負荷モー
タの正転、逆転の際に遅延時間を有し、モータの
慣性力の吸収及び進相コンデンサの放電に必要な
時間が経過してから正逆転の切換えが行われ、リ
レー接点に過大な電流を流すおそれがないという
効果があり、リレー接点の劣化及び溶着の防止を
簡素な回路構成で実現することができる。
As explained above, according to the present invention, there is a delay time when the load motor rotates forward or reverse, and the forward or reverse rotation occurs after the time necessary for absorbing the inertia of the motor and discharging the phase advance capacitor. This has the effect that there is no risk of excessive current flowing through the relay contacts, and prevention of deterioration and welding of the relay contacts can be achieved with a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るサーボ回路が用いられて
いる流量調節システムを示すブロツク図、第2図
は本発明に係るサーボ回路の一実施例を示す回路
図、第3図は負荷モータの回路図、第4図Aは制
御整流素子がON状態の際にその制御整流素子に
加わる電圧の波形図、第4図Bは制御整流素子が
OFF状態の際にその制御整流素子に加わる電圧
の波形図である。 6……サーボ回路、9……交流電流、11……
第1の時定数回路、12……第2の時定数回路、
15……第1の電流制御回路、16……第2の電
流制御回路、S1……第1の制御整流素子、S2……
第2の制御整流素子、D1……第1のダイオード
(検出回路)、D2……第2のダイオード(検出回
路)、M1・M2……リレー。
Fig. 1 is a block diagram showing a flow rate adjustment system in which a servo circuit according to the present invention is used, Fig. 2 is a circuit diagram showing an embodiment of the servo circuit according to the present invention, and Fig. 3 is a circuit of a load motor. Figure 4A is a waveform diagram of the voltage applied to the control rectifier when the control rectifier is in the ON state, and Figure 4B is a waveform diagram of the voltage applied to the control rectifier when the control rectifier is in the ON state.
FIG. 3 is a waveform diagram of the voltage applied to the control rectifying element during the OFF state. 6... Servo circuit, 9... Alternating current, 11...
first time constant circuit, 12... second time constant circuit,
15...First current control circuit, 16...Second current control circuit, S1 ...First control rectifier, S2 ...
Second control rectifier, D 1 ... first diode (detection circuit), D 2 ... second diode (detection circuit), M 1 · M 2 ... relay.

Claims (1)

【特許請求の範囲】 1 共通の交流電源から供給される電流により駆
動される2個1対のリレーと、ゲートに電流を加
えることによりON、OFF状態を切換えて前記交
流電源から各リレーに供給する電流を制御する
SCRよりなる第1の制御整流素子およびSCRま
たはPUTよりなる第2の制御整流素子と、前記
第1の制御整流素子がOFF状態に切換わつたと
き、前記第2の制御整流素子のゲートに電流を遅
延させて所定時間供給し、この間に第2の制御整
流素子をOFF状態とし、供給終了後は該第2の
制御整流素子をON状態にする第1の検出回路お
よび第1の時定数回路からなる第1の電流制御回
路と、前記第2の制御整流素子がOFF状態に切
換わつたとき、前記第1の制御整流素子のゲート
に電流を遅延させて所定時間供給し、この間に第
1の制御整流素子をOFF状態とし、供給終了後
は該第1の制御整流素子をON状態にする第2の
検出回路および第2の時定数回路からなる第2の
電流制御回路と、を具備する構成になることを特
徴とするサーボ回路。 2 前記第1、第2の電流制御回路は、ダイオー
ド、コンデンサ、抵抗の直列回路によつて構成さ
れていることを特徴とする特許請求の範囲第1項
記載のサーボ回路。
[Scope of Claims] 1. A pair of two relays driven by current supplied from a common AC power source, and a current applied to the gate to switch ON and OFF states and supplied to each relay from the AC power source. control the current
A first controlled rectifying element made of an SCR, a second controlled rectifying element made of an SCR or a PUT, and when the first controlled rectifying element is switched to the OFF state, a current flows through the gate of the second controlled rectifying element. A first detection circuit and a first time constant circuit that delay and supply for a predetermined time, turn off a second controlled rectifier during this period, and turn on the second controlled rectifier after the supply ends. When the first current control circuit consisting of the first current control circuit and the second control rectifier are switched to the OFF state, a current is supplied to the gate of the first control rectifier with a delay for a predetermined time, and during this time, the first current control circuit a second current control circuit including a second detection circuit and a second time constant circuit that turns the controlled rectifier into an OFF state and turns the first controlled rectifier into an ON state after the supply ends. A servo circuit characterized by the following configurations. 2. The servo circuit according to claim 1, wherein the first and second current control circuits are configured by a series circuit of a diode, a capacitor, and a resistor.
JP12943381A 1981-08-20 1981-08-20 Servo circuit Granted JPS5831404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12943381A JPS5831404A (en) 1981-08-20 1981-08-20 Servo circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12943381A JPS5831404A (en) 1981-08-20 1981-08-20 Servo circuit

Publications (2)

Publication Number Publication Date
JPS5831404A JPS5831404A (en) 1983-02-24
JPS6156802B2 true JPS6156802B2 (en) 1986-12-04

Family

ID=15009359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12943381A Granted JPS5831404A (en) 1981-08-20 1981-08-20 Servo circuit

Country Status (1)

Country Link
JP (1) JPS5831404A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099016A (en) * 1983-11-04 1985-06-01 Toyoda Autom Loom Works Ltd Apparatus for removing dust from surface of cylinder of card
JPS6351597U (en) * 1986-09-24 1988-04-07
WO2011047682A2 (en) * 2009-10-22 2011-04-28 Danfoss Compressors Gmbh A motor and a relay for a motor

Also Published As

Publication number Publication date
JPS5831404A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
US4084119A (en) Chopper control system
JPS6156802B2 (en)
US2600941A (en) Electrical control system
US3758844A (en) Control circuit for load having measureable coefficient of resistance
US4228383A (en) Speed control circuit arrangement for an AC commutator motor
JP2553255Y2 (en) Inverter device
JPH0619538Y2 (en) Power control device for melting furnace
JPH07308087A (en) Braking circuit for motor
JPS5953090A (en) Controller for thyristor leonard
JP2506644Y2 (en) Voltage regulator for pulse width modulation control inverter
SU1280689A1 (en) Reversible rectifier electric drive
JPH0531788Y2 (en)
US3872366A (en) Motor control circuit
JPS61142981A (en) Power controlling method
JPH0134440Y2 (en)
JP2672652B2 (en) Thyristor Leonard controller
JPS631825B2 (en)
JP2592094B2 (en) Remote control type control unit
SU661703A1 (en) Reversible relay electric drive
JPH05149606A (en) Heater controller of air conditioner
US3248638A (en) Stored energy resistance welding power supply
JPS6395855A (en) Current controlling circuit for pam type inverter
JPH04290A (en) Constant speed controller for dc motor
JPH0413479A (en) Power source for arc machining
JP2000150186A (en) Discharge lamp lighting device