JPS61567A - Treatment of grain oriented growth of crystal grain - Google Patents

Treatment of grain oriented growth of crystal grain

Info

Publication number
JPS61567A
JPS61567A JP12280684A JP12280684A JPS61567A JP S61567 A JPS61567 A JP S61567A JP 12280684 A JP12280684 A JP 12280684A JP 12280684 A JP12280684 A JP 12280684A JP S61567 A JPS61567 A JP S61567A
Authority
JP
Japan
Prior art keywords
alloy
workpiece
crystal grain
melting point
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12280684A
Other languages
Japanese (ja)
Inventor
Kazuaki Mino
美野 和明
Koichi Asakawa
幸一 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12280684A priority Critical patent/JPS61567A/en
Publication of JPS61567A publication Critical patent/JPS61567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To accelerate the grain oriented growth of crystal grains and to improve the high temp. mechanical property by hot working a mechanical part made of alloy to the directional crystal grain growth direction to obtain the fine crystal grain structure, mounting an activating metal sheet of a specified compsn. on a desired end surface of a working material and heating, holding the body in a heating furnace. CONSTITUTION:The mechanical part made of Ni base heat resisting sintered alloy contg. Cr, W, Mo, Ta, Al, Ti, Y2O3 is hot worked by extrusion, etc. to make the structure to fine crystal grain structure. Next, a sheet material 3 made of activating metal consisting of Ni base alloy contg. m.p. lowering element such as Cr, B is mounted on the end surface 2 perpendicular to the direction to which main stress is applied during usage of the working part 1, i.e. the direction which is desirable for crystal grain growth, and the body is heated and held at temp. lower than m.p. of the part 1 and higher than m.p. of the metal 3 in a heating furnace 4. By the reaction with the working part by the melt of the metal 3, crystals grow to the main stress applying direction over whole length of the part 1, and the mechanical characteristics at high temp. is improved.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は合金、特に耐熱合金の結晶粒を一方向に揃え
て成長させる方法の改良に係り、すべての結晶粒で平等
なかつ均一な粒成長が起こり難い分散粒子を含む合金に
おいて結晶粒の方向性成長を可能にする方法に係る。
[Detailed Description of the Invention] (Field of Application of the Invention) This invention relates to an improvement in a method for growing the crystal grains of an alloy, particularly a heat-resistant alloy, by aligning them in one direction. The present invention relates to a method for enabling directional growth of grains in alloys containing hard to disperse grains.

(先行技術と解決すべき問題点) 耐熱合金の高温機械的性質を向上させる手段として結晶
粒を主応力方向に伸長させて長さ対直径比を非常に大き
くすること、結晶粒の寸法を増大させること、或いは粒
界の機械的強度を改善すること等が挙げられる。
(Prior Art and Problems to be Solved) As a means of improving the high-temperature mechanical properties of heat-resistant alloys, elongation of grains in the direction of principal stress makes the length-to-diameter ratio very large, and the size of grains is increased. or to improve the mechanical strength of grain boundaries.

これらの手段のうち結晶粒を主応力方向に伸長させる方
法として、このような合金製の機械部品を鋳造する際に
方向性凝固を行わせることによって比較的細長い結晶粒
を一方向に揃えて形成することが知られている。この為
には鋳型の中で凝固する過程で結晶粒がほぼ主応力の作
用する方向に沿って成長するように方向性を保たせなが
ら熱を奪って凝固を進める方法があり、そのための鋳型
の構造等について種々の提案がなされている。
Among these methods, a method for elongating crystal grains in the principal stress direction is to align relatively elongated crystal grains in one direction by performing directional solidification when casting machine parts made of such alloys. It is known to do. To achieve this, there is a method to advance solidification by removing heat while maintaining the directionality so that the crystal grains grow almost along the direction in which the principal stress acts during the solidification process in the mold. Various proposals regarding the structure etc. have been made.

しかしながら例えば粒子分散強化合金の如き合金は鋳造
のさい熔融状態において粒子が凝集するし、これ以外の
合金でも方向性凝固した部品の−端から他端にかけて可
なりの偏析が生ずることは避けられない。
However, in alloys such as particle dispersion strengthened alloys, particles agglomerate in the molten state during casting, and in other alloys, it is unavoidable that considerable segregation occurs from one end of the directionally solidified part to the other. .

これを改善するため合金の固体の状態で内部組織を柱状
の結晶粒組織に変える方法が提案されている(特公昭5
3−35887、特公昭56−41686)。
In order to improve this problem, a method has been proposed in which the internal structure of the alloy in its solid state is changed to a columnar grain structure (Special Publication No. 5).
3-35887, Special Publication No. 56-41686).

これらの方法においては熱間加工により生成せしめた微
細結晶粒組織を有する機械部品加工物を第3図に示すよ
うに帯域加熱炉12によって金属融解開始温度以下に帯
域加熱して、温度勾配を持たせた加熱帯13を部品11
の一端11aがら他端11bに移動させることにより結
晶粒14を一方向に成長させる。
In these methods, a mechanical part workpiece having a fine grain structure generated by hot working is zone-heated to a temperature below the metal melting start temperature in a zone heating furnace 12 as shown in FIG. Place the heating zone 13 on the part 11.
By moving from one end 11a to the other end 11b, crystal grains 14 are grown in one direction.

而して帯域加熱後の組織は加熱部の温度勾配が大きいほ
ど良好であるが、勾配値には限界があるため合金の種類
によっては実施困難な場合がある上、棒状等の簡単な形
状以外のものでは一様でかつ充分な温度勾配下での帯域
加熱は実際上は実施困難である。
The larger the temperature gradient in the heating zone, the better the structure after zone heating, but since there is a limit to the gradient value, it may be difficult to implement depending on the type of alloy, and it may not be possible to achieve a structure other than simple shapes such as rods. However, in practice, it is difficult to perform zone heating under a uniform and sufficient temperature gradient.

(本発明の目的および間R点解決手段)本発明は上記の
ごとき事情に鑑み帯域加熱を必要としない結晶粒の方向
性成長処理方法を提供することを目的とし、 合金の結晶粒方向性成長処理方法において、合金製機械
部品加工物に対し方向性結晶粒成長をさせたい方向に熱
間加工を施して微細結晶粒組織としておき、 該加工物の所望の端面上に該る余生へ容易に固溶、拡散
する融点降下元素を含む低融点の金属層を設けたのち、 該機械部品加工物を加熱炉内で該加工物合金の融点以下
でかつ金属層の融点以上の温度に加熱保持することを特
徴とする結晶粒の方向性成長処理方法に係る。
(Objective of the present invention and means for solving the R point) In view of the above circumstances, the present invention aims to provide a treatment method for directional growth of crystal grains that does not require zone heating. In the processing method, hot working is performed on an alloy machine part workpiece in the direction in which directional grain growth is desired, resulting in a fine grain structure, which can be easily applied to the desired end face of the workpiece. After providing a low melting point metal layer containing a melting point lowering element that dissolves and diffuses, the mechanical part workpiece is heated and maintained in a heating furnace at a temperature below the melting point of the workpiece alloy and above the melting point of the metal layer. The present invention relates to a method for processing directional growth of crystal grains.

(作用) 本発明方法の作用について説明すれば次の通りである。(effect) The operation of the method of the present invention will be explained as follows.

結晶粒の方向性成長処理を施すべき合金製機械部品加工
物1 (以下簡単に加工物という)が粗大結晶粒に比較
的早く変化するような微細結晶粒組織としておくため準
備工程として押出し成形等による熱間加工を施して微細
結晶粒組織としておくことが必要である。
In order to maintain the alloy machine part workpiece 1 (hereinafter simply referred to as the workpiece) to be subjected to crystal grain directional growth treatment to have a fine grain structure that changes into coarse crystal grains relatively quickly, extrusion molding etc. are performed as a preparatory process. It is necessary to perform hot working to obtain a fine grain structure.

次に、使用中に主応力の作用する方向、すなわち結晶粒
を成長させたい方向に望ましくは直角な端面2上に該合
金中へ容易に固溶、拡散する融点降下元素を含む金属層
(以下活性化合金という)3を設け、加熱炉4の中で加
工物合金の融点以下で活性化合金の融点以上の温度に加
熱して活性化合金3を熔融させると加工物合金1とその
接触部2で合金して核部の融点を降下させ、加工物1は
固体の状態でも接触部2は融体になる。
Next, on the end face 2 which is preferably perpendicular to the direction in which principal stress acts during use, that is, the direction in which crystal grains are desired to grow, a metal layer (hereinafter referred to as When the activated alloy 3 is melted by heating it in a heating furnace 4 to a temperature below the melting point of the workpiece alloy and above the melting point of the activated alloy, the workpiece alloy 1 and its contact area are heated. 2 to lower the melting point of the core, and even though the workpiece 1 is in a solid state, the contact part 2 becomes a melt.

本発明の方法を適用して効果が顕著に現れる例としては
Cr−W−MO・Ta−A1・Ti・Y2O3を含むN
i合金の如き粒子分散強化合金であり、加熱によって一
様な粒成長が起こり易い通常の合金や一般の加熱炉を用
いても方向性粒成長が起こり易い合金では効果的ではな
い。
Examples where the effect of applying the method of the present invention is noticeable include N containing Cr-W-MO, Ta-A1, Ti, and Y2O3.
It is not effective for particle dispersion strengthened alloys such as i-alloys, which tend to undergo uniform grain growth when heated, and alloys which tend to undergo directional grain growth even when using a general heating furnace.

活性化合金としてはNi、Co、Fe基合金に融点降下
元素であるB、Si、P、Cのうち少なくとも一つを含
むものが適当で、これを薄帯として載せるか、ペースト
状粉末として塗布するか、或いは化学蒸着やプラズマ照
射法によって加工物の端面に付着させて用いる。
Suitable activation alloys include Ni, Co, and Fe-based alloys containing at least one of the melting point depressing elements B, Si, P, and C, and are applied as a thin strip or as a paste powder. Alternatively, it may be attached to the end surface of a workpiece by chemical vapor deposition or plasma irradiation.

このようにして加工物と活性化合金とを加熱炉の中で加
工物の融点と活性化合金の融点との間の温度に加熱すれ
ば、活性化合金と加工物との間に生じた合金が熔融して
融体となるが、これは一時的なものであり、時間の経過
と共に次第に加工物に向かって合金化が進み、ついには
活性化合金の濃度が薄くなって融体ではなくなる。
If the workpiece and the activated alloy are heated in a heating furnace to a temperature between the melting point of the workpiece and the activated alloy in this way, an alloy formed between the activated alloy and the workpiece will be formed. The material melts and becomes a molten material, but this is only temporary; as time passes, alloying gradually progresses toward the workpiece, and eventually the concentration of activated alloy becomes thinner and it is no longer a molten material.

上記のごとく加工物合金の融点以下でかつ活性化合金の
融点以上の温度に、該加工物の全長において粒成長させ
るのに必要な時間以上保持することにより、接触部での
加工物合金の再結晶特性の変化、例えば再結晶温度の低
下に伴って発生した粒成長の核が表面張力によって微細
粒を侵食して成長する。加工物における粒成長速度は多
くの場合において異方性があり、加工方向がそれに直角
方向より可なりに大きい(例えば特公昭56−4168
6号公報Fig、  5(blに示す普通の焼鈍をした
場合の結晶粒組織で押出し方向に粒が伸びているのはこ
のためである)。
As mentioned above, by holding the workpiece at a temperature below the melting point of the workpiece alloy and above the melting point of the activated alloy for a period of time necessary to cause grain growth along the entire length of the workpiece, the workpiece alloy is regenerated at the contact area. Grain growth nuclei generated due to a change in crystal properties, for example, a decrease in recrystallization temperature, erode fine grains and grow due to surface tension. In many cases, the grain growth rate in the processed product is anisotropic, and the processing direction is significantly larger than the direction perpendicular to it (for example, Japanese Patent Publication No. 56-4168
No. 6 Publication Fig. 5 (This is why the grains extend in the extrusion direction in the crystal grain structure when normal annealing is performed as shown in bl).

本発明の方法は加工物を充分に大きな加熱炉に入れて一
様に加熱してやればよく、帯域加熱炉を必要としない。
The method of the present invention does not require a zone heating furnace, since the workpiece can be uniformly heated by placing it in a sufficiently large heating furnace.

しかしながら両端が開放された比較的小さな加熱炉へ加
工物の活性化合金を設けた端面から挿入して次第に移動
させて反対側端部まで局部的に加熱して行っても同じ効
果が得られることは容易に理解されよう。
However, the same effect can be obtained by inserting the workpiece into a relatively small heating furnace with both ends open from the end surface provided with the activated alloy and gradually moving the workpiece to heat it locally to the opposite end. will be easily understood.

(実施例) 前記の粒子分散合金の15%Cr・5%W・2%Mo−
1%Ta・4%AI・1.5%Ti1.3%Y2O3・
残部Ntの熱間押出焼結Ni合金押出棒(13mm直径
)を試料としてその片方の端面に15%Cr・2.5%
B・残部Niの合金薄板(厚さ80μm)を載せ、0.
2kgf/an!で加圧して薄板を端面に押しつけなが
ら1250℃の真空中(10〜” Torr)で1時間
加熱保持後、真空容器内で常温まで冷却した。
(Example) 15% Cr, 5% W, 2% Mo- of the above particle dispersed alloy
1%Ta・4%AI・1.5%Ti1.3%Y2O3・
Using a hot extruded sintered Ni alloy extruded rod (13 mm diameter) with balance Nt as a sample, one end face was coated with 15% Cr and 2.5%.
B. A thin alloy plate (thickness: 80 μm) with the balance being Ni was placed and
2kgf/an! The thin plate was pressed against the end face by heating at 1250° C. in a vacuum (10 to 10” Torr) for 1 hour, and then cooled to room temperature in a vacuum container.

J          第2図に示す試料の縦断面の顕
微鏡組織の写真に見られるように、加工物1の活性化合
金3を載せた面に直角の方向に伸びた細長い粗大結晶粒
組織5が形成されていた。なお図中の6は押さえ板であ
る。
J As seen in the photograph of the microscopic structure of the longitudinal section of the sample shown in Figure 2, an elongated coarse grain structure 5 is formed that extends in a direction perpendicular to the surface on which the activated alloy 3 of the workpiece 1 is placed. Ta. Note that 6 in the figure is a holding plate.

(効果) 以上説明したように本発明の方法によれば処理されるべ
き加工物の材料合金へ容易に固溶、拡散しうる融点降下
元素を含む融点の低い合金を再結晶活性化用として結晶
粒を成長させたい方向に望ましくは直角な端面上に設け
て、加工物合金の融点以下で活性化合金の融点以上の温
度に加熱し、両合金の反応領域の再結晶特性を改良し、
その中に粗大結晶粒の種となるべき結晶核を一個または
数個発生させると、表面張力により微細粒を侵食しなが
ら成長し、細長い結晶粒に成長するのであるから、帯域
加熱炉の如き特殊の加熱炉を必要としない上に、再結晶
による粒成長核が発生しがたい合金でも方向性成長を可
能にする。
(Effects) As explained above, according to the method of the present invention, a low melting point alloy containing a melting point depressing element that can be easily solid-dissolved and diffused into the material alloy of the workpiece to be processed is crystallized for recrystallization activation. placed on an end surface preferably perpendicular to the direction in which the grains are desired to grow, and heated to a temperature below the melting point of the workpiece alloy and above the melting point of the activated alloy to improve the recrystallization properties of the reaction zone of both alloys;
When one or several crystal nuclei that become the seeds of coarse crystal grains are generated, they grow while eroding the fine grains due to surface tension and grow into elongated crystal grains. Not only does it not require a heating furnace, it also enables directional growth even in alloys in which grain growth nuclei are difficult to generate due to recrystallization.

また温度勾配を有する加熱域を加工物の一端から他端に
向けて移動させて結晶粒を成長させる方法と異なり、結
晶粒を成長させたい方向に好ましくは直角な面に粒成長
する核を小数発生させ、これから所定の方向にむけて粗
大結晶粒を成長させていくので、温度勾配を付加する装
置が不要になり、所望の形状でも粗大結晶粒を成長させ
ることが出来る等その効果はきわめて大きい。
Also, unlike the method of growing crystal grains by moving a heating zone with a temperature gradient from one end of the workpiece to the other, a small number of nuclei are grown on a plane preferably perpendicular to the direction in which the grains are desired to grow. Since coarse crystal grains are generated and then grown in a predetermined direction, there is no need for a device that adds a temperature gradient, and the effects are extremely large, such as the ability to grow coarse crystal grains in any desired shape. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の要領を示した断面図、第2図は
本発明の方法によって形成した方向性結晶粒組織の例を
示す顕微鏡写真(25倍、カーリング液腐食)、第3図
は従来方法の要領を示す断面図である。 1・・・機械部品加工物、2・・・結晶粒を成長させる
べき方向または主応力の作用する方向に直角な端面、3
・・・活性化合金薄板、4・・・加熱炉、5・・・一方
向に成長した粗大結晶組織 出願人代理人 弁理士 鴨志1)次男 第3図 第10
Figure 1 is a cross-sectional view showing the outline of the method of the present invention, Figure 2 is a micrograph (25x, curling solution corrosion) showing an example of oriented grain structure formed by the method of the present invention, Figure 3 1 is a sectional view showing the main points of a conventional method. 1... Machine part workpiece, 2... End face perpendicular to the direction in which crystal grains are to grow or the direction in which principal stress acts, 3
...Activated alloy thin plate, 4...Heating furnace, 5...Coarse crystal structure grown in one direction Applicant's representative Patent attorney Kamoshi 1) Second son 3 Figure 10

Claims (1)

【特許請求の範囲】 合金の結晶粒方向性成長処理方法において、合金製機械
部品加工物に対し方向性結晶粒成長をさせたい方向に熱
間加工を施して微細結晶粒組織としておき、 該加工物の所望の端面上に該合金中へ容易に固溶、拡散
する融点降下元素を含む低融点の金属層を設けたのち、 該機械部品加工物を加熱炉内で該加工物合金の融点以下
でかつ金属層の融点以上の温度に加熱保持することを特
徴とする結晶粒の方向性成長処理方法
[Claims] A method for processing an alloy for directional grain growth, which comprises hot working an alloy mechanical component workpiece in a direction in which directional grain growth is desired to produce a fine grain structure; After providing a low melting point metal layer containing a melting point lowering element that easily dissolves and diffuses into the alloy on the desired end face of the object, the machine part workpiece is heated to a temperature below the melting point of the workpiece alloy in a heating furnace. A method for directional growth treatment of crystal grains, characterized by heating and maintaining the temperature at a temperature higher than the melting point of the metal layer.
JP12280684A 1984-06-14 1984-06-14 Treatment of grain oriented growth of crystal grain Pending JPS61567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12280684A JPS61567A (en) 1984-06-14 1984-06-14 Treatment of grain oriented growth of crystal grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12280684A JPS61567A (en) 1984-06-14 1984-06-14 Treatment of grain oriented growth of crystal grain

Publications (1)

Publication Number Publication Date
JPS61567A true JPS61567A (en) 1986-01-06

Family

ID=14845094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12280684A Pending JPS61567A (en) 1984-06-14 1984-06-14 Treatment of grain oriented growth of crystal grain

Country Status (1)

Country Link
JP (1) JPS61567A (en)

Similar Documents

Publication Publication Date Title
US10900102B2 (en) High strength aluminum alloy backing plate and methods of making
US3975219A (en) Thermomechanical treatment for nickel base superalloys
US20020000272A1 (en) Alloys formed from cast materials utilizing equal channel angular extrusion
JPS62114747A (en) Continuous casting method for metallic bar
EP3124136B1 (en) Metal wire rod composed of iridium or iridium alloy
JP2008540319A5 (en)
US4318753A (en) Thermal treatment and resultant microstructures for directional recrystallized superalloys
US4337886A (en) Welding with a wire having rapidly quenched structure
KR940003503B1 (en) Metallic semi-finished product and process for its preparation
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
Liu et al. Effect of annealing treatment on microstructure and tensile properties of Ti-48Al-2Cr-5Nb alloy fabricated by laser additive manufacturing
JPH11504265A (en) Homogeneous quenched support
JPS61567A (en) Treatment of grain oriented growth of crystal grain
CN114799216B (en) Method for heat treatment of titanium alloy
JPH0336225A (en) Metallic thin wire having single crystal chain structure and its manufacture
CN114780899A (en) Method for regulating and controlling full eutectic structure and performance of non-eutectic component eutectic high-entropy alloy
Sitnikov et al. The microstructure of rapidly quenched TiNiCu ribbons crystallized by isothermal and electropulse treatments
JPS63111172A (en) Production of target material
JP2007503314A (en) Method for producing metal flat wire or strip having cubic texture
KR101143015B1 (en) Copper-nickel-silicon two phase quench substrate
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
Kim et al. Grain refinement of a rapidly solidified Ti–30Ni–20Cu alloy by two-step annealing
NL2030132B1 (en) METHOD FOR IMPROVING HIGH-TEMPERATURE MECHANICAL PROPERTY OF Ni3Al ALLOY
Villa Manufacturing of Shape Memory Alloys
JP3377228B2 (en) Method for producing rolled ferrite alloy material