JPS6156600B2 - - Google Patents
Info
- Publication number
- JPS6156600B2 JPS6156600B2 JP56197502A JP19750281A JPS6156600B2 JP S6156600 B2 JPS6156600 B2 JP S6156600B2 JP 56197502 A JP56197502 A JP 56197502A JP 19750281 A JP19750281 A JP 19750281A JP S6156600 B2 JPS6156600 B2 JP S6156600B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- capacitor
- voltage
- holding
- terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 39
- 238000007599 discharging Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 208000006558 Dental Calculus Diseases 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C27/00—Electric analogue stores, e.g. for storing instantaneous values
- G11C27/02—Sample-and-hold arrangements
- G11C27/024—Sample-and-hold arrangements using a capacitive memory element
Landscapes
- Networks Using Active Elements (AREA)
- Dc-Dc Converters (AREA)
Description
【発明の詳細な説明】
本発明は、電圧を保持する端子とこの両側に近
接配置した2つの端子との間に分圧器の性質を付
与し、電圧を保持する端子に接続された電圧保持
用コンデンサの蓄積電荷の放電時定数を大きな値
とすることができる電圧保持装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides voltage divider properties between a voltage holding terminal and two terminals placed close to each other on both sides of the voltage holding terminal. The present invention relates to a voltage holding device that can increase the discharge time constant of accumulated charge in a capacitor.
簡単な電圧保持回路は第1図のように信号尖頭
値(以下ピークと称する)検波回路がよく用いら
れる。第1図において、1は信号源、2は検波用
ダイオード、3は電圧保持用充放電コンデンサ、
4は保持された電圧を以後の回路に伝達するバツ
フア用エミツタホロワトランジスタ。5はエミツ
タホロワトランジスタのエミツタ抵抗、6は保持
電圧出力、7は基準電源電圧端子、8は基準接地
電位端子、9は信号源側直流バイアスである。 As a simple voltage holding circuit, a signal peak value (hereinafter referred to as peak) detection circuit as shown in FIG. 1 is often used. In Figure 1, 1 is a signal source, 2 is a detection diode, 3 is a voltage holding charge/discharge capacitor,
4 is a buffer emitter follower transistor that transmits the held voltage to subsequent circuits. 5 is an emitter resistance of an emitter follower transistor, 6 is a holding voltage output, 7 is a reference power supply voltage terminal, 8 is a reference ground potential terminal, and 9 is a DC bias on the signal source side.
今、信号源の信号が第2図aのようなパルス信
号の場合、6の出力端子には、第2図bのような
波形が現われることは、よく知られている。この
時の出力電圧の特性式は(1)式のようなコンデンサ
の充放電性式で表わされる。 It is well known that when the signal from the signal source is a pulse signal as shown in FIG. 2a, a waveform as shown in FIG. 2b appears at the output terminal 6. The characteristic equation for the output voltage at this time is expressed by a capacitor charging/discharging equation as shown in equation (1).
V=VPexp(−1/CRt) ……(1)
ただし、
R=Zin×ZR/Zin+ZR
VP=パルス波形ピーク電圧値(V)
t=放電を開始してから次のパルス入力がくる
までの任意の放電時間(sec)
C=コンデンサーの容量(F)
R=コンデンサ接続端子から見たインピーダン
ス(Ω)
Zin=バツフアートランジスタ入力インピーダ
ンス
ZR=ダイオード逆方向リーク抵抗分インピー
ダンス
一般に電圧保持能力が大きいというときはV=
VPであることを意味し、(1)式中Cを大きくする
ことでその能力の向上を計つている。 V=V P exp (-1/CRt) ...(1) However, R=Zin×Z R /Zin+Z R V P = Pulse waveform peak voltage value (V) t = Next pulse input after starting discharge (sec) C = capacitor capacity (F) R = impedance seen from the capacitor connection terminal (Ω) Zin = buffer transistor input impedance Z R = diode reverse leak resistance impedance Generally voltage When the holding capacity is large, V=
This means that V P , and by increasing C in formula (1), we aim to improve its ability.
しかし、今日の様に機器の小形軽量指向の下で
は、コンデンサーの大容量化は、電解コンデンサ
の使用を意味し、プリント板上の占有面積の点で
大きな問題である。例えば第1図で信号入力波形
の波高値が1.7V、エミツタホロワトランジスタ
4のエミツタ抵抗5の抵抗値REを1KΩ、エミツ
タホロワトランジスタ4のhFEが100として尚か
つ、パルス周期1/60secを仮定し電圧保持能力と
して、VP−V=1mV以内の性能を実現する場合
について見る。(1)式よりコンデンサCの値を導出
する式(2)は次の様に求められる。 However, with today's trends toward smaller and lighter equipment, increasing the capacitance of capacitors means using electrolytic capacitors, which poses a major problem in terms of the area occupied on the printed circuit board. For example, in Fig. 1, the peak value of the signal input waveform is 1.7V, the resistance value R E of the emitter resistor 5 of the emitter follower transistor 4 is 1KΩ, the h FE of the emitter follower transistor 4 is 100, and the pulse period is Assuming 1/60 sec, let's look at the case where the voltage holding capacity is within V P -V = 1 mV. Equation (2) for deriving the value of capacitor C from Equation (1) can be obtained as follows.
通常ZR=1Vの逆方向電圧下では1012(Ω)以
上と考えてて良い。Zinは、略々REの(hFE+
1)倍であるから約100KΩとすれば、コンデン
サCの値は、
となる。166μFのコンデンサーは、現時点で製
品化されているタルタル電解、チツプコンデンサ
等の小型大容量機種でも実現されておらず小形化
という観点では、きわめて不利な要因である。そ
こでたとえば、チツプコンデンサとして実現し得
る値0.16μFを使用したいとすればRを100MΩ
以上に設定しなければ、電圧保持能力1mV以内
の性能を確保できないことになる。第1図の回路
構成では、バツフアトランジスタ4を、その入力
インピーダンスZinが100MΩ以上の素子、例え
ば、FET等の使用によつてR成分を大きくする
ことは可能である。一例として、第3図に示すよ
うにこのコンデンサー以外の回路構成要素を集積
回路として組み込んだ状態のものを、小形化の指
向の延長として考慮すると、パツケージの端子間
リーク、プリント板上の端子間リーク等が無視し
得ない値となつてくる。又コンデンサーのリーク
抵抗も100MΩ程度以上のものを望むのは現時点
で困難である。 Normally, under a reverse voltage of Z R = 1V, it can be considered to be 10 12 (Ω) or more. Zin is approximately R E (h FE +
1) If it is approximately 100KΩ, the value of capacitor C is becomes. A capacitor of 166 μF has not been realized even in the small, large-capacity models such as tartar electrolytic capacitors and chip capacitors that are currently being commercialized, and this is an extremely disadvantageous factor from the point of view of downsizing. So, for example, if you want to use a value of 0.16μF that can be realized as a chip capacitor, set R to 100MΩ.
If the setting is not made above, it will not be possible to ensure performance within 1 mV of voltage holding capacity. In the circuit configuration shown in FIG. 1, it is possible to increase the R component by using an element whose input impedance Zin is 100 MΩ or more, such as a FET, as the buffer transistor 4. As an example, as shown in Figure 3, if we consider a circuit in which circuit components other than the capacitor are incorporated as an integrated circuit as an extension of the trend toward miniaturization, leaks between the terminals of the package, leaks between the terminals on the printed circuit board, etc. Leakage etc. becomes a value that cannot be ignored. Also, it is difficult at present to desire a capacitor leak resistance of about 100MΩ or more.
第3図において、10はエミツタホロワトラン
ジスタに限らないバツフア段で理論的に入力イン
ピーダンスが無限大とみなせる素子又は回路構
成、11はコンデンサーのリーク抵抗、12は集
積回路装置に結続される外部コンデンサーの接続
端子、13は上記コンデンサー端子12に隣接す
る上記集積回路装置を含む機能素子の結線用端
子、14は上記コンデンサー端子12に隣接する
もう一方の結線用端子、15は上記各端子12,
13の間のリーク抵抗、16は上記各端子14と
12の間のリーク抵抗である。 In FIG. 3, 10 is a buffer stage not limited to emitter follower transistors, which is an element or circuit configuration whose input impedance can be theoretically considered to be infinite; 11 is a leak resistance of a capacitor; and 12 is connected to an integrated circuit device. A connection terminal for an external capacitor; 13 is a connection terminal for a functional element including the integrated circuit device adjacent to the capacitor terminal 12; 14 is another connection terminal adjacent to the capacitor terminal 12; 15 is each of the terminals 12; ,
13 is a leak resistance between the terminals 14 and 12, and 16 is a leak resistance between the terminals 14 and 12.
端子間リーク抵抗値は、集積回路装置がプリン
ト板に挿入された状態で湿気、ホコリを考慮する
と、1MΩ〜2MΩを考えなければならないとされ
ている。今、仮りに上記各端子13,14の両方
が端子12の保持されている電圧より著しく高い
(例えば電源電圧附近)か又は、接地電位に近い
とすれば、端子12から見たインピーダンスはコ
ンデンサーリーク抵抗と並列に1MΩ〜2MΩが挿
入されていることと等価になる。R=1MΩとし
て(1)式による計算をすれば、
V=VPexp(−1/CRt)
=1×exp(−1/60×1/0.16×10−6
×106)
=0.901
VP−V=99(mV)
電圧保持能力は99(mV)と10%も降下してし
まい、とうてい、VP−V=1mV以内という要望
は満たされない。本発明は上述の問題点を解決す
るものであり、第4図の実施例により、本発明を
詳述する。 It is said that the leak resistance value between terminals should be 1MΩ to 2MΩ, taking into account moisture and dust when the integrated circuit device is inserted into the printed circuit board. Now, if both of the terminals 13 and 14 are significantly higher than the voltage held by the terminal 12 (for example, close to the power supply voltage) or close to the ground potential, the impedance seen from the terminal 12 will be due to capacitor leakage. This is equivalent to inserting 1MΩ to 2MΩ in parallel with the resistor. If R = 1MΩ and calculation is performed using equation (1), V = V P exp (-1/CRt) = 1 x exp (-1/60 x 1/0.16 x 10 -6
×10 6 ) = 0.901 V P -V = 99 (mV) The voltage holding ability drops by 10% to 99 (mV), and the requirement that V P -V = 1 mV or less cannot be satisfied. The present invention solves the above-mentioned problems, and will be explained in detail with reference to the embodiment shown in FIG.
第4図の装置は、前述の第3図の装置に対比し
てわかるようにコンデンサー3の隣接端子間に挿
入したものである。 The device shown in FIG. 4 is inserted between adjacent terminals of a capacitor 3 in contrast to the device shown in FIG. 3 described above.
本装置は、隣接する端子13,14と端子との
間に分圧器の性質を付与することによつて端子リ
ーク抵抗の影響を減ずるようになしたものであ
る。 This device reduces the influence of terminal leak resistance by imparting voltage divider properties between adjacent terminals 13 and 14.
つまり、本装置では端子12で保持したい電位
に対して端子14の電位が高くなるように選び、
かつ、端子13の電位はこれと逆に低くなるよう
に選ぶことである。ここで充放電コンデンサーも
同様に高電位への充放電用と低電位への充放電用
を振り分けることでリーク抵抗の影響を、端子間
リーク抵抗に選ぶことである。ここで充放電コン
デンサーも同時に高電位への充放電用と低電位へ
の充放電用を振り分けることでリーク抵抗の影響
を、端子間リーク抵抗と同様に減ずるように接続
した。勿論この時の14の高電位端子及び13の
低電位端子は、直流電圧端子である。 In other words, in this device, the potential of the terminal 14 is selected to be higher than the potential to be held at the terminal 12,
On the other hand, the potential of the terminal 13 should be selected to be low, contrary to this. Similarly, for the charging/discharging capacitor, the influence of leakage resistance can be selected on the leakage resistance between the terminals by dividing the capacitor into one for charging and discharging to a high potential and one for charging and discharging to a low potential. Here, the charging/discharging capacitors were also connected in such a way that the influence of leakage resistance was reduced in the same way as the leakage resistance between terminals by dividing the capacitor into one for charging and discharging to a high potential and one for charging and discharging to a low potential. Of course, the 14 high potential terminals and the 13 low potential terminals at this time are DC voltage terminals.
第5図aは第4図の効果を知るための等価回路
である第5図aにおいて17は入力信号電圧、1
8ダイオードオン、オフに相当するスイツチ、1
9はリーク抵抗、20は隣接端子高電位側と低電
位側の電位差に相当する電源である。 Figure 5a is an equivalent circuit for understanding the effect of Figure 4. In Figure 5a, 17 is the input signal voltage, 1
8 Switches corresponding to diode on and off, 1
9 is a leak resistance, and 20 is a power supply corresponding to the potential difference between the high potential side and the low potential side of adjacent terminals.
今、18のスイツチがオンしている間に17の
信号電圧が充分コンデンサーに電荷を蓄積し、ス
イツチがオフする直前にはそれぞれV2,V1の電
圧に相当する電荷が初期値として与えられている
と仮定すると次に示す(3)式以下が成立する。ここ
でP=d/dt,1/P=∫dtとするP凾数演算子を使
用す
る。 Now, while the switch 18 is on, the signal voltage 17 accumulates enough charge in the capacitor, and just before the switch turns off, charges corresponding to the voltages V 2 and V 1 are given as initial values. Assuming that, the following formula (3) holds true. Here, a P-function number operator with P=d/dt and 1/P=∫dt is used.
I1R+I3R=VO ……(3)
I1R=I21/CP−V2 ……(4)
I3R+I41/CP=V1 ……(5)
I1+I2+I4=I3 ……(6)
P凾数で逆変換を用いれば、
V=VO+V1−V2/2・exp(−1/〓〓t)+
VO/2
〔1−exp(−1/CRt)〕 ……(9)
=VO/2+V1−V2/2exp(−1/CRt)
……(10)
端子12の保持すべき電圧VPに対して両端子1
3,14が丁度等しい電位差にすると、(10)式中
V1−V2=0となり保持電圧VはVO/2のまま理論的
には時定数無限大に取り得る。実用上の素子バラ
ツキを考えても、かなり時定数の拡大が行える。
又VPがVO/2でなくても常にVP<VOにしてあれば
(10)式第2項は、V1−V2の効果で時定数の拡大が
行えることを意味しリーク電流による放電時定数
の低下を防ぐことができる。 I 1 R+I 3 R=V O ……(3) I 1 R=I 2 1/C P −V 2 ……(4) I 3 R+I 4 1/C P =V 1 ……(5) I 1 +I 2 + I 4 = I 3 ...(6) If we use the inverse transformation with the P function, V=V O +V 1 −V 2 /2・exp(−1/〓〓t)+
V O /2 [1-exp(-1/CRt)] ...(9) =V O /2+V 1 -V 2 /2exp(-1/CRt)
...(10) Both terminals 1 for the voltage V P that should be maintained at terminal 12
If 3 and 14 are made to have exactly the same potential difference, then in formula (10),
V 1 −V 2 =0, so that the holding voltage V remains V O /2 and the time constant can theoretically be infinite. Even considering practical element variations, the time constant can be expanded considerably.
Furthermore, even if V P is not V O /2, if V P <V O is always maintained, the second term of equation (10) means that the time constant can be expanded due to the effect of V 1 - V 2 , which reduces leakage. It is possible to prevent the discharge time constant from decreasing due to current.
尚、コンデンサーのリーク抵抗があまり影響の
ない値であれば3のコンデンサーCはことさら高
電位側、低電位側に分配して接続をしなくても良
くこの場合の等価回路は第5図bの如くなろう。
第5図bを第5図aと同様に解くと(17)式の結
果が得られる、
逆変換
I3R=VO/2(1−exP−2/CORt)
+V1exp−2/CORt ……(16)
=VO/2+(V1−VO/2)exp−2/CORt
……(17)
第5図aでのCは、同図b図において等価とす
るには(17)式中のCOはCO=2Cに相当するた
め(18)式となる
V=13R=VO/2+(V1−VO/2)exP(−1/C
Rt)
……(18)
単にV2=VO/2と置き変わつたにすぎないため、
同様な効果が得られる。 If the leakage resistance of the capacitor has a value that does not have much of an effect, capacitor C (3) does not need to be connected to the high potential side and the low potential side, and the equivalent circuit in this case is shown in Figure 5b. Let's be like this.
If Figure 5b is solved in the same way as Figure 5a, the result of equation (17) is obtained, Inverse transformation I 3 R=V O /2 (1-exP-2/CORt) +V 1 exp-2/CORt ...(16) =V O /2+(V 1 -V O /2)exp-2/CORt
...(17) To make C in Figure 5 a equivalent to Figure 5 b, C O in equation (17) corresponds to C O = 2C, so it becomes equation (18) V = 1 3 R=V O /2+(V 1 -V O /2)exP(-1/C
R t) ...(18) Since it is simply replaced with V 2 =V O /2, the same effect can be obtained.
以上の様に端子間リークが無視できない場合の
電圧保持回路においては、その所定端子に隣接す
る端子の電位が、その所定端子の保持する電圧に
対してそれぞれ正負に相対しているように配置
し、尚かつその電位差の中位点に保持電圧がくる
ような分圧器の性質を付与する設計とすれば放電
時定数の一方の定数であるインピーダンスを大き
く設定でき、しかも、もう一方の定数であるコン
デンサー容量を小さく選ぶことを可能ならしめ高
密度化に好適の小型素子使用を実現させることが
できる。又、今日の高密度化においてはコンデン
サーのみならず集積回路装置の小型化も同様に進
み、端子間の距離が従来に1/2に縮まつたパツケ
ージの出現において本発明の電圧保持回路が一段
と有用度を高める。 As described above, in a voltage holding circuit where leakage between terminals cannot be ignored, the terminals adjacent to a given terminal are arranged so that their potentials are opposite to the voltage held by that given terminal, respectively. , and if the design is designed to have the characteristics of a voltage divider so that the holding voltage is at the midpoint of the potential difference, the impedance, which is one constant of the discharge time constant, can be set large, and the impedance, which is the other constant, can be set large. It is possible to select a small capacitor capacity, and it is possible to realize the use of small elements suitable for high density. In addition, in today's high-density environment, not only capacitors but also integrated circuit devices are becoming smaller, and with the advent of packages in which the distance between terminals has been reduced to half of the conventional one, the voltage holding circuit of the present invention has become even more compact. Increase usefulness.
更に素子の小型化をことさら要求されない時合
でも、小容量のコンデンサーで同程度の性能を得
られることは、コスト低減においても、効果が大
きいことは当然である。 Furthermore, even when miniaturization of the element is not particularly required, it is natural that the ability to obtain the same level of performance with a small-capacity capacitor is highly effective in reducing costs.
第1図は従来例検波回路図、第2図は同回路の
入、出力信号波形である。第3図、第4図は本発
明の各実施例検波回路図であり、第5図は本発明
実施例回路の予想等価回路図である。
1……信号源、2……検波用ダイオード、3…
……電圧保持用充放電コンデンサー、4……バツ
フア用エミツタホロワトランジスタ、5……エミ
ツタ抵抗、6……出力端子、7……基準電源電圧
端子、8……基準接地端子、9……信号源側直流
バイアス、10……バツフア段回路、11……リ
ーク抵抗、12……コンデンサー接続端子、1
3,14……隣接端子、15,16……端子間リ
ーク抵抗。
FIG. 1 is a diagram of a conventional detection circuit, and FIG. 2 shows input and output signal waveforms of the circuit. 3 and 4 are detection circuit diagrams of each embodiment of the present invention, and FIG. 5 is a predicted equivalent circuit diagram of the circuit of the embodiment of the present invention. 1... Signal source, 2... Detection diode, 3...
...Charge/discharge capacitor for voltage holding, 4...Emitter follower transistor for buffer, 5...Emitter resistor, 6...Output terminal, 7...Reference power supply voltage terminal, 8...Reference ground terminal, 9... Signal source side DC bias, 10... Buffer stage circuit, 11... Leak resistance, 12... Capacitor connection terminal, 1
3, 14... Adjacent terminal, 15, 16... Leak resistance between terminals.
Claims (1)
伝達する高入力インピーダンスバツフア段の保持
電圧入力端子との接続点に第1の端子を備え、同
第1の端子と所定電位の外部端子との間に電圧保
持用コンデンサを接続するとともに、前記第1の
端子の両側で、これと近接する位置に、第1の端
子電位よりも高い電位に設定される第2の端子
と、第1の端子の電位よりも低い電位に設定され
る第3の端子を設けたことを特徴とする電圧保持
装置。 2 電圧保持用コンデンサが第1および第2のコ
ンデンサに2分され、各一方の端子が第1の端子
に接続され、第1のコンデンサの他方の端子が第
2の端子に接続され、第2のコンデンサの他方の
端子が第3の端子に接続されていることを特徴と
する特許請求の範囲第1項に記載の電圧保持装
置。[Claims] 1. A first terminal is provided at a connection point between the holding voltage supply means and the holding voltage input terminal of a high input impedance buffer stage that transmits the holding voltage from the holding voltage supply means, and the first terminal and A voltage holding capacitor is connected between an external terminal having a predetermined potential, and a second capacitor, which is set at a potential higher than the first terminal potential, is connected on both sides of the first terminal at a position close to the first terminal. A voltage holding device comprising a terminal and a third terminal set to a potential lower than the potential of the first terminal. 2 The voltage holding capacitor is divided into a first and a second capacitor, one terminal of each is connected to the first terminal, the other terminal of the first capacitor is connected to the second terminal, and the second 2. The voltage holding device according to claim 1, wherein the other terminal of the capacitor is connected to the third terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197502A JPS5898897A (en) | 1981-12-07 | 1981-12-07 | Voltage holding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197502A JPS5898897A (en) | 1981-12-07 | 1981-12-07 | Voltage holding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5898897A JPS5898897A (en) | 1983-06-11 |
JPS6156600B2 true JPS6156600B2 (en) | 1986-12-03 |
Family
ID=16375532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56197502A Granted JPS5898897A (en) | 1981-12-07 | 1981-12-07 | Voltage holding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5898897A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11104977B2 (en) | 2018-03-30 | 2021-08-31 | Mitsubishi Materials Corporation | Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar |
US11203806B2 (en) | 2016-03-30 | 2021-12-21 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
US11319615B2 (en) | 2016-03-30 | 2022-05-03 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
-
1981
- 1981-12-07 JP JP56197502A patent/JPS5898897A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11203806B2 (en) | 2016-03-30 | 2021-12-21 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
US11319615B2 (en) | 2016-03-30 | 2022-05-03 | Mitsubishi Materials Corporation | Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay |
US11104977B2 (en) | 2018-03-30 | 2021-08-31 | Mitsubishi Materials Corporation | Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar |
Also Published As
Publication number | Publication date |
---|---|
JPS5898897A (en) | 1983-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH035689B2 (en) | ||
JPS6156600B2 (en) | ||
JPH0389545A (en) | Capacitor for integrated circuit | |
US4743872A (en) | Switched capacitor circuit | |
EP0697757A1 (en) | Electrostatic discharge protection circuit for an integrated circuit device | |
US3829716A (en) | Wide range monstable multivibrator circuit having a constant current source | |
US6046894A (en) | Semiconductor protection circuit and method | |
JPH0220115A (en) | Pulse type signal generator | |
JP3149832B2 (en) | Semiconductor switch circuit | |
EP4131780A1 (en) | Multi-purpose output circuitry | |
JPH0245380B2 (en) | ||
JPS61277320A (en) | Rush current prevention circuit | |
JPH0234527B2 (en) | ||
KR860000839B1 (en) | Reset circuit being easy to be integrated | |
JPS5834620A (en) | Time constant circuit | |
JPS6074788A (en) | Signal coupling circuit | |
JP2631519B2 (en) | Potential holding circuit | |
JPS58123225A (en) | Transistor circuit | |
JPS592407B2 (en) | Muantei multi vibrator | |
JPS59143419A (en) | Semiconductor integrating circuit | |
JPH0415628B2 (en) | ||
JPS59193626A (en) | Transistor logical circuit | |
JPH05291886A (en) | Semiconductor integrated circuit device | |
JPH026775A (en) | Semiconductor digital integrated circuit | |
JPH06196988A (en) | Reset circuit |