JPS6156582A - Automatically selective image pickup device - Google Patents

Automatically selective image pickup device

Info

Publication number
JPS6156582A
JPS6156582A JP59177535A JP17753584A JPS6156582A JP S6156582 A JPS6156582 A JP S6156582A JP 59177535 A JP59177535 A JP 59177535A JP 17753584 A JP17753584 A JP 17753584A JP S6156582 A JPS6156582 A JP S6156582A
Authority
JP
Japan
Prior art keywords
pulses
imaging
imaging device
signal
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59177535A
Other languages
Japanese (ja)
Other versions
JPH0533590B2 (en
Inventor
Riichi Nakura
奈倉 理一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59177535A priority Critical patent/JPS6156582A/en
Publication of JPS6156582A publication Critical patent/JPS6156582A/en
Publication of JPH0533590B2 publication Critical patent/JPH0533590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To obtain stereoscopic information and to selectively change over a plurality of photoelectric converters by dividing output signals from multiple photoelectric converting elements for picking up the forward scene into a plurarity of signal pulses each having a range of level, counting the number of pulses within each range for a predetermined period and comparing the number of pulses with the reference pulses. CONSTITUTION:Numeral nH is defined as a number of pulses having level of higher than T2 issued from counter circuit 29 for divided pulse levels in eachpredetermined interval and numeral nM is defined as a number of pulses having level between T1 and T2. When nH is larger than umber of reference pulses n1. photodetecting elements 27, 28 are passed the signals so as to pass the signals from the photodetecting elements 24-28 for the stereoscopic observa tion and only one band for observing the directly below point. When the number of pulses nMM is smaller than the preset number of reference pulses and the number of pulses nH above level T2 does not arraive at the preset number of reference pulses n1, the output signal from photocells 24-26 for performing multiband observation are allowed to pass from the output signals from photocells 24-28.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は撮像装置、特に人工衛星、宇宙基地。[Detailed description of the invention] 〔Technical field〕 The present invention relates to an imaging device, particularly an artificial satellite or a space base.

スペースシャトル、或いは航空機等から地表の画像観測
を行う際に用いる撮像装置に関するものである。
The present invention relates to an imaging device used to observe images of the earth's surface from a space shuttle, an aircraft, or the like.

〔従来技術〕[Prior art]

人工衛星等から地球表面の状況を観測するいわゆるリモ
ートセ、ンシングにおいては、海洋情報。
Ocean information is used in so-called remote sensing, which observes conditions on the earth's surface from artificial satellites.

陸域情報(植生情報、資源情報等)その他各種の情報を
収集することが要求される。
It is required to collect land area information (vegetation information, resource information, etc.) and other various information.

これらの画像観測に際しては、観測ス4クトラム地表分
解能或いはレベル分解能に対する要求が各々異なり、ま
だ6例えば資源情報観測〈は立体観測も要求される等、
その撮像対象によ)、要求性能が著しく異なることか多
い。しかしこれらの異なる観測要求に対する情報をすべ
て同時に伝送することは、伝送帯域、送信電力、及びデ
ータレコーダの記録容量等の制約があるため、従来は各
8専用の撮像系を用意し、地上からの指令コマン。
For these image observations, the requirements for observation spectrum ground resolution or level resolution are different, and for example, resource information observation requires 3D observation, etc.
Depending on the object to be imaged, the required performance often differs markedly. However, transmitting all of the information for these different observation requests at the same time is subject to limitations such as transmission bandwidth, transmission power, and data recorder recording capacity. Command command.

ド信号により選択を行う方式等が使用されて来た。A method has been used in which selection is made using a code signal.

第1図はこれら従来の撮像装置を用いた撮像方式の一例
を示す図である。第1図において、lは人工衛星等の撮
像装置を備えた移動体を表し、地表面に対して相対速度
Vにて進行しているところを示している。2は衛星直下
点の地表面を撮像する光学系であシ、3と4は地表面の
立体観測を行うだめの前方撮像用光学系及び後方撮像用
光学系をそれぞれ示している。
FIG. 1 is a diagram showing an example of an imaging method using these conventional imaging devices. In FIG. 1, l represents a moving body equipped with an imaging device, such as an artificial satellite, and is shown moving at a relative speed V with respect to the ground surface. 2 is an optical system for imaging the ground surface directly below the satellite, and 3 and 4 are front imaging optical systems and rear imaging optical systems, respectively, for three-dimensional observation of the ground surface.

人工衛星1がAの位置において光学系2は直下地点5の
地表面の撮像を行い、光学系3と4は前方地点6及び後
方地点7の地表面の撮像をそれぞれ行う。衛星1は速度
Vにて進行しつつ撮像を行い、Bの位置に進んだ時に後
方撮像用光学系4によ、9Bの位置から見た後方地点6
(即ちAの位置よシ見た前方地点6と同一地点)をAの
位置からの観測角度と異る角度にて撮像する。そしてこ
のBの位置からの光学系4による観測データと前述のA
の位置から光学系3により取得した観測データとによシ
、地点6の立体情報を得ることが出来る。
When the artificial satellite 1 is at position A, the optical system 2 images the ground surface at a point directly below 5, and the optical systems 3 and 4 image the ground surface at a forward point 6 and a rear point 7, respectively. The satellite 1 takes images while moving at a speed V, and when it moves to the position B, the rear imaging optical system 4 detects the rear point 6 seen from the position 9B.
(That is, the same point as the forward point 6 seen from the position of A) is imaged at a different angle from the observation angle from the position of A. Then, the observation data from the optical system 4 from the position B and the above-mentioned A
Based on the observation data acquired by the optical system 3 from the position, three-dimensional information of the point 6 can be obtained.

なお第1図において、光学系2によシ撮像される直下地
点5の位置が前方地点6と後方地点7の中間地点よシず
れた位置に記されているが、これは衛星1と地表の距離
Hを相対的に極端に小さく示しているためであり、実際
には距離Hは非常に大きく、地点5の位置は地点6と地
点7のほぼ中間となる。
Note that in FIG. 1, the position of the point directly below 5, which is imaged by the optical system 2, is offset from the midpoint between the forward point 6 and the rear point 7, but this is due to the distance between the satellite 1 and the earth's surface. This is because the distance H is shown relatively extremely small; in reality, the distance H is very large, and the position of point 5 is approximately halfway between points 6 and 7.

第2図は従来ρ撮像装置の内部構成の一例を示す図であ
る。第2図において、直下地点5からの入射光は光学系
2を通して分光系8に供給される。
FIG. 2 is a diagram showing an example of the internal configuration of a conventional ρ imaging device. In FIG. 2, incident light from a point 5 directly below is supplied to a spectroscopic system 8 through an optical system 2.

この分光系8は入射光をいくつかの波長帯に区分して観
測するだめのものであり、この場合3バンドに分光して
測定する場合の例を示す。
This spectroscopic system 8 is used to divide the incident light into several wavelength bands for observation, and in this case, an example will be shown in which the light is divided into three bands for measurement.

9〜11は直下地点の光学情報を電気信号に六換するた
めに結像面に配置された。ホトダイオードアレイ或いは
CCD (電荷結合素子)等の多素子の光電変換素子(
以下受光素子と略称する)によシ構成される。地表から
の入射光は分光器8によシ、たとえば短波長側(可視域
)の光が受光素子9へ、中間波長域の光が素子10へ、
長波長側(近赤外域)の光が受光素子11へそれぞれ結
像される。一方立体観測を行う光学系3と4の焦点面に
も同様に受光素子12と13が配置され、それぞれ前方
地点及び後方地点の像が結像される。
Points 9 to 11 were placed on the imaging plane to convert optical information from the point immediately below into electrical signals. Multi-element photoelectric conversion elements such as photodiode arrays or CCDs (charge-coupled devices)
(hereinafter abbreviated as light receiving element). Incident light from the earth's surface is sent to a spectroscope 8, for example, light in the short wavelength side (visible range) is sent to a light receiving element 9, light in the intermediate wavelength range is sent to an element 10,
Light on the long wavelength side (near infrared region) is imaged onto the light receiving element 11, respectively. On the other hand, light-receiving elements 12 and 13 are similarly arranged on the focal planes of optical systems 3 and 4 for performing stereoscopic observation, and images of the front point and the rear point are respectively formed.

14は直下地点5の観測を行う受光素子9゜10.11
・の信号出力を地上への伝送に適合するようにの変換、
多重等を行う信号処理回路である。15も同様に立体観
測を行う受光素子12゜13の信号出力を受は地上への
伝送に適合するようにめ変換多重等を行う信号処理回路
である。
14 is a light receiving element 9゜10.11 for observing the point 5 directly below.
・Conversion of the signal output to be suitable for transmission to the ground,
This is a signal processing circuit that performs multiplexing, etc. Similarly, 15 is a signal processing circuit that receives signal outputs from light receiving elements 12 and 13 that perform stereoscopic observation, and performs conversion multiplexing and the like so as to be suitable for transmission to the ground.

16は信号切替部であシ、データレコーダ17及び送信
部18により伝送・記録のデータ速度が制限されるため
、この制限範囲内のデータを後述の選択指令信号を受け
て信号処理回路14.15比較し、この比較結果の中か
ら選択して出力する。信号切替部16比較し、この比較
結果はデータレコーダ17に一旦記録されるか、或いは
点線で示すように直接に送信部18に供給されて、アン
テナ19によシ地上の受信局に向けて送出される。
Reference numeral 16 denotes a signal switching section. Since the data rate of transmission/recording is limited by the data recorder 17 and the transmitting section 18, data within this limited range is sent to signal processing circuits 14 and 15 in response to a selection command signal to be described later. Compare and select and output from the comparison results. The signal switching unit 16 compares the signals, and the comparison result is either temporarily recorded in the data recorder 17, or is directly supplied to the transmitting unit 18 as shown by the dotted line, and is transmitted via the antenna 19 to the receiving station on the ground. be done.

20は地上からの指令コマンド受信用アンテナであシ、
地上がらあコマンド信号はこのアンテナ20を経てコマ
ンド受信部21に供給される。コマンド受信回路21は
地上からのコマンド信号中に含まれる選択指令信号をと
シ出して信号切替部16に供給する。信号切換部I6は
これによシ前述のように撮像系2あるいは撮像系3,4
によシ取得される地表゛の画像画信号のどちらかを選択
切替する。
20 is an antenna for receiving commands from the ground;
A command signal from the ground is supplied to a command receiving section 21 via this antenna 20. The command receiving circuit 21 outputs a selection command signal included in the command signal from the ground and supplies it to the signal switching section 16. The signal switching section I6 thereby switches between the imaging system 2 or the imaging systems 3 and 4 as described above.
Select and switch between the image signals of the ground surface that are acquired.

以上の説明から明らかなように、従来装置においては、
撮像された信号の処理は地上からの指令コマンド信号に
よシ行われるため、地上指令局から通信可能な区域でな
ければ選択動作が不可能であった。又この場合、立体撮
像等は第1図、第2図に示すように複数の光学系を使用
していたため。
As is clear from the above explanation, in the conventional device,
Since the processing of the imaged signal is performed by command signals from the ground, selection operations are only possible in areas where communication is possible from the ground command station. Furthermore, in this case, multiple optical systems were used for stereoscopic imaging, as shown in FIGS. 1 and 2.

重量及び寸法的にも不利な条件であった。The conditions were also disadvantageous in terms of weight and size.

上記の欠点を補うため、コマンド信号受信後成る一定期
間経過してから選択を行わせる方法、或いは初めから選
択動作をプログラムしておいて実行させる方法等もある
。しかし、これらの方法においては、いずれも撮像対象
を実際に観測してはいないため、撮像対象と精密に対応
させた選択は不可能であった。
In order to compensate for the above-mentioned drawbacks, there is a method in which the selection is performed after a certain period of time has elapsed after receiving the command signal, or a method in which the selection operation is programmed from the beginning and then executed. However, in none of these methods, the object to be imaged is actually observed, and therefore it is impossible to make a selection that precisely corresponds to the object to be imaged.

〔発明の目的〕[Purpose of the invention]

したがって本発明の目的は、これら従来装置の欠点を除
去し簡潔な構成によシ撮像対象に適応した高品質の画像
取得、効率の高い信号処理及び立体撮像環、多機能で高
効率の撮像装置を提供することにある。
Therefore, it is an object of the present invention to eliminate the drawbacks of these conventional devices and provide a high-quality image acquisition adapted to the imaging target with a simple configuration, a highly efficient signal processing and stereoscopic imaging ring, and a multifunctional and highly efficient imaging device. Our goal is to provide the following.

〔発明の構成〕[Structure of the invention]

本発明によれば、撮像対象物に対し相対的に移動する撮
像装置において、該撮像装置内の撮像用光学峯の結像面
内に互に平行で且つ該撮像装置の移動方向に対してほぼ
直角に配置され、前記移動方向の少なくとも前方方向及
び該撮像装置の直下方向(正面方向)を撮像するように
した複数個の多素子光電変換素子と、前記前方方向を撮
像する多素子光電変換素子の信号出力を複数のレベル範
囲の信号・マルスに区分し、各区分範囲内の信号パルス
数を一定期間計数するパルスレベル区分計数回路と、こ
の計数回路の計数出力を各々あらかじめ設定された基準
のパルス数と比較し、パルス計数値の大小を比較り、こ
の比較結果によシ複数の変換素子の信号出力を選択的に
切替える選択切替回路とを含み、前記前方方向撮像素子
出力によシ立体視情報の取得及び上記複数個の光電変換
素子の選択切替を行わせることを特徴とする自動選択撮
像装置が得られる。
According to the present invention, in an imaging device that moves relative to an object to be imaged, the optical ridges for imaging in the imaging device are parallel to each other in the imaging plane and substantially relative to the moving direction of the imaging device. A plurality of multi-element photoelectric conversion elements arranged at right angles and configured to image at least the forward direction of the movement direction and the direction directly below the imaging device (front direction), and a multi-element photoelectric conversion element configured to image the forward direction. A pulse level division counting circuit divides the signal output into multiple level ranges of signals and pulses and counts the number of signal pulses within each division range for a certain period of time, and the counting output of this counting circuit is calculated according to a preset standard. a selection switching circuit that compares the magnitude of the pulse count value with the number of pulses and selectively switches the signal output of the plurality of conversion elements according to the comparison result; An automatic selection imaging device is obtained, which is characterized in that it acquires visual information and selects and switches among the plurality of photoelectric conversion elements.

〔実施例〕〔Example〕

第3図に本発明による撮像装置の構成の一実施例を示す
。第1図におけると同じ構成要素には同じ参照数字を付
しである。この第3図において。
FIG. 3 shows an embodiment of the configuration of an imaging device according to the present invention. Components that are the same as in FIG. 1 have the same reference numerals. In this Figure 3.

ここは広画角の光学系であシ、直下地点5.前方地点6
及び後方地点7からの入射光は、この光学系22を通シ
分光系23に供給される。24〜28は地表からの光学
情報を電気信号に変換するための受光素子であシ、光学
系22卦よび分光系23から構成される広画角結像光学
系の焦点面に配置される。なおこの第3図の例では、第
2図の場合と同様に、直下地点5の情報を3バンドに分
割して観測するようになっている。
This is a wide-angle optical system, directly below point 5. Front point 6
The incident light from the rear point 7 passes through this optical system 22 and is supplied to a spectroscopic system 23 . Numerals 24 to 28 are light receiving elements for converting optical information from the earth's surface into electrical signals, which are arranged at the focal plane of a wide-angle imaging optical system composed of an optical system 22 and a spectroscopic system 23. Note that in the example shown in FIG. 3, as in the case of FIG. 2, information about the point 5 immediately below is divided into three bands and observed.

分光系23によシ地表の直下地点5からの入射光はたと
えば短波長側(可視域)の光が受光素子24へ、中間波
長域の光が受光素子25へ、長波長域(近赤外)の光が
受光素子26へそれぞれ結像される。一方、立体撮像を
行う受光素子27゜28は、第3図の例では長波長域の
観測を行う受光素子26と同一結像面内に配置されてい
る。そして3つの受光素子26〜28は互にほぼ平行で
且つ進行方向に対しほぼ直角の方向に配置されている。
For example, light incident on the spectroscopic system 23 from a point 5 just below the earth's surface is such that light in the short wavelength side (visible range) goes to the light receiving element 24, light in the intermediate wavelength range goes to the light receiving element 25, and light in the long wavelength range (near infrared range) goes to the light receiving element 25. ) are respectively imaged onto the light receiving element 26. On the other hand, in the example of FIG. 3, the light receiving elements 27 and 28 that perform stereoscopic imaging are arranged in the same imaging plane as the light receiving element 26 that performs observation in the long wavelength range. The three light receiving elements 26 to 28 are arranged substantially parallel to each other and substantially perpendicular to the traveling direction.

上記の配置により図に示すように受光素子26には直下
点5.受光素子27には前方地点6.受光素子28には
後方地点7の地表の像がそれぞれ結像され、2組の受光
素子27.28比較し、この比較結果のデータから第2
図の場合と同様に地表面の立体情報を得ることが出来る
。また本方式の場合には、受光素子26も受光素子g7
.28と互に平行に配置されているため、26と27或
いは26と28のデータを使用することによっても、同
一地点を見る立体・視の角度と約1/2になるが、立体
視の情報を得ることが出来る。
With the above arrangement, as shown in the figure, the light receiving element 26 has a direct point 5. The light receiving element 27 has a front point 6. An image of the ground surface at the rear point 7 is formed on each of the light receiving elements 28, and the two sets of light receiving elements 27.28 are compared, and from the data of this comparison result, a second
As in the case of the figure, three-dimensional information on the ground surface can be obtained. In addition, in the case of this method, the light receiving element 26 is also the light receiving element g7.
.. Since they are arranged parallel to each other, using the data of 26 and 27 or 26 and 28 will reduce the angle to about 1/2 of the stereoscopic viewing angle when viewing the same point, but the stereoscopic viewing angle can be obtained.

前方地点の撮像を行う受光素子27の信号出力はパルス
レベル区分計数回路29に供給される。
The signal output of the light receiving element 27 which performs imaging of the forward point is supplied to the pulse level division counting circuit 29.

一般に宇宙からの光学観測情報には陸域、海域及び雲の
データが含まれる。雲を撮像した場合の受光素子比較し
、この比較結果信号は通常かなシ高いレベルであり。
Generally, optical observation information from space includes data on land areas, ocean areas, and clouds. When comparing the light receiving elements when capturing an image of a cloud, the comparison result signal is usually at a very high level.

海域を撮像した場合比較し、この比較結果は最も低いレ
ベルとなる。特に近赤外帯の波長による観測では海域、
陸域及び雲によって異る出力レベルを得ることが出来る
This comparison result is the lowest when comparing images of ocean areas. In particular, observation using wavelengths in the near-infrared band
Different output levels can be obtained depending on the land area and clouds.

第4図は上記の近赤外帯の波長による観測で得られる出
力レベルを示す図で、横軸は時間、縦軸は光電変換素子
比較し、この比較結果レベルを示す。光電変換素子がC
ODの場合比較し、この比較結果信号は、各画素に1個
のパルス出力が対応するPAMの形で出力される。なお
出力波形が連続的なアナログ波形の場合にも、サンプリ
ングを行うことによυ第4図のような波形を得ることが
出来る。
FIG. 4 is a diagram showing the output level obtained by observation using the above-mentioned wavelength in the near-infrared band, where the horizontal axis is time, and the vertical axis shows the comparison result level of photoelectric conversion elements. The photoelectric conversion element is C
In the case of OD, the comparison result signal is output in the form of PAM in which one pulse output corresponds to each pixel. Note that even if the output waveform is a continuous analog waveform, the waveform shown in FIG. 4 can be obtained by sampling.

第4図において、レベルHの付近か雲1Mの付近が陸域
、Lの付近が海域の情報に相当する。したがって図に示
すように、しきい値T11T2を各々レベルLとMの中
間付近及びレベルMとHの中間付近に設定し、このT1
#T2のしきい値を第3図に示すしきい値発生部3oか
ら発生させてノクルスレベル区分計数回路29に供給す
ることによシ、前方地点6を撮像する受光素子27比較
し、この比較結果をr T 1以下、TI =Tz  
* T2以上の3領域に区分して各区分範囲内の信号・
マルス数を計数することが出来る。計数する期間はあら
かじめ設定した期間(例えば−走査線期間)において行
われこの計数出力がモード設定回路31に供給される。
In FIG. 4, the vicinity of level H or the vicinity of cloud 1M corresponds to land area information, and the vicinity of level L corresponds to sea area information. Therefore, as shown in the figure, the threshold values T11T2 are set near the middle between levels L and M, and near the middle between levels M and H, respectively.
By generating the threshold value of #T2 from the threshold value generating section 3o shown in FIG. The comparison result is r T 1 or less, TI = Tz
* Divided into three areas of T2 or higher, and signals within each classification range.
It is possible to count the Mars number. The counting period is performed in a preset period (for example, -scanning line period), and the counting output is supplied to the mode setting circuit 31.

モード設定回路31においては、ノクルスレベル区分計
数回路29比較し、この比較結果を各々本部分にてあら
かじめ設定されている基準のパルス数と比較し、以下に
述べるように・やルス計数値の大小判定−を行うことに
よシ撮像モードの設定を行う。
In the mode setting circuit 31, the Noculus level division counting circuit 29 compares the results, and compares the comparison results with the standard number of pulses preset in this section. The imaging mode is set by making a size determination.

32は選択切替回路であり、受光素子24〜28の信号
出力をモード設定回路31から比較し、この比較結果に
よシ個々にオンオフを行わせるアナログゲートとそ比較
し、この比較結果を多重・する回路から構成される。
Reference numeral 32 denotes a selection switching circuit, which compares the signal outputs of the light receiving elements 24 to 28 from the mode setting circuit 31, compares the signal outputs of the light receiving elements 24 to 28 with analog gates that individually turn on and off, and multiplexes and multiplexes the comparison results. It consists of a circuit that

33は信号処理回路であシ、増巾回路、サンプルホール
ド回路、Aj’D変換、及び多重部等よシ構成され、切
替回路32からの信号出力を後述のレコーダへの入力及
び地上への伝送に適合する′形式(たとえば時分割多重
ディジタル信号)に変換する部分である。なお回路内の
前記の増巾回路は。
33 is a signal processing circuit, which is composed of an amplification circuit, a sample hold circuit, an AJ'D conversion, a multiplexing section, etc., and inputs the signal output from the switching circuit 32 to a recorder to be described later and transmits it to the ground. This is the part that converts the signal into a format (for example, a time-division multiplexed digital signal) that is compatible with the . In addition, the above-mentioned amplification circuit in the circuit.

モード設定回路31比較し、この比較結果によシ、信号
の増巾率(ダイン)を切替えられるよう構成される。
The mode setting circuit 31 compares the signals, and is configured to switch the amplification rate (dyne) of the signal based on the comparison result.

34は17と同様のデータレコーダであシ1本方式の場
合にはモード設定回路31比較し、この比較結果によシ
記録部のクロック周波数を切替えて、記録速度の切替が
出来るよう構成される。
Reference numeral 34 is a data recorder similar to 17, and in the case of a single-line system, a mode setting circuit 31 compares the clock frequency of the recording section according to the comparison result, and is configured to switch the recording speed. .

次に撮像モード設定の具体例として、陸域においては直
下地点5の1バンド及び立体視観測を行い、海域におい
ては直下地点のマルチバンド観測を行い、震域において
はデータの送出をストリップさせる場合の具体的方法に
ついて述べる。なお説明を簡潔にするために、上記陸域
での立体視観測及び直下地点1バンド分のデニタ記録・
伝送を行うモードtノーマルモードと呼び、これよシ高
速成いは低速のモードをそ九ぞれ高速モード或いは低速
モードと仮称して説明を行う。
Next, as a specific example of imaging mode settings, in the land area, one band and stereoscopic observation of the point 5 directly below is performed, in the ocean area, multi-band observation of the point directly below is performed, and in the seismic area, data transmission is stripped. We will discuss the specific method. In order to simplify the explanation, we will introduce the stereoscopic observation in the land area mentioned above and the digital records for one band directly below.
The mode in which transmission is carried out is called the normal mode, and the higher-speed or lower-speed modes will be tentatively referred to as the high-speed mode or the low-speed mode in the following explanation.

tRルスレベル区分計数回路29かも成る一定期間毎に
出力されるレベル72以上のi4ルス数をnH+レベル
TlからT2の間のノやルス数をnMとする。
Let the number of i4 pulses of level 72 or higher outputted every fixed period, which is also formed by the tR pulse level classification counting circuit 29, be nH+the number of pulses between levels Tl and T2 as nM.

まずilのモードとして+nMが一定期間内において成
る設定された基準の・9ルス数n1 より大きかった場
合には、主対象とする陸域の情報が多いと判定し、立体
視観測のだめの受光素子27゜28からの信号及び直下
地点を観測する1バンド例えば受光素子26からの信号
のみが通過するようにモード設定回路31から選択切替
回路32に選択制御信号を与えて受光素子26〜28か
らの信号を通過させる。またこの場合、信号処理回路3
3及びデータレコーダ34はノーマルモードにて動作さ
せる。
First, if +nM as the mode of il is larger than the set reference number n1 of 9 ruses within a certain period, it is determined that there is a lot of information on the land area that is the main target, and the light-receiving element is used for stereoscopic observation. A selection control signal is given from the mode setting circuit 31 to the selection switching circuit 32 so that only the signal from the light receiving element 26 and the signal from the light receiving element 26 are passed through, for example, the signal from the light receiving element 26 to 28 is transmitted. Pass the signal. Further, in this case, the signal processing circuit 3
3 and data recorder 34 are operated in normal mode.

次に第2のモードとして、レベルT1からT2の間のパ
ルス数nMが設定基準パルス数n1よシ小さく、かつ、
レベル72以上のパルス数nHも成る設定された基準の
パルス数n2に達しない場合には。
Next, as a second mode, the number nM of pulses between levels T1 and T2 is smaller than the set reference number n1 of pulses, and
If the number nH of pulses at level 72 or higher does not reach the set reference number n2 of pulses.

海域の情報が大部分であると判定し、モード設定回路3
1及び選択切替回路32により、受光素子24〜28の
信号出力の中からマルチバンド観測を行う受光素子24
〜26比較し、この比較結果信号を通過させる。また、
信号処理回路33内の増巾回路のゲインをm倍に切替え
る。
It is determined that most of the information is about the ocean area, and the mode setting circuit 3
1 and the selection switching circuit 32, the light receiving element 24 performs multiband observation from among the signal outputs of the light receiving elements 24 to 28.
~26 comparisons are made, and this comparison result signal is passed. Also,
The gain of the amplification circuit in the signal processing circuit 33 is switched to m times.

第3図に示す構成例の場合には、受光素子24〜26比
較し、この比較結果のデータ速度と、前記陸域観測の場
合のノーマルモードのデータ速度とは、取扱う受光素子
の数が同じであるため、信号処理回路33及びデータレ
コーダ34のデータレートは基本的にはノーマルモード
と同じで良い。
In the case of the configuration example shown in FIG. 3, the light receiving elements 24 to 26 are compared, and the data rate of this comparison result and the data rate of the normal mode in the case of land observation are the same when the number of light receiving elements to be handled is the same. Therefore, the data rates of the signal processing circuit 33 and data recorder 34 may basically be the same as in the normal mode.

直下点のマルチバンド観測を行う信号出力のデータ速度
がバンド数或いは画素数によりノーマルモードと異る場
合には、この比率に応じて信号処理回路及びデータレコ
ーダのクロック速度を切替える。また、第4図に示すよ
うに、海域の信号の変化は緩やかなだめ、予測符号化等
によシ有効にデータ圧縮を行うことができる。但しこの
場合には信号処理回路出力のクロック速度及びデータレ
コーダのクロック速度をこの圧縮比率に応じて切替えを
行う。
If the data rate of the signal output for multi-band observation of the direct point differs from the normal mode due to the number of bands or the number of pixels, the clock speeds of the signal processing circuit and data recorder are switched according to this ratio. Furthermore, as shown in FIG. 4, changes in signals in the sea area are moderated, and data can be compressed effectively by predictive coding or the like. However, in this case, the clock speed of the signal processing circuit output and the clock speed of the data recorder are switched according to this compression ratio.

第3のモードとして、パルス数nMの値がnl  より
小さく、かつ、パルス数nHがn2以上の場合には、大
部分が雲に覆われている状態と判断出来るため、たとえ
ば極端な例としては選択切替回路32をすべてオフとし
、信号処理回路33及びデータレコーダ34の動作を一
時停止させる。この場合も少なくとも前方撮像素子27
及びパルスレベル区分計数回路29は動作させておくこ
とKより、上記のnM<JかつnH≧n2の条件が成立
しない場合には直ちに前記の第1或いは第2の撮像モー
ドに移行させることができる。また第3のモードにおい
て1例えば直下地点の1バンドのみあるいは立体撮像の
1バンドのみの信号処理を行わせ。
As the third mode, if the value of the number of pulses nM is smaller than nl and the number of pulses nH is greater than or equal to n2, it can be determined that most of the area is covered with clouds. All selection switching circuits 32 are turned off, and the operations of the signal processing circuit 33 and data recorder 34 are temporarily stopped. In this case, at least the front image sensor 27
By keeping the pulse level division counting circuit 29 in operation, if the above conditions of nM<J and nH≧n2 are not satisfied, it is possible to immediately shift to the first or second imaging mode. . Further, in the third mode, signal processing is performed for, for example, only one band of a point directly below or only one band of stereoscopic imaging.

データレコーダを低速モードにて動作させることも可能
である。
It is also possible to operate the data recorder in low speed mode.

上記説明中に記した基準パルス数n1 r n2及びゲ
インmの値は装態全体のシステム設計結果から設定され
る。例えば一定期間内の全信号パルス数nに対して、n
1/ n =0.05 + n2 / n =0.9 
+またm=4の値に設定することができる。更に、これ
らの値を地上からの指令(コマンド)信号によシ切  
・替えて適切な値に設定することも可能である。
The values of the reference pulse numbers n1 r n2 and the gain m described in the above description are set from the system design results of the entire device. For example, for the total number of signal pulses n within a certain period, n
1/n=0.05 + n2/n=0.9
+ or can be set to a value of m=4. Furthermore, these values can be converted to command signals from the ground.
・It is also possible to change it and set it to an appropriate value.

また第1のモードにおいて直下地点観測jを1バンドの
みとして説明したが、データ量・速度の許容する範囲内
の値で直下地点観測を複数の波長帯にわたって行わせる
。ことも可能である。
Furthermore, in the first mode, the direct point observation j has been described as being for only one band, but the direct point observation is performed over a plurality of wavelength bands at values within the allowable range of data amount and speed. It is also possible.

更に説明を簡潔にするために第3図の構成例では光学系
が1個の場合を示したが、観測波長帯が更に長波長に及
び同一の光学系によシ構成されない場合にも1本方式に
よシ受光素子出力の信号切替が出来ることは明らかであ
る。
Furthermore, in order to simplify the explanation, the configuration example in Fig. 3 shows the case where there is one optical system, but one optical system may also be used when the observation wavelength band is longer wavelength and is not configured with the same optical system. It is clear that the signal switching of the light receiving element output can be performed depending on the method.

以上述べたように1本方式によシ簡潔な構成によシ、撮
像対象に適応した効率の高い多機能の撮像装置が実現出
来る。
As described above, it is possible to realize a highly efficient multi-functional imaging device adapted to the object to be imaged by using the single-wire method and by using a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の撮像装置を用いた撮像方式の一例を示し
た図、第2図は従来の撮像装置の内部構成の一例を示し
た図、第3図は本発明の一実施例の構造を示す図、第4
図は本発明による装置を用いた観測結果の一例を示した
図である。 記号の説明:1は移動体、1,8は送信部、22は光学
系、23は分光系、24〜28は多素子光電変換素子(
受光素子)、29は・9ルスレベル区分計数回路、30
はしきい値発生部、31はモード設定回路、32は選択
切替回路、33は信号処理回路、34はデータレコーダ
をそれぞれあられしている。 第1図 8           A 范3図 杓煉弔田’i’、’(→
FIG. 1 is a diagram showing an example of an imaging method using a conventional imaging device, FIG. 2 is a diagram showing an example of the internal configuration of a conventional imaging device, and FIG. 3 is a diagram showing the structure of an embodiment of the present invention. Figure 4 showing
The figure is a diagram showing an example of observation results using the apparatus according to the present invention. Explanation of symbols: 1 is a moving body, 1 and 8 are transmitters, 22 is an optical system, 23 is a spectroscopic system, 24 to 28 are multi-element photoelectric conversion elements (
(light receiving element), 29 is a 9-Russ level division counting circuit, 30
Reference numeral 31 denotes a threshold generation section, 31 a mode setting circuit, 32 a selection switching circuit, 33 a signal processing circuit, and 34 a data recorder. Figure 1 8 A Fan 3 Figure 1 'i', '(→

Claims (1)

【特許請求の範囲】 1、撮像対象物に対し相対的に移動する撮像装置におい
て、該撮像装置内の撮像用光学系の結像面内に互に平行
で且つ該撮像装置の移動方向に対してほぼ直角に配置さ
れ、前記移動方向の少なくとも前方方向及び該撮像装置
の直下方向(正面方向)を撮像するようにした複数個の
多素子光電変換素子と、前記前方方向を撮像する多素子
光電変換素子の信号出力を複数のレベル範囲の信号パル
スに区分し、各区分範囲内の信号パルス数を一定期間計
数するパルスレベル区分計数回路と、この計数回路の計
数出力を各々あらかじめ設定された基準のパルス数と比
較し、パルス計数値の大小を比較し、この比較結果によ
り複数の撮像モードを設定 設定するモード設定回路と、このモード回路の出力によ
り前記複数個の多素子光電変換素子の信号出力を選択的
に切替える選択切替回路とを含み、前記前方方向撮像素
子出力により立体視情報の取得及び上記複数個の光電変
換素子の選択切替を行わせることを特徴とする自動選択
撮像装置。
[Claims] 1. In an imaging device that moves relative to an object to be imaged, the imaging devices are parallel to each other in the imaging plane of the imaging optical system in the imaging device and relative to the moving direction of the imaging device. a plurality of multi-element photoelectric conversion elements that are arranged substantially perpendicular to each other and capture images at least in the forward direction of the movement direction and in a direction directly below (front direction) of the imaging device; and a multi-element photoelectric conversion element that captures images in the forward direction. A pulse level division counting circuit divides the signal output of the conversion element into signal pulses in a plurality of level ranges and counts the number of signal pulses within each division range for a certain period of time, and the counting output of this counting circuit is calculated based on a preset standard. a mode setting circuit that compares the magnitude of the pulse count value and sets a plurality of imaging modes based on the comparison result; and a mode setting circuit that sets a plurality of imaging modes based on the comparison result; An automatic selection imaging device comprising: a selection switching circuit that selectively switches an output, and acquires stereoscopic vision information and selectively switches among the plurality of photoelectric conversion elements based on the output of the forward direction imaging device.
JP59177535A 1984-08-28 1984-08-28 Automatically selective image pickup device Granted JPS6156582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177535A JPS6156582A (en) 1984-08-28 1984-08-28 Automatically selective image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177535A JPS6156582A (en) 1984-08-28 1984-08-28 Automatically selective image pickup device

Publications (2)

Publication Number Publication Date
JPS6156582A true JPS6156582A (en) 1986-03-22
JPH0533590B2 JPH0533590B2 (en) 1993-05-19

Family

ID=16032631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177535A Granted JPS6156582A (en) 1984-08-28 1984-08-28 Automatically selective image pickup device

Country Status (1)

Country Link
JP (1) JPS6156582A (en)

Also Published As

Publication number Publication date
JPH0533590B2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5353055A (en) Image pickup system with an image pickup device for control
US8577183B2 (en) Resolution on demand
King Airborne multispectral digital camera and video sensors: a critical review of system designs and applications
EP2751932B1 (en) Control system for an aerially moved payload
NL8100902A (en) SCHEME FOR CORRECTING ALL SCREEN-RELATED ERRORS IN IMAGE RECORDERS IN A TELEVISION CAMERA.
US4613899A (en) Image pickup system capable of reproducing a stereo and/or a nonstereo image by the use of a single optical system
US7643755B2 (en) Optical receiver comprising a receiver photodetector integrated with an imaging array
SE453347B (en) IMAGING SYSTEMS
WO2014093769A1 (en) Dual-q imaging system
CN114859288A (en) Single photon detection array laser tracking angle measurement and communication distance measurement device and method
EP1596585A3 (en) Image pickup and signal transmission
US9386220B2 (en) Electro-optical (EO)/infrared (IR) staring focal planes with high rate region of interest processing and event driven forensic look-back capability
CN104580895A (en) Airborne imaging system with synchronous camera shooting and photographing capacity
JP2890965B2 (en) Imaging device
JPS6156582A (en) Automatically selective image pickup device
US4335400A (en) Adaptive post-filter for infrared scan converter
RU2707714C1 (en) Device for automatic acquisition and processing of images
CN212181029U (en) Short wave infrared imaging device based on digital different element accumulation technology
JPS649797B2 (en)
CN117268549A (en) Dual-band area array detector supporting different-speed image motion compensation function and aerial camera
RU2725973C1 (en) Method of generating a video signal in a television-computer system for monitoring industrial articles having a circular ring shape
CN221377593U (en) Imaging measurement device for micro-physical characteristics of precipitation particles
JP2752913B2 (en) 3D image capturing device
KR20070068201A (en) Camera system with bi-directional imaging capability for satellite-optical payload
CN114928738A (en) Passive three-dimensional imaging device