JPS6156448B2 - - Google Patents

Info

Publication number
JPS6156448B2
JPS6156448B2 JP53126975A JP12697578A JPS6156448B2 JP S6156448 B2 JPS6156448 B2 JP S6156448B2 JP 53126975 A JP53126975 A JP 53126975A JP 12697578 A JP12697578 A JP 12697578A JP S6156448 B2 JPS6156448 B2 JP S6156448B2
Authority
JP
Japan
Prior art keywords
gas
heated
temperature distribution
outflow
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53126975A
Other languages
Japanese (ja)
Other versions
JPS5552919A (en
Inventor
Taku Tamaru
Yoji Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP12697578A priority Critical patent/JPS5552919A/en
Publication of JPS5552919A publication Critical patent/JPS5552919A/en
Publication of JPS6156448B2 publication Critical patent/JPS6156448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は、流出ガス温度分布測定方法および
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring temperature distribution of an outflow gas.

流出ガスの温度分布を正確に迅速に測定するこ
とが望まれることが多い。例えば、最近のガスタ
ービンの作動温度はますます高温化する傾向があ
り、それにともない、燃焼器の出口温度分布は、
要素の耐久性に大きな影響を与える因子として注
目され、該出口温度分布の正確にして速やかな測
定が望まれている。
It is often desirable to accurately and quickly measure the temperature distribution of the effluent gas. For example, the operating temperature of recent gas turbines tends to be higher and higher, and as a result, the combustor outlet temperature distribution
It has attracted attention as a factor that greatly affects the durability of elements, and accurate and rapid measurement of the outlet temperature distribution is desired.

このような要望にも拘らず、従来、ガス流出口
部の温度分布測定は、熱電対等の温度検出部をト
ラバース装置等により直接気流の内を移動させ、
又は有限個の固定温度計を出口面に配し、その温
度分布を測定する方法が主であつた。しかし、こ
の方法では、測定箇所は点であり、これをまとめ
流出ガス温度分布を図にするには多くの時間と労
力を必要とした。
Despite these demands, conventionally, the temperature distribution measurement at the gas outlet has been carried out by moving a temperature detection unit such as a thermocouple directly through the airflow using a traverse device or the like.
Alternatively, the main method was to place a finite number of fixed thermometers on the outlet surface and measure the temperature distribution. However, in this method, the measurement points are points, and it takes a lot of time and effort to compile them and plot the temperature distribution of the outflow gas.

一方、固体や液体の温度分布の測定に、赤外線
映像装置が用いられるが、この赤外線映像装置
は、被測定物表面から輻射される赤外線を測定す
るものであるため、輻射率のきわめて小さい気体
の温度分布測定に適さないとされている。しかし
ながら、この赤外線映像装置は、固体や液体の温
度分布を迅速に正確に測定できる利点を有してい
るので、本発明者は、この利点に着目し、該赤外
線映像装置による気体温度分布測定を可能にさせ
る方法と装置を提供することを試みたのである。
On the other hand, infrared imaging devices are used to measure the temperature distribution of solids and liquids, but since these infrared imaging devices measure infrared rays radiated from the surface of the object being measured, they cannot be used to measure the temperature distribution of gases with extremely low emissivity. It is considered unsuitable for measuring temperature distribution. However, this infrared imaging device has the advantage of being able to quickly and accurately measure the temperature distribution of solids and liquids. We attempted to provide a method and device that would make this possible.

本発明の実施例を述べる。 Examples of the present invention will be described.

加熱ガス流出管1の出口部に格子体2を固定さ
せる。格子体2は、流出管1の内部に一部が挿入
されるようにしてもよく、又、流出管1の出口部
に外方から固定させるようにしてもよい。格子体
2は、流出ガスの流れ方向に沿う複数個の通路3
を有するハニカム状または整流格子状に構成され
る。通路3の断面形状は、特に限定されることな
く、ガス流の流れ方向を変えたり大きな圧損を作
るものでなければよい。又、格子体2を構成する
物質は、ガス流出部に取付けても、ガスの流れを
変えず、しかも、温度分布が正しく物質に移動す
るように圧損および熱伝導率が小さい物質がよ
く、たとえば、セラミツク、グラスフアイバーま
たは紙などを用いることができ、好ましくは、そ
の表面に黒色塗装を施し、赤外線を発生し易くし
てガス流出口部に取付け使用する。黒色塗装を用
いる場合、その輻射率は十分に大きい(常温〜
1650℃で0.97)ので、赤外線映像装置の温度指示
の補正は必要としない。
A grid body 2 is fixed to the outlet portion of the heated gas outlet pipe 1. A portion of the lattice body 2 may be inserted into the inside of the outflow pipe 1, or may be fixed to the outlet portion of the outflow pipe 1 from the outside. The lattice body 2 has a plurality of passages 3 along the flow direction of the outflow gas.
It is structured in a honeycomb shape or a rectifying grid shape. The cross-sectional shape of the passage 3 is not particularly limited, and it is sufficient as long as it does not change the flow direction of the gas flow or create a large pressure drop. In addition, the material constituting the grid body 2 is preferably a material that does not change the flow of gas even when attached to the gas outlet, and has low pressure drop and thermal conductivity so that the temperature distribution is properly transferred to the material. For example, , ceramic, glass fiber, paper, etc. can be used. Preferably, the surface thereof is painted black so that infrared rays can be easily generated, and the material is attached to the gas outlet. When using black paint, its emissivity is sufficiently high (from room temperature to
0.97 at 1650℃), so there is no need to correct the temperature indication of the infrared imaging device.

また、赤外線映像装置は、格子体の流出ガス排
出面5を観察するよう、流れの主流からはずれた
位置に設置する。そのように設置することによつ
て赤外線映像装置自体を流出ガスに直接曝すこと
なく、高温ガス流から保護することができる。
Further, the infrared imaging device is installed at a position away from the mainstream of the flow so as to observe the outflow gas discharge surface 5 of the grid body. Such an arrangement allows the infrared imaging device itself to be protected from the hot gas stream without being directly exposed to the effluent gas.

一方、格子体流出部を流れの主軸に対し斜めに
切断することにより、斜め後方より観察しても赤
外線映像装置の画像がガス流出部の主流軸上後方
より観察した場合と同じ断面形を得ることができ
る。ちなみに、流出ガスの主流軸上後方より観察
した場合は、格子体の端面とともに流出管内上流
部分の温度が干渉し流出ガス温度分布の正しい測
定はできない。以上のことを具体的に記述すると
次のようになる。
On the other hand, by cutting the lattice outlet obliquely to the main axis of the flow, even when observed obliquely from behind, the image of the infrared imaging device has the same cross-sectional shape as when observed from behind on the main axis of the gas outlet. be able to. Incidentally, when observing the outflow gas from the rear on the mainstream axis, the temperature of the upstream portion of the outflow pipe interferes with the end face of the grid body, making it impossible to accurately measure the temperature distribution of the outflow gas. The above can be described in detail as follows.

この格子体の出口部端面と流れに垂直な面との
角度をαとすると、赤外線映像装置4の観察位置
は出口ガス流方向を基準にとれば格子体2の端面
を中心にして角度2αだけ旋回した位置に設置す
れば、流れの真後から観察した像と同様な投影像
が得られる。
If the angle between the end face of the outlet of this grid body and the plane perpendicular to the flow is α, then the observation position of the infrared imaging device 4 is an angle of 2α with the end face of the grid body 2 as the center, taking the exit gas flow direction as a reference. If installed in a rotated position, a projected image similar to that observed from directly behind the flow can be obtained.

実験例 ダンボール紙の表面に黒色塗装が施し、これを
円筒状に連続して巻き筒体を形成し、一方の端面
からその格子部にガスの流入を可能にし且つ他方
の端面から、ガスの流出を可能にさせ、出口部を
筒体中心に対し角度にして15゜(α)斜めに切断
して格子体を作つた。
Experimental example The surface of cardboard paper is painted black, and this is continuously rolled into a cylindrical shape to form a cylinder, allowing gas to flow into the lattice part from one end face, and allowing gas to flow out from the other end face. The outlet section was made at an angle to the center of the cylinder and cut at an angle of 15° (α) to create a lattice body.

該格子体を、実験用燃焼器模型(ガス混合器)
のガス流出部に固定させ、角度にして30゜(2
α)の斜め後方に赤外線映像装置を設置し、加熱
流出ガス排出面5の温度分布を測定した。その結
果、第3図に示すような温度分布を速やかに且つ
正確に得ることができ、従来の熱電対の点測定に
比し、能率的であることが判明した。
The grid body was used as an experimental combustor model (gas mixer).
30° (2
An infrared imaging device was installed obliquely behind α) to measure the temperature distribution on the heated outflow gas exhaust surface 5. As a result, it was found that the temperature distribution shown in FIG. 3 could be obtained quickly and accurately, and that this method was more efficient than point measurement using conventional thermocouples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流出ガス温度分布測定装置の一例を示
す説明図、第2図は格子体の斜視図、第3図は第
2図に示す格子体を用いて測定した温度分布の一
例を示す図である。 図中:1……ガス流出管、2……格子体、3…
…ガス通路、4……赤外線映像装置。
Fig. 1 is an explanatory diagram showing an example of an outflow gas temperature distribution measuring device, Fig. 2 is a perspective view of a grid body, and Fig. 3 is a diagram showing an example of temperature distribution measured using the grid body shown in Fig. 2. It is. In the figure: 1... gas outflow pipe, 2... lattice body, 3...
...Gas passage, 4...Infrared imaging device.

Claims (1)

【特許請求の範囲】 1 加熱流出ガスを、格子体内に通し、該加熱ガ
スによつて加熱された前記格子体からの赤外線
を、該加熱ガスの流れの中心軸から離れ且つ斜め
後方に赤外線映像装置を設置することによつて上
流側の高温体の輻射を排除し、流出ガス温度或い
はその分布を測定することを特徴とする流出ガス
温度分布測定方法。 2 加熱流出ガスの流れ方向に沿う複数個の通路
を有し且つ加熱ガス流出口部が該通路中心に対し
て傾斜した面となつている格子体と、加熱ガスの
流れの中心軸から離れ且つ上流側の高温体の輻射
を排除する位置の赤外線映像装置とからなるガス
温度分布測定装置。
[Scope of Claims] 1 The heated outflow gas is passed through a grid body, and the infrared rays from the grid body heated by the heated gas are directed away from the central axis of the flow of the heated gas and diagonally backward as an infrared image. 1. A method for measuring temperature distribution of outflow gas, characterized in that by installing a device, radiation from a high temperature body on the upstream side is removed, and the temperature of outflow gas or its distribution is measured. 2. A lattice body having a plurality of passages along the flow direction of the heated outflow gas and in which the heated gas outlet portion is a surface inclined with respect to the center of the passage, and a lattice body that is away from the central axis of the flow of the heated gas and A gas temperature distribution measurement device consisting of an infrared imaging device located at a position that excludes radiation from high-temperature bodies on the upstream side.
JP12697578A 1978-10-16 1978-10-16 Method and device for metering temperature distribution of flow gas Granted JPS5552919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12697578A JPS5552919A (en) 1978-10-16 1978-10-16 Method and device for metering temperature distribution of flow gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12697578A JPS5552919A (en) 1978-10-16 1978-10-16 Method and device for metering temperature distribution of flow gas

Publications (2)

Publication Number Publication Date
JPS5552919A JPS5552919A (en) 1980-04-17
JPS6156448B2 true JPS6156448B2 (en) 1986-12-02

Family

ID=14948522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12697578A Granted JPS5552919A (en) 1978-10-16 1978-10-16 Method and device for metering temperature distribution of flow gas

Country Status (1)

Country Link
JP (1) JPS5552919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328270U (en) * 1989-07-28 1991-03-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173118A (en) * 2011-02-21 2012-09-10 Fujitsu Ltd Temperature measurement system and temperature measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328270U (en) * 1989-07-28 1991-03-20

Also Published As

Publication number Publication date
JPS5552919A (en) 1980-04-17

Similar Documents

Publication Publication Date Title
Panda An experimental investigation of screech noise generation
GB2082767A (en) Surface temperature measuring apparatus for object within furnace
Hedlund et al. Local swirl chamber heat transfer and flow structure at different Reynolds numbers
Uzol et al. Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications: Part 1—endwall heat transfer and total pressure loss characteristics
Sargent et al. An infrared thermography imaging system for convective heat transfer measurements in complex flows
US9528880B2 (en) Method and system for gas temperature measurement
Alaruri et al. Effective spectral emissivity measurements of superalloys and YSZ thermal barrier coating at high temperatures using a 1.6 μm single wavelength pyrometer
US3343417A (en) Temperature and pressure probe
nnik Clausen Local measurement of gas temperature with an infrared fibre-optic probe
JPS6156448B2 (en)
US4118985A (en) Radiation pyrometers
Boylan et al. Measurement and mapping of aerodynamic heating using a remote infrared scanning camera in continuous flow wind tunnels
LaRue et al. Momentum and heat flux in a swirl-stabilized combustor
JPS61181921A (en) Gas temperature measurement
Tanna et al. The noise and flow characteristics of inverted-profile coannular jets
Ramesh et al. Design, Flow Field and Heat Transfer Characterization of the Conjugate Aero-Thermal Test Facility at NETL
CN106500951A (en) Measure measuring probe, measuring system and the method for hypersonic flow parameter
Pelzmann et al. Two-color pyrometry for backface temperature and emissivity measurement of burning materials
Myers et al. Comparison of advanced cooling concepts using color thermography
Konstandopoulos et al. Inertial effects on thermophoretic transport of small particles to walls with streamwise curvature—II. Experiment
Nogueira et al. Multiple Δt strategy for particle image velocimetry (PIV) error correction, applied to a hot propulsive jet
Goeckner et al. Radiative heat transfer augmentation of natural gas flames in radiant tube burners with porous ceramic inserts
BLAIR et al. New techniques for measuring film cooling effectiveness and heat transfer
Tariq et al. Flow and heat transfer in a rectangular duct with single rib and two ribs mounted on the bottom surface
RU155273U1 (en) STAND FOR MODELING THE COOLING SYSTEM OF THE ELEMENTS OF THE WALL OF THE HEAT PIPE OF THE COMBUSTION CHAMBER OF A GAS TURBINE ENGINE