JPS61181921A - Gas temperature measurement - Google Patents

Gas temperature measurement

Info

Publication number
JPS61181921A
JPS61181921A JP2092485A JP2092485A JPS61181921A JP S61181921 A JPS61181921 A JP S61181921A JP 2092485 A JP2092485 A JP 2092485A JP 2092485 A JP2092485 A JP 2092485A JP S61181921 A JPS61181921 A JP S61181921A
Authority
JP
Japan
Prior art keywords
temperature
ceramic honeycomb
tail cylinder
infrared thermometer
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2092485A
Other languages
Japanese (ja)
Inventor
Shigemi Bandai
重実 萬代
Nobuo Sato
佐藤 亘男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2092485A priority Critical patent/JPS61181921A/en
Publication of JPS61181921A publication Critical patent/JPS61181921A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames

Abstract

PURPOSE:To accomplish the temperature distribution at a tail cylinder outlet section positively, by making a combustion gas from the tail cylinder heat a grid made of a heat resistant material with the pressure loss equivalent to a turbine to measure the temperature thereof with an infrared thermometer. CONSTITUTION:A combustion gas flowing through a tail cylinder 102 from a combustion inner cylinder 101 suffers a pressure loss equal to a turbine blade with a ceramic honeycomb or the like 203. It heats the ceramic honeycomb or the like and enters a deceleration duct 204 to be released in a changed direction. An infrared thermometer 206 is on the extension of a tail cylinder outlet to measure the temperature of the ceramic honeycomb or the like through a peep hole 205.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス温度計測法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gas temperature measurement method.

〔従来の技術〕[Conventional technology]

ガスタービン燃焼器等における尾筒出口部のガス温度の
計測は第2図(、) 、 (b)に示すように行われて
いる。同図において、101は燃焼器内筒。
Measurement of the gas temperature at the exit of a transition piece in a gas turbine combustor or the like is performed as shown in Figures 2(,) and (b). In the figure, 101 is a combustor inner cylinder.

102は尾筒、103は測温ダクト、1”04は熱電対
、105はダクトである。この様に、熱電対104を測
温ダクト103内に相当数取付けて行っているが、ガス
の噴出速度が速く、ガス温度も1000℃以上と高温の
ため熱電対の寿命が短かく。
102 is a transition piece, 103 is a temperature measuring duct, 1"04 is a thermocouple, and 105 is a duct. In this way, a considerable number of thermocouples 104 are installed in the temperature measuring duct 103, but the gas ejection The speed is fast and the gas temperature is high, over 1000°C, so the life of the thermocouple is short.

また計測点数にもかぎりがあるため、ガス温度分布等を
把握しにくい。
Furthermore, since the number of measurement points is limited, it is difficult to grasp the gas temperature distribution, etc.

〔発明が解決しようとする間層点〕[The interlayer point that the invention attempts to solve]

燃焼器開発に当って2尾筒ガス源度分布は燃焼器内での
燃焼状態を判断する大きな要素であり。
When developing a combustor, the two-tube gas source intensity distribution is a major factor in determining the combustion state within the combustor.

また燃焼ガスを受ける静翼の温度分布、寿命評価にも重
要である。このため本分布を確実に計る方法が必要であ
る。
It is also important for evaluating the temperature distribution and lifespan of stator blades that receive combustion gas. Therefore, a method to reliably measure this distribution is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は上記の点に着目し2尾筒比口部の温度分
布を確実に計る方法を提供することであり、その特徴と
するところは、燃焼器の出口部にタービン相当の圧損を
もった耐熱性材料の格子を設け、同格子の温度を赤外線
温度計で計測することである。
The purpose of the present invention is to provide a method for reliably measuring the temperature distribution at the two-cylinder ratio port by paying attention to the above points. A grid made of heat-resistant material is installed, and the temperature of the grid is measured with an infrared thermometer.

〔作用〕[Effect]

この場合は1尾筒からの燃焼ガスはタービン相当の圧損
をもった耐熱性材料の格子を加熱して。
In this case, the combustion gas from one transition pipe heats a grid made of heat-resistant material that has a pressure drop equivalent to that of a turbine.

これを赤外線温度計で測定する。Measure this with an infrared thermometer.

〔実施例〕〔Example〕

以下図面を参照して本発明による実施例の方法につき説
明する。
DESCRIPTION OF EMBODIMENTS A method according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による1実施例の方法に使用される装置
を示す。
FIG. 1 shows the apparatus used in one embodiment of the method according to the invention.

図において、101は燃焼器内筒、102は尾筒、20
3はセラミ、り製の格子(ハニカムまたはモノリス)、
204は減速ダクト、205は覗窓、206は赤外線温
度計である。
In the figure, 101 is a combustor inner cylinder, 102 is a transition piece, 20
3 is ceramic, resin lattice (honeycomb or monolith),
204 is a deceleration duct, 205 is a viewing window, and 206 is an infrared thermometer.

上記構成の場合の作用について述べる。The operation in the case of the above configuration will be described.

燃焼器内筒101から尾筒102を通って流れた燃焼ガ
スは、セラミックのハニカム等203によってタービン
翼と同等の圧損を受け、セラミックのハニカム等を加熱
して、減速ダク)204に入り、方向を変えて放出され
る。
Combustion gas flowing from the combustor inner tube 101 through the transition tube 102 undergoes a pressure loss equivalent to that of a turbine blade through the ceramic honeycomb etc. 203, heats the ceramic honeycomb etc., enters the deceleration duct 204, and changes direction. is released by changing the

赤外線温度計は尾筒出口部の延長上にあり、覗窓205
を透してセラミ、りのハニカム等を測温する。
The infrared thermometer is located on the extension of the tail tube outlet, and is located through the viewing window 205.
Measure the temperature of ceramics, honeycombs, etc. through the filter.

〔発明の効果〕〔Effect of the invention〕

上述の場合には次の効果がある。 The above case has the following effects.

尾筒出口部でタービン翼と同等の圧損を得られているの
で、実機を模擬した燃焼状態が得られると共に1尾筒用
口から噴出されるガスの温度分布をセラミ、りのハニカ
ム等がそのt−を受けることになシ、セラミックのハニ
カム等の温度分布を赤外線温度計で計測することによっ
て9尾筒量口温度分布を知ることができる。
Since the pressure drop at the exit of the transition tube is equivalent to that of a turbine blade, it is possible to obtain a combustion state that simulates the actual aircraft, and the temperature distribution of the gas ejected from the transition tube port can be controlled by ceramic, honeycomb, etc. By measuring the temperature distribution of a ceramic honeycomb or the like with an infrared thermometer, it is possible to know the temperature distribution of the 9-tube nozzle.

【図面の簡単な説明】[Brief explanation of the drawing]

第】図は本発明による1実施例の方法に使用される装置
を示す説明図、第2図(、)は従来の方法に使用される
装置を示す説明図、第2図(b)は第2図(、)のA−
A矢視図である。 102・・・尾筒、203・・・セラミック製の格子。 205・・・覗窓、206・・・赤外線温度計。 1;
Fig. 2 is an explanatory diagram showing an apparatus used in a method according to an embodiment of the present invention, Fig. 2 (,) is an explanatory diagram showing an apparatus used in a conventional method, and Fig. A- in Figure 2 (,)
It is a view from arrow A. 102... Tail piece, 203... Ceramic lattice. 205... Peephole, 206... Infrared thermometer. 1;

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン、ジェットエンジン等の燃焼器の燃焼
状態を把握するに当って、上記燃焼器の出口部にタービ
ン相当の圧損をもった耐熱性材料の格子を設け、同格子
の温度を赤外線温度計で計測することを特徴とするガス
温度計測法。
1. In order to understand the combustion state of a combustor such as a gas turbine or jet engine, a grid made of a heat-resistant material with a pressure drop equivalent to that of the turbine is installed at the outlet of the combustor, and the temperature of the grid is calculated as the infrared temperature. A gas temperature measurement method characterized by measuring with a meter.
JP2092485A 1985-02-07 1985-02-07 Gas temperature measurement Pending JPS61181921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092485A JPS61181921A (en) 1985-02-07 1985-02-07 Gas temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092485A JPS61181921A (en) 1985-02-07 1985-02-07 Gas temperature measurement

Publications (1)

Publication Number Publication Date
JPS61181921A true JPS61181921A (en) 1986-08-14

Family

ID=12040768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092485A Pending JPS61181921A (en) 1985-02-07 1985-02-07 Gas temperature measurement

Country Status (1)

Country Link
JP (1) JPS61181921A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342783A (en) * 1990-12-05 1994-08-30 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for detecting a reaction zone in a catalytic converter
EP0696708A1 (en) * 1994-08-09 1996-02-14 MARTIN GmbH für Umwelt- und Energietechnik Method for controlling the burning in combustion plants, especially waste incineration plants
US20110268149A1 (en) * 2010-05-03 2011-11-03 General Electric Company System and method for compressor inlet temperature measurement
JP2012173118A (en) * 2011-02-21 2012-09-10 Fujitsu Ltd Temperature measurement system and temperature measuring method
US8410946B2 (en) 2010-03-05 2013-04-02 General Electric Company Thermal measurement system and method for leak detection
US8702372B2 (en) 2010-05-03 2014-04-22 Bha Altair, Llc System and method for adjusting compressor inlet fluid temperature
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342783A (en) * 1990-12-05 1994-08-30 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for detecting a reaction zone in a catalytic converter
EP0696708A1 (en) * 1994-08-09 1996-02-14 MARTIN GmbH für Umwelt- und Energietechnik Method for controlling the burning in combustion plants, especially waste incineration plants
US8410946B2 (en) 2010-03-05 2013-04-02 General Electric Company Thermal measurement system and method for leak detection
US20110268149A1 (en) * 2010-05-03 2011-11-03 General Electric Company System and method for compressor inlet temperature measurement
US8469588B2 (en) * 2010-05-03 2013-06-25 General Electric Company System and method for compressor inlet temperature measurement
US8702372B2 (en) 2010-05-03 2014-04-22 Bha Altair, Llc System and method for adjusting compressor inlet fluid temperature
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
JP2012173118A (en) * 2011-02-21 2012-09-10 Fujitsu Ltd Temperature measurement system and temperature measuring method

Similar Documents

Publication Publication Date Title
EP2072981B1 (en) Temperature sensor and method for measuring temperature
Howitt et al. Flow effects in monolithic honeycomb automotive catalytic converters
Roback et al. Hot streaks and phantom cooling in a turbine rotor passage: Part 1—separate effects
GB2090333A (en) Gas turbine engine shroud/blade tip control
Uzol et al. Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications: Part 1—endwall heat transfer and total pressure loss characteristics
US9528880B2 (en) Method and system for gas temperature measurement
JPS61181921A (en) Gas temperature measurement
KR100516588B1 (en) Hot spot detection system for vanes or blades of a combustion turbine
US3343417A (en) Temperature and pressure probe
GB2032536A (en) Temperature measuring assembly for the nozzle guide ring of a gas turbine
US5567051A (en) Thermal testing of ceramic components using a thermal gradient
CN106501015B (en) A kind of multitubular bundles integrated form radiant tube combustion experimental system and method
CN210269493U (en) Thermal cycle life test system for thermal barrier coating
Fleck et al. Experimental and numerical investigation of the novel low NOx CGRI burner
Krishnamoorthy et al. Influence of upstream flow conditions on the heat transfer to nozzle guide vanes
JPH01176922A (en) Exhaust gas temperature detecting device for gas turbine
CN114264482A (en) Experimental system for measuring comprehensive cooling efficiency of turbine blade top of gas turbine
Kunze et al. A New test rig for film cooling experiments on turbine endwalls
Ko et al. Experimental investigations on effectiveness, heat transfer coefficient, and turbulence of film cooling
Kimura et al. Fluid flow and heat transfer of natural convection adjacent to upward‐facing inclined heated plates
JPS6156448B2 (en)
Goeckner et al. Radiative heat transfer augmentation of natural gas flames in radiant tube burners with porous ceramic inserts
Facchini et al. Experimental investigation of turning flow effects on innovative trailing edge cooling configurations with enlarged pedestals and square or semicircular ribs
RU155273U1 (en) STAND FOR MODELING THE COOLING SYSTEM OF THE ELEMENTS OF THE WALL OF THE HEAT PIPE OF THE COMBUSTION CHAMBER OF A GAS TURBINE ENGINE
Kirby et al. Infrared thermometry for control and monitoring of industrial gas turbines