JPS6155979B2 - - Google Patents

Info

Publication number
JPS6155979B2
JPS6155979B2 JP59107611A JP10761184A JPS6155979B2 JP S6155979 B2 JPS6155979 B2 JP S6155979B2 JP 59107611 A JP59107611 A JP 59107611A JP 10761184 A JP10761184 A JP 10761184A JP S6155979 B2 JPS6155979 B2 JP S6155979B2
Authority
JP
Japan
Prior art keywords
ions
mineral
ion
living body
living
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59107611A
Other languages
Japanese (ja)
Other versions
JPS60253462A (en
Inventor
Masahisa Muroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORITORONIKUSU KK
TOKYO DENSHI ZAIRYO KOGYO KK
Original Assignee
HORITORONIKUSU KK
TOKYO DENSHI ZAIRYO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORITORONIKUSU KK, TOKYO DENSHI ZAIRYO KOGYO KK filed Critical HORITORONIKUSU KK
Priority to JP59107611A priority Critical patent/JPS60253462A/en
Publication of JPS60253462A publication Critical patent/JPS60253462A/en
Publication of JPS6155979B2 publication Critical patent/JPS6155979B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Description

【発明の詳細な説明】 本発明は、生体内の鉱物イオン濃度を生体外か
ら選択的継続的に調節する鉱物イオン浸透器に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mineral ion permeator that selectively and continuously adjusts the mineral ion concentration within a living body from outside the living body.

人体等の動植物の生体内には、細胞構成物質が
所定濃度含有されており、そのバランスがくずれ
ると正常な生体機能維持が阻害される。たとえ
ば、動物細胞の内外ではナトリウム、カリウムイ
オン濃度比〔Na+〕/〔K+〕がそれぞれ異なる一定
値に保たれており、細胞内のナトリウムイオン濃
度が高まると血圧が上昇し、逆にカリウムイオン
濃度が高まると血圧が降下するという性質があ
る。また、植物細胞中のマグネシウムイオン濃度
が低下すると葉緑素の生体が阻害され、成育異常
をきたす。同様に動物細胞の鉄イオンや銅イオン
濃度が低下すると貧血をおこす。一方、生体が本
来必要としない重金属イオンの一部、たとえば
Pb2+,Cr2+,Hg2+,Cd2+などは生体内に取込ま
れると生体機能の正常な働きを阻害する要因とな
るため、生体を破壊することなく生体外からこれ
を除去することができるならば好都合である。逆
に、通常生体に含有されていない元素でも生体内
に取込まれることが好ましい場合がある。たとえ
ば、導入されると抗体反応が自己活性化し、マク
ロフアージやインターフエロンの生成に有用とい
われるゲルマニウムや、ガン細胞を死滅させるた
めの放射性同位元素などである。これらの元素は
選択的に適当濃度生体内に取込まれるならば、生
体に対する治療上好ましい。
BACKGROUND ART Cell constituent substances are contained in predetermined concentrations in the living bodies of animals and plants, such as the human body, and when the balance is disrupted, maintenance of normal biological functions is inhibited. For example, the sodium and potassium ion concentration ratios [Na + ]/[K + ] are maintained at different constant values inside and outside of animal cells, and as the intracellular sodium ion concentration increases, blood pressure increases, and conversely, potassium ion concentration increases. It has the property of lowering blood pressure as the ion concentration increases. Furthermore, when the concentration of magnesium ions in plant cells decreases, the chlorophyll organism is inhibited, resulting in abnormal growth. Similarly, when the concentration of iron and copper ions in animal cells decreases, anemia occurs. On the other hand, some heavy metal ions that living organisms do not need, such as
Pb 2+ , Cr 2+ , Hg 2+ , Cd 2+ , etc. become factors that inhibit the normal functioning of biological functions when taken into the body, so they must be removed from outside the body without destroying the body. It would be convenient if you could. Conversely, it may be preferable for elements that are not normally contained in living bodies to be taken into living bodies. Examples include germanium, which self-activates antibody reactions when introduced and is said to be useful for producing macrophages and interferons, and radioactive isotopes that kill cancer cells. These elements are preferable for treatment of living organisms if they are selectively taken into the living body at appropriate concentrations.

上記したような必要元素イオンの生体内摂取
は、従来食物や薬品類の内服または養分の根から
の吸収や注射塗布などの外用によつて行なわれて
きた。また不必要イオンの排除もある程度は生体
防衛反応によつて自然に行なわれてきた。しか
し、生体細胞膜や原形質膜を通じての吸収排出
は、生体メカニズムの範囲内で行なわれるため限
界がある。注射などの直接注入法も生体皮膚内に
所定の薬品類を搬入するという意味では効果的で
あるが、注入された薬品の生体細胞内への吸収と
いう点では生体メカニズムにのつとつているた
め、必ずしも充分効果があがらない場合がある。
The ingestion of necessary elemental ions as described above has conventionally been carried out by internal administration of foods and medicines, absorption of nutrients through the roots, or external application such as injection application. In addition, removal of unnecessary ions has been carried out naturally to some extent by biological defense reactions. However, there are limits to absorption and excretion through biological cell membranes and plasma membranes, as this occurs within the scope of biological mechanisms. Direct injection methods such as injections are also effective in the sense of delivering prescribed drugs into the skin of a living body, but absorption of the injected drugs into living cells depends on biological mechanisms. It may not always be sufficiently effective.

本発明は、上記したような様々な生体内鉱物イ
オンの濃度を必要に応じて生体外から継続的かつ
選択的に調節することを目的としている。
The present invention aims to continuously and selectively adjust the concentration of the various mineral ions described above from outside the body as necessary.

前記目的を達成するために、本発明では概略第
1図a又はbの構成になる鉱物イオン浸透器を開
示する。すなわち、標準単極電位のより高い導電
性鉱物甲と標準単極電位のより低い導電性鉱物乙
とを電気的に接続し、これを生体に装着する。装
着は第1図aのごとく生体皮膚面4に甲,乙を直
接圧触しても第1図bのごとく甲乙を生体皮膚内
に穿刺して行なつてもよい。今仮に、甲は元素金
属A、乙は元素金属Bより成るものとする。この
場合標準単極電位EOにはEOA>EOBの関係があ
る。さて、生体内には鉱物イオンが存在するが、
適当な多価イオン鉱物をCとするとき(Cは1
価、2価の陽イオンになると仮定)、生体内では
電荷移動によつてCイオンの酸化還元が可能であ
り C2+→C+又はC+→C2+(標準単極電位EOC) なる反応を生じうる。第1図a又はbの如き装着
によつて、A,Bの標準単極電位の差により、元
素金属Bの価電子は元素金属A側に移動する。こ
の結果標準単極電位の関係によつて次のいずれか
の反応が生ずる。
In order to achieve the above object, the present invention discloses a mineral ion permeator having the configuration generally shown in FIG. 1a or b. That is, conductive mineral A, which has a higher standard unipolar potential, and conductive mineral B, which has a lower standard unipolar potential, are electrically connected, and these are attached to a living body. The attachment may be carried out by directly pressing A and B against the skin surface 4 of the living body as shown in FIG. 1A, or by puncturing A and B into the skin of the living body as shown in FIG. 1B. Assume that A is made of elemental metal A and B is made of elemental metal B. In this case, the standard unipolar potential E 0 has a relationship of E OA >E OB . Now, mineral ions exist in living organisms,
When a suitable polyvalent ionic mineral is C (C is 1
C 2+ →C + or C + →C 2+ (Standard unipolar potential E OC ) A reaction can occur. By mounting as shown in FIG. 1a or b, the valence electrons of the elemental metal B move to the elemental metal A side due to the difference in the standard monopolar potentials of A and B. As a result, one of the following reactions occurs depending on the relationship between the standard unipolar potentials.

(1) EOC>EOA>EOBの場合 B→B++e-,すなわち、Bのイオン化と生体
内浸透拡散 C2++e-→C+,すなわち、C2+の還元 (2) EOA>EOC>EOBの場合 元素金属AのイオンA+が生体内に分布し
ている時 B→B++e-, A++e-→A,すなわちA+の還元と電極Aへ
の析出(A+が生体外排出) イオンA+が生体内に分布していない時 B→B++e-, C2++e-→C+ (3) EOA>EOB>EOCの場合 イオンA+が生体内に分布している時 C+→C2++e-,すなわちC+の酸化 A++e-→A イオンA+が生体内に分布していない時 C+→C2++e-, D2++e-→D+,すなわち生体内での別イオン
D2+の還元(ただしEOD>EOC) 第1図bの如き配置、すなわち偏倚電源の接続
や甲,乙の穿刺配置は第1図aの如き配置で期待
される上記反応を促進するうえで大きな効果をも
つ。また、第1図c,dのように導線を用いず
A,Bを直接短絡して用いることも、eのように
AB間に絶縁物15を挟み、導線16で連結して
用いることもできる。なお、簡単のためにA,
B,Cを元素金属としたが、合金や化合物につい
ても適用できることは自明である。
(1) When E OC >E OA >E OB B→B + +e - , i.e., ionization of B and in-vivo penetration diffusion C 2+ +e - →C + , i.e., reduction of C 2+ (2) E When OA > E OC > E OB When ion A + of elemental metal A is distributed in the living body, B → B + + e - , A + + e - → A, that is, A + is reduced and deposited on electrode A. (A + is excreted outside the body) When ion A + is not distributed in the body B→B + +e - , C 2+ +e - →C + (3) When E OA > E OB > E OC Ion A When + is distributed in the body C + →C 2+ +e - , that is, oxidation of C + A + +e - →A When the ion A + is not distributed in the body C + →C 2+ +e - , D 2+ +e - →D + , that is, another ion in the living body
Reduction of D 2+ (however, E OD > E OC ) The arrangement as shown in Figure 1 b, that is, the connection of the bias power source and the puncture arrangement of A and B, promotes the above reaction expected in the arrangement as shown in Figure 1 a. It has a great effect. Also, as shown in Figure 1 c and d, A and B can be directly shorted without using conductors, or as shown in e.
It is also possible to sandwich the insulator 15 between AB and connect it with a conductor 16. For simplicity, A,
Although B and C are used as elemental metals, it is obvious that the invention can also be applied to alloys and compounds.

上記説明のように本発明の鉱物イオン浸透器を
用いれば、適当な組合せを選択することによつて
生体に必要な乙イオンの注入、或いは不必要な甲
イオンの排出が生理現象ではなく物理現象によつ
て継続的に行なうことができ、理想的である。
As explained above, if the mineral ion permeator of the present invention is used, by selecting an appropriate combination, the injection of A ions necessary for the living body or the discharge of unnecessary A ions will be a physical phenomenon rather than a physiological phenomenon. It is ideal because it can be carried out continuously.

以下、本発明を、実施例に基づいて詳細に述べ
る。
Hereinafter, the present invention will be described in detail based on examples.

(実施例 1) 直径2mmφ、高さ3mmの円柱状金属カルシウム
1に裏面を除き金属鉄2を約1μmの厚みに真空
蒸着し、水素雰囲気で前記金属カルシウム底面を
研摩後、バンソウコウ3を用いて第2図に示した
如くマウスの腹面皮膚4に、前記カルシウム1底
面が直接圧触されるようにして貼布した。この場
合、カルシウム1と同時に鉄2もマウス皮膚面4
に接触する。約100時間を経てカルシウム―鉄複
合ブロツクを取りはずし、マウスを解剖して皮下
組織を調べると、前記カルシウム―鉄複合ブロツ
ク貼布領域(直径約5mmφ、深さ約1cm)は、こ
れ以外の領域に比べてカルシウムイオン濃度が増
加し鉄イオン濃度が減少しているのが認められ
た。皮膚面直下約3mm迄の領域ではカルシウムイ
オン濃度が約2桁増加し、鉄イオン濃度は約20%
減少していた。これは、前記カルシウム―鉄複合
ブロツクの鉄陽極側で 2Fe3++6e-→2Fe なる反応によりマウス体内のFe3+イオンがFe電
極に析出したか、或いは 3Fe2++6e-→3Fe なる反応により体内のFe2+イオンがFe電極に析
出し、逆にカルシウム陰極側で 3Ca→3Ca2++6e- なる反応によりCa2+イオンがマウス体内へ浸透
していつた結果と考えられる。カルシウムイオン
の増加に比べて鉄イオンの減少が少ないのは、
Fe3+イオンのFe2+イオンへの還元が主要な反応
になつているためと考えられる。
(Example 1) Metallic iron 2 was vacuum-deposited to a thickness of about 1 μm on a cylindrical calcium calcium column 1 with a diameter of 2 mmφ and a height of 3 mm, except for the back surface, and the bottom surface of the calcium metal was polished in a hydrogen atmosphere. As shown in FIG. 2, the patch was applied to the ventral skin 4 of a mouse so that the bottom surface of the calcium 1 was brought into direct pressure contact. In this case, iron 2 is also added to the mouse skin surface 4 at the same time as calcium 1.
come into contact with. After about 100 hours, the calcium-iron composite block was removed, the mouse was dissected, and the subcutaneous tissue was examined. In comparison, it was observed that the calcium ion concentration increased and the iron ion concentration decreased. In the area up to about 3 mm directly below the skin surface, calcium ion concentration increases by about two orders of magnitude, and iron ion concentration increases by about 20%.
It was decreasing. This is because Fe 3+ ions in the mouse body were deposited on the Fe electrode by the reaction 2Fe 3+ +6e - →2Fe on the iron anode side of the calcium-iron composite block, or by the reaction 3Fe 2+ +6e - →3Fe. This is thought to be the result of Fe 2+ ions in the body depositing on the Fe electrode, and conversely, Ca 2+ ions penetrating into the mouse body through a reaction of 3Ca → 3Ca 2+ + 6e - on the calcium cathode side. The decrease in iron ions is smaller than the increase in calcium ions because
This is thought to be because the main reaction is the reduction of Fe 3+ ions to Fe 2+ ions.

(実施例 2) ナスの苗木が約15cmに育つた時、その水耕栽培
溶液に0.1%のHgBr2を添加し、約1週間を経て
取出した。この苗木の茎を切つて組織検査すると
約500ppmのHgが検出された。この段階で水耕栽
培液を除去更新しHgBr2を含まないものにした。
そしてナスの苗木5本のうち2本の茎14に、第
3図に示す如き金属連結球(各直径2mmのSn球
およびZn球13を溶着したもの)をバンソウコ
ウ3で圧着貼布した。約150時間経過後前記金属
結球を除去し、貼布領域の茎を切断して組織検査
した。圧着した個所は、茎表面が損傷を受け、茎
内の樹液が該連結球面までしみ出しているのが認
められた。金属連結球を貼布しなかつた残り3本
のナス茎についても同様な組織検査を行ない比較
したところ、金属連結球を貼布しなかつたナス茎
からは平均100〜200ppmのHg2+が検出された
が、連結球を貼布した2本のナス茎ではHg2+
オン濃度は10ppm程度に減少しており、逆に
Zn2+イオン濃度が約50%増加しているのが観察さ
れた。これは、金属連結球のSn陽極側で Hg2++2e-→Hg なる析出反応が生じ、Zn陰極側で Zn→Zn2++2e- なる解離反応が生じたことを示唆している。
Hg2+イオンの還元反応は標準単極電位がSnの場
合より大きく、したがつて陽極ではHgが析出す
る。Hg2+イオンは生体にとつて有害であるが、
本発明の方法では除去可能であることが示され
た。
(Example 2) When the eggplant seedlings grew to about 15 cm, 0.1% HgBr 2 was added to the hydroponic culture solution, and the plants were taken out after about one week. When the stem of this sapling was cut and tissue examined, approximately 500 ppm of Hg was detected. At this stage, the hydroponic culture solution was removed and updated to contain no HgBr 2 .
Then, metal connecting balls (Sn balls and Zn balls 13 each having a diameter of 2 mm are welded together) as shown in FIG. 3 were affixed to the stems 14 of two of the five eggplant seedlings by pressure-bonding using the adhesive tape 3. After approximately 150 hours, the metal head was removed, and the stem in the patched area was cut and histologically examined. At the crimped area, the stem surface was damaged, and sap within the stem was observed to seep out to the connecting spherical surface. A similar histological examination was performed on the remaining three eggplant stems to which metal connecting balls were not applied, and an average of 100 to 200 ppm of Hg 2+ was detected in the eggplant stems to which metal connecting balls were not applied. However, the Hg 2+ ion concentration decreased to about 10 ppm in the two eggplant stems to which the connecting bulbs were attached;
An approximately 50% increase in Zn 2+ ion concentration was observed. This suggests that a precipitation reaction of Hg 2+ +2e - →Hg occurred on the Sn anode side of the metal connection sphere, and a dissociation reaction of Zn→Zn 2+ +2e - occurred on the Zn cathode side.
The reduction reaction of Hg 2+ ions is greater than when the standard monopolar potential is Sn, so Hg is precipitated at the anode. Although Hg 2+ ions are harmful to living organisms,
It has been shown that the method of the present invention is removable.

以上の実施例で詳述したように、本発明の鉱物
イオン浸透器を用いることによつて、生体に必要
な鉱物イオンの選択的摂取或いは不必要な鉱物イ
オンの選択的除去が生理反応に依存することなく
効果的に行ない得る。これは、一種の生体電池反
応(物理現象)を応用した機器であり、生体の生
長促進や金属イオン交換、或いは治療等を目的と
して、生体外から連続的に使用することにより、
容易に前記目的を達成することを可能とする。
As detailed in the above examples, by using the mineral ion permeator of the present invention, the selective intake of mineral ions necessary for living organisms or the selective removal of unnecessary mineral ions depends on physiological reactions. It can be done effectively without doing anything. This is a device that applies a type of biological battery reaction (physical phenomenon), and can be used continuously from outside the body for the purpose of promoting the growth of living organisms, exchanging metal ions, or for treatment.
This makes it possible to easily achieve the above objective.

なお、上記実施例は本発明の一部について述べ
たものであり、本発明の鉱物イオン浸透器を生体
皮膚面の一部だけでなく、全体にわたつて適用す
れば、生体内イオン交換がより効果的に行なわれ
ることは自明である。
Note that the above embodiments describe only a part of the present invention, and if the mineral ion permeator of the present invention is applied not only to a part of the skin surface of a living body but also to the entire skin surface, the ion exchange in the living body will be improved. It is obvious that this can be done effectively.

以上に詳述した説明で本発明の内容は尽きる
が、最後に「特許請求の範囲」との関連で本発明
の鉱物イオン浸透器構成要件の総括的記述を行な
う。
Although the content of the present invention is completed with the above detailed explanation, finally, the constituent elements of the mineral ion permeator of the present invention will be comprehensively described in connection with the "claims."

周知のように異種金属間のイオン化の差が化学
電池の酸化還元反応を惹起する基本原理である
が、本発明はこの原理を積極的に利用して生体内
に必要鉱物イオンを選択的に浸透させたり、生体
外に不必要鉱物イオンを選択的に排出せしめる機
器を提供するものである。この目的を達成するた
めには、電池の陰陽極に用いられる2種類の鉱物
の他に生体内に分布する第3の鉱物イオンを考慮
して、これら3種類の鉱物イオン間の酸化還元
能、つまり標準単極電位の違いに着目した適切な
選択を行なわなければならない。すなわち、生体
内への鉱物イオン浸透は陰極構成元素のイオン化
によつて陰極側で生じ、また生体外への鉱物イオ
ンの排出は陽極上への析出(還元)によつて陽極
側で生ずるが、これらイオン化または析出は前述
に記載した如く生体電解質内での第3の鉱物イオ
ンの還元また酸化による電荷補償によつてはじめ
て可能となるのである。そこで、生体内に必要な
元素イオンの選択的浸透を行なう場合、たとえば
発明の背景の部分に記載した如く、必要元素イオ
ンが細胞構成物質のイオンであり該元素の濃度が
低下したために補給を行なう場合や、発明の背景
の他の部分に記載された如く通常生体に含有され
ていないが、含有されることが生体機能活性化あ
るいは回復という観点から好ましい元素のイオン
を浸透させる場合には、これら生体内必要元素を
含む鉱物乙(元素または該元素を含む化合物や合
金)を陰極とし、陽極にはこれより標準単極電位
の高い鉱物甲を用いるのである。この結果、乙の
イオン化(酸化)と同時に生体内分布イオンの甲
直下領域での還元が惹起して目的は達せられる。
一方、発明の背景の更に他の部分に記載した如く
生体内に分布しているが不必要なので生体から排
除すべき元素丙のイオン排出の場合甲の選択はよ
り重要である。すなわち、甲の上に丙が還元析出
するのであるから、丙イオンの還元作用がもつと
も強く生ずるように、Hg,Pb,Cd,Crの如き重
金属元素、即ち、丙に比べてより低い標準単極電
位を有する鉱物を甲として選ぶのである。陽極構
成物質乙の標準単極電位は当然甲、丙より低くな
るよう選択されているので、丙イオンの陽極上へ
の還元析出は乙のイオン化または乙直下での生体
内イオンの酸化反応に補償されてはじめて可能と
なる。
As is well known, the difference in ionization between different metals is the basic principle that causes redox reactions in chemical batteries, and the present invention actively utilizes this principle to selectively penetrate necessary mineral ions into living organisms. The present invention provides a device that selectively discharges unnecessary mineral ions from the living body. In order to achieve this objective, in addition to the two types of minerals used in the cathode and anode of the battery, a third mineral ion distributed in the living body is considered, and the redox ability between these three types of mineral ions, In other words, an appropriate selection must be made with attention to the difference in standard unipolar potential. In other words, mineral ion penetration into the living body occurs on the cathode side by ionization of cathode constituent elements, and mineral ion discharge outside the living body occurs on the anode side by precipitation (reduction) on the anode. These ionizations or precipitations are made possible only by charge compensation through reduction or oxidation of the third mineral ion within the bioelectrolyte, as described above. Therefore, when performing selective penetration of necessary elemental ions into the living body, for example, as described in the background of the invention, the necessary elemental ions are ions of cell constituent substances and the concentration of the element has decreased, so replenishment is performed. In some cases, as described in other parts of the background of the invention, when infiltrating ions of elements that are not normally contained in living organisms but whose inclusion is desirable from the viewpoint of activating or recovering biological functions, these The cathode is a mineral A (an element or a compound or alloy containing the element) that contains an element necessary for living organisms, and the anode is a mineral A with a higher standard unipolar potential. As a result, at the same time as the ionization (oxidation) of A, the reduction of the biodistributed ions in the area immediately below the instep occurs, and the objective is achieved.
On the other hand, as described in the other part of the background of the invention, the selection of A is more important in the case of ion excretion of element C, which is distributed in the living body but is unnecessary and should be eliminated from the living body. In other words, since C is reductively precipitated on the upper surface of the shell, heavy metal elements such as Hg, Pb, Cd, and Cr, i.e., standard unipolar elements with a lower concentration than C, are strongly generated when C ions have a reducing effect. A mineral with electrical potential is selected as the instep. Since the standard unipolar potential of the anode component B is naturally selected to be lower than A and C, the reduction and precipitation of C ions onto the anode compensates for the ionization of B or the oxidation reaction of ions in the body directly below B. It becomes possible only if

上記作用は、甲および乙の生体皮膚面への圧触
または穿刺と甲乙間の電気的接続によつて電気的
閉回路が形成されてはじめて生ずることは云うま
でもない。
It goes without saying that the above-mentioned effect occurs only when an electrical closed circuit is formed by the pressure contact or puncture of A and B on the living body's skin surface and the electrical connection between A and B.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明するための図であ
り、第2、及び第3図は本発明のそれぞれ別の実
施例を説明するための図である。図において1は
Ca、2はFe、3はバンソウコウ、4は皮膚面、
12はSn、13はZn、14はナス茎、15は絶
縁物である。
FIG. 1 is a diagram for explaining the principle of the present invention, and FIGS. 2 and 3 are diagrams for explaining different embodiments of the present invention. In the figure, 1 is
Ca, 2 is Fe, 3 is anti-inflammatory, 4 is skin surface,
12 is Sn, 13 is Zn, 14 is an eggplant stem, and 15 is an insulator.

Claims (1)

【特許請求の範囲】 1 標準単極電位を異にする2種類の導電性鉱物
間を電気的に接続した導電体から成り、前記2種
類の導電性鉱物が各々生体の皮膚表面に圧触また
は皮膚内に穿刺される如くして配置された器具に
おいて、 (1) 前記2種類の導電性鉱物のうち標準単極電位
のより低い鉱物(以下、乙と称する)が、適当
濃度生体内に取込まれるならば生体に対する治
療上好ましい元素あるいは該元素の合金あるい
は該元素の化合物、 (2) 生体外へ排除すべき元素(以下、丙と称す
る)が、上記生体内に蓄積されている場合、前
記2種類の導電性鉱物のうち標準単極電位のよ
り高い鉱物(以下、甲と称する)が丙より低い
標準単極電位を持つ元素あるいは化合物、 であるように甲、乙を選択したことを特徴とする
鉱物イオン浸透器。
[Claims] 1. Consists of a conductor in which two types of conductive minerals having different standard unipolar potentials are electrically connected, and each of the two types of conductive minerals is pressed or pressed against the skin surface of a living body. (1) The mineral with the lower standard unipolar potential of the two types of conductive minerals (hereinafter referred to as B) is injected into the body at an appropriate concentration in the device placed so as to be punctured into the skin. (2) When an element (hereinafter referred to as C) that should be eliminated from the body is accumulated in the body, Of the two types of conductive minerals mentioned above, A and B have been selected so that the mineral with a higher standard unipolar potential (hereinafter referred to as A) is an element or compound with a lower standard unipolar potential than C. Characteristic mineral ion permeator.
JP59107611A 1984-05-29 1984-05-29 Mineral ion penetration device Granted JPS60253462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107611A JPS60253462A (en) 1984-05-29 1984-05-29 Mineral ion penetration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107611A JPS60253462A (en) 1984-05-29 1984-05-29 Mineral ion penetration device

Publications (2)

Publication Number Publication Date
JPS60253462A JPS60253462A (en) 1985-12-14
JPS6155979B2 true JPS6155979B2 (en) 1986-11-29

Family

ID=14463557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107611A Granted JPS60253462A (en) 1984-05-29 1984-05-29 Mineral ion penetration device

Country Status (1)

Country Link
JP (1) JPS60253462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788810A2 (en) 1996-02-09 1997-08-13 Polytronics, Ltd. Skin-contact type medical treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427947U (en) * 1990-06-30 1992-03-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788810A2 (en) 1996-02-09 1997-08-13 Polytronics, Ltd. Skin-contact type medical treatment apparatus

Also Published As

Publication number Publication date
JPS60253462A (en) 1985-12-14

Similar Documents

Publication Publication Date Title
US7122027B2 (en) Implantable medical device with controllable gaseous agent release system
Greatbatch et al. History of implantable devices
Douglas et al. The role of calcium in the secretory response of the adrenal medulla to acetylcholine
JP4320177B2 (en) Transdermal electrotransport delivery device comprising an antimicrobial compatible reservoir composition
US4747819A (en) Iontophoretic drug delivery
US5533995A (en) Passive transdermal device with controlled drug delivery
CA1315853C (en) Iontophoresis process and apparatus for administering a dissolved or partially dissolved substance, percutaneously or perungually
US5079010A (en) Pharmaceutical preparation for the treatment of wounds, damaged tissue and inflammation in animals
US4744787A (en) Iontophoresis apparatus and methods of producing same
RU2308985C2 (en) Needle electrode
JP5357259B2 (en) Bioabsorbable battery and related methods
DE60124340T2 (en) SELECTED ADMINISTRATIVE PROFILES OF MEDICAMENTS USING COMPETITIVE IONS
Holmes The role of lithium batteries in modern health care
Singh et al. Topical iontophoretic drug delivery in vivo: historical development, devices and future perspectives
CA1267937A (en) Iontophoretic drug delivery
HU184575B (en) Method for producing preparations fixable on skin generating locally electrolytic and bio currents
JPS6155979B2 (en)
DE2336114C3 (en) Biogalvanic metal-oxygen cell
US11660314B2 (en) Implantable device for producing hydrogen
JP2797118B2 (en) Transdermal drug delivery device
JPS61115578A (en) Ion penetration device
JPS6155980B2 (en)
JPS6190676A (en) Skin contact maker
Fontenier et al. Study of the corrosion in vitro and in vivo of magnesium anodes involved in an implantable bioelectric battery
Rana et al. A Cyclic Voltammetric Studies of Complexation of Copper (II) with Thymine Using Glassy Carbon Electrode in Aqueous Medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term