JPS6155812A - Flame resistant electric insulator and method of producing same - Google Patents

Flame resistant electric insulator and method of producing same

Info

Publication number
JPS6155812A
JPS6155812A JP17896484A JP17896484A JPS6155812A JP S6155812 A JPS6155812 A JP S6155812A JP 17896484 A JP17896484 A JP 17896484A JP 17896484 A JP17896484 A JP 17896484A JP S6155812 A JPS6155812 A JP S6155812A
Authority
JP
Japan
Prior art keywords
coating layer
base fabric
fire
organic polymer
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17896484A
Other languages
Japanese (ja)
Inventor
井上 猛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP17896484A priority Critical patent/JPS6155812A/en
Publication of JPS6155812A publication Critical patent/JPS6155812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は耐火性vL電気絶縁物関する。本発明の絶縁物
は特に非常用設備の[9c配線用の絶縁物として、火災
の熱による絶縁破壊を生じに<<、すぐれた性能を発揮
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fire-resistant vL electrical insulation. The insulator of the present invention exhibits excellent performance especially as an insulator for [9c wiring of emergency equipment] in preventing dielectric breakdown caused by heat of fire.

耐火性電気絶縁物としては、アスベストを主成分とする
ものが古くから使用されて来たが、耐火性が十\不足す
る上、発癌性を有する欠点があるため、近年ら″1シ使
用されなくなって来ている。
As fire-resistant electrical insulators, materials whose main component is asbestos have been used for a long time, but in addition to lacking fire resistance, they also have the disadvantage of being carcinogenic, so they have been used less and less in recent years. It's starting to disappear.

これに代って種々のセラミックスの中空成形物を絶縁物
とした電線やVイカ、セラミックス等を電線上に被覆し
たものが使用されるようになって来たが可撓性に乏しく
、施工しにくい欠点がある。
In place of this, electric wires using various ceramic hollow moldings as insulators, V-shaped wires, and wires coated with ceramics, etc., have come into use, but they lack flexibility and are difficult to install. There are some serious drawbacks.

種々の難燃性有機材料を使った電気絶縁物やガラス繊維
が限定された条件下で耐熱性の電気絶縁物として使用さ
れている。しかし難燃性有機材料は高温下で徐々に炭化
し絶縁性を失なう。またガラス繊維は溶融すると電気伝
導性になる。これらの材料は厚い保温材の中に埋めて使
用することではじめて非常用設備の電気絶縁物として充
分な性能を発揮する。
Electrical insulators made from various flame-retardant organic materials and glass fibers are used as heat-resistant electrical insulators under limited conditions. However, flame-retardant organic materials gradually carbonize and lose their insulating properties at high temperatures. Glass fibers also become electrically conductive when melted. These materials exhibit sufficient performance as electrical insulators for emergency equipment only when they are embedded in thick heat insulators.

しかし非常用設備の電気絶縁物は、導電材料(たとえば
銅線)が溶融温度に達するまで絶縁性を失なわず、短絡
、接地を生じないことが望ましい。このような性能を有
する絶縁材料については、種々の提案がなされている。
However, it is desirable that the electrical insulators in emergency equipment do not lose their insulating properties until the conductive material (e.g., copper wire) reaches its melting temperature and do not cause short circuits or grounding. Various proposals have been made regarding insulating materials having such performance.

米国特許−3095336号にはセラミック粒子をフィ
ラーとした熱硬化性樹脂をコートしたガラス繊維織物が
記載されている。この材料はセラミック成形品の中間物
として考えられているが、耐火性絶縁物としての利用も
考えられるものである。特公昭44−7897号には絶
縁フェノ中にアルミナ、シリカ等を分散させた電線被覆
が記載されている。この方法の欠点はセラミック粒子の
分散量を多くすると急激に加工性が悪くなること、フェ
ス分が熱分解した時に被覆層の強度がほとんど失なわれ
、本発明の目的とするような高水準の耐火性が得られな
いことであ、る。特公昭49−12061号には絶縁フ
ェスを被覆した上に無機粉末を付着させる方法が述べら
れているが、この方法もフェス分が熱分解した時に被覆
層がほとんど強度を失なう欠点がある。また特開昭56
−162416号にはガラスa維を基布としてこれにセ
ラミック粒子をコロイダルシリカを含んだ有機質バイン
ダーによって被覆することが述べられている。この方法
の問題点はセラミック粒子間の結合力が不十分で、有機
質バインダーが分解する温度でガラス繊維の軟化温度以
下の温度に長くさらされると被覆層が一体性を失なうた
め、振動などに対して極端に弱くなり、耐火性を示さな
くなることである。
US Pat. No. 3,095,336 describes a glass fiber fabric coated with a thermosetting resin filled with ceramic particles. Although this material is considered as an intermediate for ceramic moldings, it could also be used as a refractory insulator. Japanese Patent Publication No. 7897/1989 describes a wire coating in which alumina, silica, etc. are dispersed in an insulating phenol. The disadvantages of this method are that workability deteriorates rapidly when the amount of ceramic particles dispersed is increased, and that the strength of the coating layer is almost lost when the face part is thermally decomposed. This is because fire resistance cannot be obtained. Japanese Patent Publication No. 49-12061 describes a method of coating an insulating face with inorganic powder, but this method also has the disadvantage that the coating layer loses almost all of its strength when the face is thermally decomposed. . Also, JP-A-56
No. 162,416 describes using glass A fiber as a base fabric and coating it with ceramic particles with an organic binder containing colloidal silica. The problem with this method is that the bonding strength between the ceramic particles is insufficient, and if the coating layer is exposed to a temperature below the softening temperature of glass fibers for a long time at the temperature at which the organic binder decomposes, the coating layer loses its integrity, resulting in vibrations, etc. It becomes extremely weak against fire and exhibits no fire resistance.

このような従来技術の問題点について検討した結果、被
覆層の一体性が良好で、可視性、成形性にすぐれた材料
の組み合わせを見出し本発明に到達した。
As a result of studying the problems of the prior art, we have found a combination of materials with good integrity of the coating layer, excellent visibility and moldability, and arrived at the present invention.

本発明の電気絶縁物はガラスH1維を主成分とする基布
上に有機高分子物を主成分とする厚さ0.5μmないし
200μmの中間被覆層を介して電気絶縁性の耐火物の
粉粒体焼結物層が密着しており、950℃における見か
けの体積固有抵抗が106Ω・α以上であることを特徴
とする。
The electrical insulator of the present invention is produced by coating an electrically insulating refractory powder on a base fabric containing glass H1 fibers with an intermediate coating layer having a thickness of 0.5 μm to 200 μm containing an organic polymer as a main component. It is characterized in that the granular sintered material layers are in close contact with each other, and the apparent volume resistivity at 950° C. is 10 6 Ω·α or more.

本発明の電気絶縁物はガフスm維を主成分とする基布上
に有機高分子を主成分とする被覆層を形成、固化させた
後に電気絶縁性の耐火物の粉粒体を用いて溶射法によシ
該耐火物の粉粒体焼結物被覆層を形成させて製造する。
The electrical insulator of the present invention is produced by forming a coating layer mainly composed of an organic polymer on a base fabric mainly composed of gaffus m-fibers, solidifying it, and then thermally spraying it using electrically insulating refractory powder. The refractory is manufactured by forming a coating layer of powdered sintered material by a method.

ガラス繊維に対する耐火物の溶射は粒子が持って来る熱
による繊維の劣化が激しいため、非常に難かしい。溶射
粒子によるガラス繊維の劣化は繊維直径が大きい程少な
いが、ガラス繊維の強度は繊維直径が大きくなると急激
に小さくなる問題がある。またガラス繊維の直径が大き
くなるとガラス繊維布は硬くなシ、可撓性が小さくなシ
ニ次加工性が悪くなる。溶射粒子を小さくするとガラス
繊維の劣化は減少する傾向があるが、溶射粒子の冷却速
度が大きくなるため、プラズマ炎などの加熱流体とガラ
ス繊維を近傍させる必要が出るので、粒子サイズを小さ
くする効果はあまシ大きくない。その上粒子サイズが小
さい程粒径を均一にすることが難かしくなシ、溶射加工
時の歩止まシが悪くなる。
Thermal spraying of refractories onto glass fibers is extremely difficult because the fibers are severely degraded by the heat brought by the particles. Deterioration of glass fibers due to thermal spray particles decreases as the fiber diameter increases, but there is a problem in that the strength of glass fibers decreases rapidly as the fiber diameter increases. Furthermore, as the diameter of the glass fibers increases, the glass fiber cloth becomes less hard and less flexible, resulting in poor secondary processability. Making the spray particles smaller tends to reduce the deterioration of the glass fibers, but since the cooling rate of the spray particles increases, it becomes necessary to place the glass fibers in close proximity to the heating fluid such as the plasma flame, so the effect of reducing the particle size is It's not very big. Moreover, the smaller the particle size is, the more difficult it is to make the particle size uniform, and the yield rate during thermal spray processing becomes worse.

ガラヌlI!c維に対する耐火物の溶射加工はこのよう
な理由で極めて難かしいが、一方溶射による被覆層には
他の方法では得られないような利点が多く、電気絶縁物
として好ましい性質を示す。たとえば耐火性として従来
から用いられているセラミックス絶縁物よシ高い水準の
ものが得られることである。これは溶射加工の加熱媒体
がアークプラズマのような極めて高温のものであるため
素材選択の自由度が大きいことが原因である。また銅線
など導電材に対する腐食性が少ない利点がある。
Garanu I! For these reasons, it is extremely difficult to thermally spray refractories on c-fibers, but on the other hand, the thermally sprayed coating layer has many advantages that cannot be obtained with other methods, and exhibits desirable properties as an electrical insulator. For example, it is possible to obtain a higher level of fire resistance than conventionally used ceramic insulators. This is because the heating medium used in thermal spraying is extremely high temperature, such as arc plasma, so there is a large degree of freedom in material selection. It also has the advantage of being less corrosive to conductive materials such as copper wire.

これは腐食の原因となる有機物、アルカリ、ハロゲン等
を含有していないことによる。この他熱膨張係数が小さ
く熱ショックに対し強い利点がある。
This is because it does not contain organic substances, alkalis, halogens, etc. that cause corrosion. Another advantage is that it has a small coefficient of thermal expansion and is resistant to thermal shock.

この原因については充分に解明されていないが、この性
質は非常用電気設備の材料として極めて好ましいものと
考えられる。
Although the cause of this has not been fully elucidated, this property is considered to be extremely desirable as a material for emergency electrical equipment.

ガラス繊維に対する耐火物の溶射加工を行なう際のガラ
ス繊維の劣化を軽減する方法について種々検討した結果
、ガラス繊維の上に有機高分子物層を被覆した後加工す
ることが有効であることを見出し本発明に到達した。
As a result of various studies on ways to reduce the deterioration of glass fibers when thermal spraying them with refractories, we found that it is effective to coat the glass fibers with an organic polymer layer and then process them. We have arrived at the present invention.

被覆層の厚さは0.5μmないし200μmである。The thickness of the coating layer is 0.5 μm to 200 μm.

0,5μm以下ではガラス繊維に対する保護効果が不十
分であシ、200μm以上では電気絶縁物として加熱を
受けた場合、基布と溶射層の間にできるすきまが大きく
なυすぎ、ガラス繊維の熱収縮ですきまをうめることが
できなくなるため、振動などによって破損しやすくなる
ので好ましくない。被覆層の厚さは5μmないし50μ
mが好ましい。被覆層の高分子物はガラス繊維に接着す
るものであれば何でも良いが、とくに加熱時に炭化物を
残しにくいポリオレフィン、メタクリル酸系ポリマー、
アクリル酸系ポリマー、PVA 、ポリスチレン系ポリ
マー、ポリエステル、脂肪族ポリアミド、ポリスチレン
系ポリマーなどが特に好ましい。被覆層には加熱時の発
熱量を小さくするため無機質のフィラーを配合すること
が好ましい。フィラーとしてハ水酸化アルミニウム、ア
ルミナ、クリ力、マグネシャ、チタニア、ジルコニア、
炭酸カルシウム、炭酸マグネシウム、マイカ、耐火物原
料となるような粘土などが使用できる。フィラーとじて
は溶射される耐火物と反応して低軟化点の物質を作らな
いものであれば使用可能である。
If the thickness is less than 0.5 μm, the protective effect for glass fibers will be insufficient, and if it is more than 200 μm, when heated as an electrical insulator, the gap between the base fabric and the sprayed layer will be too large. This is undesirable because it is not possible to fill the gap due to shrinkage, making it more likely to be damaged by vibrations. The thickness of the coating layer is 5μm to 50μm
m is preferred. The polymer material for the coating layer may be any material as long as it adheres to the glass fibers, but in particular polyolefins, methacrylic acid polymers,
Particularly preferred are acrylic acid polymers, PVA, polystyrene polymers, polyesters, aliphatic polyamides, polystyrene polymers, and the like. It is preferable that an inorganic filler is added to the coating layer in order to reduce the amount of heat generated during heating. As fillers, aluminum hydroxide, alumina, chestnut, magnesia, titania, zirconia,
Calcium carbonate, magnesium carbonate, mica, and clay, which is a raw material for refractories, can be used. Any filler can be used as long as it does not react with the sprayed refractory to produce a substance with a low softening point.

被覆層を形成させる方法としては、有機高分子物を溶解
する溶剤に溶解して塗布する方法、有機高分子物の分散
液を塗布する方法、有機高分子物の溶融物を塗布する方
法、有機高分子物の粉体を高温VCjXJ熱し九基布に
衝突させて被覆する方法、有機高分子物の溶融物を微粒
化して基布に衝突させて被覆する方法、有機高分子物の
モノマー、プレポリマーを前述の被覆方法を用いて基布
上を被覆した後重合させ高分子化する方法が用いられる
Methods for forming the coating layer include methods of dissolving the organic polymer in a solvent and coating it, coating a dispersion of the organic polymer, coating a melt of the organic polymer, and coating the organic polymer by dissolving it in a solvent. A method of coating by heating the powder of a polymer at high temperature VCj A method is used in which the base fabric is coated with a polymer using the above-mentioned coating method and then polymerized to form a polymer.

本発明においてガラス繊維を主成分とする基布とはガラ
ス繊維の織物、編物、不織布および紙である。この基布
にはサイジング剤、油剤、接着剤、防炎加工剤、着色剤
を含有することが可能であり、種々の有機Rm、ガラス
Rm以外の無機繊維、種々の粉体を含有することも可能
である。
In the present invention, the base fabric mainly composed of glass fibers includes woven fabrics, knitted fabrics, nonwoven fabrics, and paper made of glass fibers. This base fabric can contain sizing agents, oils, adhesives, flameproofing agents, and colorants, and can also contain various organic Rm, inorganic fibers other than glass Rm, and various powders. It is possible.

本発明において溶射加工を行なう方法は、耐火物に適用
できるすべての方法を用いることができるが、中でもア
ークプラズマを用いる方法が最も好ましい。溶射ガンの
運転条件は通常の場合とほぼ同様であるが、基布は溶射
加工されつつある部分において強力に冷却する必要があ
る。また溶射は少量ずつ間はり的に行なうことが好まし
い。基布は溶射加工の際には強制冷却を受けた熱伝導率
の高い材質から成る支持装置に密着させる。支持装置に
圧着する装置の使用は困難であるので支持装置を円柱状
などの中凸の曲面を持つものとし基布に張力をかけて圧
着する。張力の大きさは溶射流体の流れなどによって基
布がはためかない程度であればよい。支持装置の冷却は
内部に流体を流して行なうことが望ましく、流量を調節
する等の手段により支持装置の温度を調節することがさ
らに好ましい。
In the present invention, any method applicable to refractories can be used for thermal spraying, but among them, a method using arc plasma is most preferred. The operating conditions of the thermal spray gun are almost the same as in the normal case, but the base fabric needs to be strongly cooled in the area that is being thermally sprayed. Further, it is preferable to perform thermal spraying in small amounts at intervals. During thermal spraying, the base fabric is brought into close contact with a support device made of a material with high thermal conductivity that is subjected to forced cooling. Since it is difficult to use a device that presses the support device, the support device is made to have a cylindrical or other convex curved surface and is press-bonded by applying tension to the base fabric. The magnitude of the tension may be such that the base fabric does not flutter due to the flow of thermal spray fluid. It is preferable that the support device is cooled by flowing a fluid therein, and it is more preferable to adjust the temperature of the support device by adjusting the flow rate or the like.

溶射加工されつつある部分は別に気流によって冷却する
ことが好ましい。この冷却気流は、支持装置の移動およ
び溶射ガンの運転を停止した状態で、溶射加工する位置
から冷却気流の吹出口の方に向ってlz近づいた場所で
測定して1 m/seaないし50m/δecであるこ
とが好ましい。
Preferably, the part that is being thermally sprayed is cooled separately by an air stream. This cooling air flow is measured at a distance of 1 m/sea to 50 m/sea at a location 1z closer to the cooling air outlet from the location where the thermal spraying process is performed, with the movement of the support device and the operation of the thermal spray gun stopped. Preferably, it is δec.

溶射加工を行なう際には支持装置および溶射ガンを高速
で動かして基布が一回の溶射で受ける熱を少なくするこ
とが好ましい。1回の溶射で溶射流体に接触する時間は
1/1000秒ないし1/10であることが好ましい。
When performing thermal spraying, it is preferable to move the support device and the thermal spray gun at high speed to reduce the amount of heat that the base fabric receives during one thermal spraying process. The contact time with the thermal spraying fluid during one thermal spraying is preferably 1/1000 second to 1/10.

接触時間が短かすぎると溶射する耐火物粒子が速く冷却
され過ぎるため焼結が困難になシ、これKよシ溶射層の
密着性が悪くなる。1回の溶射で被覆される溶射層の重
量は基布の面積10I肖υo、os、gないし5 mg
が好ましい。
If the contact time is too short, the sprayed refractory particles will be cooled too quickly, making sintering difficult, and the adhesion of the sprayed layer will deteriorate. The weight of the sprayed layer coated by one thermal spraying is 5 mg for the area of the base fabric 10I, os, g or 5 mg.
is preferred.

溶射する耐火物としては高温時の絶縁性が良好なものが
用いられる。アルミナ系耐火物がすぐれた性質を示すが
、シャモットなどムライト質耐火物、シリカ、ジルコニ
ア、ジルコンおよびこれらの混合物なども使用可能であ
る。
The refractory to be thermally sprayed is one that has good insulation properties at high temperatures. Although alumina refractories exhibit excellent properties, mullite refractories such as chamotte, silica, zirconia, zircon, and mixtures thereof can also be used.

溶射加工によシ製造した耐火物の粉粒体焼結物層は薄す
ぎる場合、ガラス繊維の流動温度以上に加熱される際に
溶融ガラスの侵食を受は電気絶縁性が低下する。厚すぎ
る場合には可撓性が乏しくなシ、二次加工および成形が
困難になる。とくに電線被覆の場合、小さな曲率半径で
曲げられるので可焼性は大きいことが望ましい。耐火物
の粉粒体焼結物層の厚さはシート状の電気絶縁物の面積
を基準としだ面密度として10 g/mから1000 
g/mが好ましい。電線被覆としては20 g/rnか
ら200y/mがとくに好ましい。
If the refractory powder sintered material layer produced by thermal spraying is too thin, it will suffer erosion from the molten glass when heated above the flow temperature of the glass fibers and its electrical insulation will deteriorate. If it is too thick, flexibility will be poor and secondary processing and molding will be difficult. In particular, in the case of electric wire coatings, it is desirable that they have high flammability since they can be bent with a small radius of curvature. The thickness of the refractory powder sintered material layer is from 10 g/m to 1000 g/m as the surface density based on the area of the sheet-like electrical insulator.
g/m is preferred. A wire coating of 20 g/rn to 200 y/m is particularly preferred.

耐火物の粉粒体焼結物層の厚さとガラス繊維を主成分と
する基布の厚さの割合にも好適範囲があシ、該焼結物層
の厚さが該基材の厚さにくらべて小さい場合、概して該
焼結物層は破損し易い傾向を示す。また過度に大きい場
合には溶射加工時のガラスR#:の熱劣化の影響が相対
値として小さくても絶対値として無視できない程大きく
なるので二次加工が短かしくなシ、好ましくない。該焼
結物層と該基布の割合は重量比で1:20から5:1の
間が好適である。
There is also a suitable range for the ratio of the thickness of the powder sintered material layer of the refractory to the thickness of the base fabric whose main component is glass fiber, and the thickness of the sintered material layer is the same as the thickness of the base material. If the thickness is smaller than that, the sintered material layer generally tends to be easily damaged. If it is too large, the effect of thermal deterioration of glass R#: during thermal spraying processing may be small in relative value, but the absolute value will be so large that it cannot be ignored, which is not preferable because the secondary processing will be short. The weight ratio of the sintered material layer to the base fabric is preferably between 1:20 and 5:1.

本発明の耐火性電気絶縁物は電気機器、配線等への成形
加工前あるいは後の段階で別種の電気絶縁材料を被覆す
ることができる。このような被覆は本発明の耐火性電気
絶縁物の機械的および電気的な強さを改善するものであ
る。これらの加工に用いる材料は必ずしも難燃性材料で
ある必要はな・い。むしろ火災のような加熱環境では容
易に分解気化し、炭化物を残さないものでちることが好
ましい。具体的には炭化しやすいフェノール樹脂、メラ
ミン樹月旨、アラミド、セIレロース、ポリアクリロニ
トリル等は好ましくなく、炭化しにくいポリオレフィン
、軟質塩ビ、ポリビニルアルコール、ポリエステル、脂
肪族ポリアミド、アクリル酸誘導体ポリマー、メタクリ
ル酸誘導体ポリマー、ポリスチレン等が好ましい。
The fire-resistant electrical insulator of the present invention can be coated with another type of electrical insulating material before or after being formed into electrical equipment, wiring, etc. Such coatings improve the mechanical and electrical strength of the refractory electrical insulation of the present invention. The materials used for these processes do not necessarily have to be flame retardant. Rather, it is preferable to use a material that easily decomposes and vaporizes in a heated environment such as a fire, and does not leave any carbide. Specifically, phenolic resins that easily carbonize, melamine jutsuji, aramid, Selerose, polyacrylonitrile, etc. are not preferred, and polyolefins that do not easily carbonize, soft vinyl chloride, polyvinyl alcohol, polyester, aliphatic polyamide, acrylic acid derivative polymers, Preferred are methacrylic acid derivative polymers, polystyrene, and the like.

本発明の耐火性電気絶縁物は、950℃1時間の加熱に
よる、!気絶縁性の変化が極めて少ないものである。ま
た加熱時においても充分な絶縁性を示すものである。そ
のため火災時にその熱によって短絡や接地を生じないの
で、非常用電源の絶縁物としてすぐれた性能を示す。9
50℃以上の温度範囲での絶縁性の低下も顕著ではない
が950〜1050℃の範囲では銅線の酸化が急激に進
行して通電が困難になるため、絶縁物の耐熱性としては
950℃があれば十分と考えられる。
The fire-resistant electrical insulator of the present invention can be produced by heating at 950°C for 1 hour! There is very little change in gas insulation properties. It also exhibits sufficient insulation properties even when heated. Therefore, in the event of a fire, the heat will not cause a short circuit or grounding, so it exhibits excellent performance as an insulator for emergency power supplies. 9
The decrease in insulation properties is not noticeable in the temperature range of 50℃ or higher, but in the range of 950 to 1050℃, oxidation of the copper wire rapidly progresses and it becomes difficult to conduct electricity, so the heat resistance of the insulator is 950℃. considered to be sufficient.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

実施例1 日付220 f/rrLの無アルカリガラスa維の平織
物の上にポリビニルアルコ−1v(重合pi17 o、
Example 1 Polyvinyl alcohol-1v (polymerized pi17o,
.

完全ケン化品)5部、水酸化アlレミニワム5部、水9
0部からなる液を塗布し、70 ’(1’で乾燥させ、
45/l/rrLの被覆層を形成させた。被覆層は主に
織物の片面に形成され、これによって織物は約10μm
厚くなった。なお同量の被覆層を気孔のない板の上に形
成させると約25μmの厚さになる。
Completely saponified product) 5 parts, hydroxide aluminum aluminum worm 5 parts, water 9 parts
Apply a solution consisting of 0 parts, dry at 70'(1'),
A coating layer of 45/l/rrL was formed. The coating layer is mainly formed on one side of the fabric, so that the fabric has a thickness of about 10 μm.
It got thicker. Note that if the same amount of coating layer is formed on a plate without pores, the thickness will be about 25 μm.

このシート状物に対してアルミナの粉体(MeLco社
製105)をプラズマ法によシ溶射した。プラズマは少
量の水素を含有するアルゴンプラズマを用いた。シート
状物は中心部の空洞に強制通風を行なっている金属ロー
ラーに張力をかけてはりつけ、表面速度140 m/分
で回転させ、シート状物と溶射ガンの距11Lを200
 mrnにして溶射加工した。
Alumina powder (105 manufactured by MeLco) was sprayed onto this sheet by a plasma method. Argon plasma containing a small amount of hydrogen was used as plasma. The sheet material was attached under tension to a metal roller with forced ventilation in the center cavity, rotated at a surface speed of 140 m/min, and the distance 11L between the sheet material and the spray gun was set to 200 m/min.
Thermal spraying was performed using mrn.

プラズマ炎とシート状物の陸触時聞は、1回轟シ約4×
lO抄、1回の溶射量被覆される量としては2 X 1
09部cmであった。溶射ガンを移動させて25回ab
返して溶射するようにし、5097m2の焼結物層を形
成させた。
The contact time between the plasma flame and the sheet material is approximately 4×
IO paper, the amount coated in one spray is 2 x 1
It was 0.09 parts cm. 25 times ab by moving the spray gun
The spray was then sprayed again to form a sintered material layer of 5097 m2.

溶射加工後の゛シート状物は9×10Ω/cmの電気抵
抗を示す。このシートを白金電極にはさみ、それをシャ
モットレンガではさんで加圧し、0.5kg/Cmの加
圧下に5〜106C/分の速度で昇温して電気抵抗の変
化を測定した。その結果を表1に示す。
The sheet-like material after thermal spraying exhibits an electrical resistance of 9×10 Ω/cm. This sheet was sandwiched between platinum electrodes and pressed between chamotte bricks, and the temperature was increased at a rate of 5 to 10<6 >C/min under a pressure of 0.5 kg/Cm to measure changes in electrical resistance. The results are shown in Table 1.

950’C1時間の加熱によシミ気抵抗は約1150に
低下するが、それでも見かけの体積固有抵抗値は10Ω
・いのオーダーにあり、十分絶縁物として使用可能な範
囲にある。
Although the stain resistance decreases to approximately 1150 by heating at 950'C for 1 hour, the apparent volume resistivity is still 10Ω.
・It is on the order of 200 yen, and is within the range that can be used as an insulating material.

このシート状物を巾20馴にスリットし、直径2mmの
銅線束に巻きつけた。耐火物の粉粒体焼結層を内側にし
て巻きつけたものは巻きつける過程で被覆層の割れを生
じず、950°Cまでの空気中で加熱しても発火せず、
発煙はわずかでおった。
This sheet-like material was slit to a width of about 20 mm and wound around a copper wire bundle having a diameter of 2 mm. When wrapped with a refractory powder sintered layer on the inside, the coating layer does not crack during the wrapping process, and does not catch fire even when heated in air up to 950°C.
There was very little smoke.

9500G 1時間加熱したものはガラス繊維が溶融す
る温度であるにもかかわらず布目が残っており、ガラス
繊維は不完全な溶融状態にあり、内側の耐火物の粉粒体
焼結層は一部原型を止めていた。
The one heated at 9500G for 1 hour has grains remaining even though the temperature is at which the glass fiber melts, the glass fiber is in an incompletely melted state, and a part of the inner refractory powder sintered layer is The prototype was stopped.

このシート状物を、有機成分であるポリビニルフルコー
pが分解し、しかもガラス繊維が劣化しない条件である
300℃の空気中で3時間熱処理した。シートの強度は
ほとんど変化しなかったが、焼結物層は若干はく離しや
すくなっていた。はく離しやすさの程度はシートを平面
的な状態で熱処理した場合、処理前に全く発生しなかっ
たセロテープによるはく離やブラッシングによるはく離
が、局部的に発生するが、銅線に巻きつけた状態、の加
熱では特別な変化を認めないものであシ、軽微なものと
考えられる。
This sheet-like material was heat-treated in air at 300° C. for 3 hours, which is a condition in which the organic component Polyvinyl Fluco-P is decomposed and the glass fibers are not deteriorated. Although the strength of the sheet did not change much, the sintered material layer was slightly easier to peel off. Regarding the degree of ease of peeling, when the sheet is heat treated in a flat state, peeling due to sellotape or brushing occurs locally, which did not occur at all before treatment, but when the sheet is wrapped around copper wire, peeling occurs locally. No particular change was observed when heated, and it is considered to be a minor change.

実施例2 実施例1のアルミナの粉体のかわシに、はぼ同粒径のシ
ャモット耐火物粉体を用いたところ同様にすぐれた耐火
性電気絶縁物が得られた。
Example 2 When chamotte refractory powder having approximately the same particle size was used as a base for the alumina powder in Example 1, a similarly excellent refractory electrical insulator was obtained.

実施例3 実施例1の7ルミナの粉体のかわシに、はぼ同粒径のシ
〜コニア扮体を用いたところ同様にすぐれた耐火性電気
絶縁物が得られた。
Example 3 When a Si-Conia material with approximately the same particle size was used for the 7-lumina powder powder in Example 1, a similarly excellent fire-resistant electrical insulator was obtained.

実施例4 中間被覆層を形成する有機高分子物を主体とする塗布材
として実施例1のポリビニルアルコール水溶液系のもの
に代えてポリメチルメタクリレート(分子量約800)
4部、微粉シリカ(粒径平均50mμ、表面を親油化処
理したもの)8部、メチルエチルケトン88部の液を用
いたところ、同様にすぐれた耐火性電気絶縁物が得られ
た。
Example 4 Polymethyl methacrylate (molecular weight approximately 800) was used instead of the aqueous polyvinyl alcohol solution of Example 1 as a coating material mainly consisting of an organic polymer to form the intermediate coating layer.
When a solution containing 4 parts of silica powder, 8 parts of finely divided silica (average particle size 50 mμ, surface treated to make it lipophilic), and 88 parts of methyl ethyl ketone was used, a similarly excellent fire-resistant electrical insulator was obtained.

実施例5 実施例1と同じ基布上に同じ中間被覆層および同じ粉粒
体焼結層を重さを変えて形成させシート状物を形成させ
た。このシート状物の性能を表2に示す。
Example 5 On the same base fabric as in Example 1, the same intermediate coating layer and the same sintered powder layer were formed with different weights to form a sheet-like article. Table 2 shows the performance of this sheet-like material.

Claims (1)

【特許請求の範囲】 1)ガラス繊維を主成分とする基布上に有機高分子物を
主成分とする厚さ0.5μmないし200μm、の中間
被覆層を介して電気絶縁性の耐火物の粉粒体焼結物層が
密着しており、950℃における見かけの体積固有抵抗
が10^6Ω・cm以上であることを特徴とする耐火性
の電気絶縁物 2)ガラス繊維を主成分とする基布上に有機高分子物を
主成分とする被覆層を形成、固化させた後に電気絶縁性
の耐火物の粉粒体を用いて溶射法により該耐火物の被膜
を形成、焼結させ、該有機高分子物を主成分とする被覆
層に密着させる際に、該基布に張力をかけて背面を強制
冷却を受けた、熱伝導率の高い材質から成る支持装置に
密着させて溶射加工を行なうことを特徴とする耐火性の
絶縁物の製造法
[Scope of Claims] 1) An electrically insulating refractory material is formed on a base fabric mainly composed of glass fibers through an intermediate coating layer having a thickness of 0.5 μm to 200 μm and mainly composed of an organic polymer. A fire-resistant electrical insulator characterized by having a layer of sintered powder and granular material in close contact and having an apparent volume resistivity of 10^6 Ωcm or more at 950°C 2) Main component is glass fiber After forming and solidifying a coating layer mainly composed of an organic polymer on the base fabric, a coating of the refractory is formed by a thermal spraying method using electrically insulating refractory powder and sintered, When adhering to the coating layer whose main component is the organic polymer, thermal spraying is performed by applying tension to the base fabric and making it adhere to a support device made of a material with high thermal conductivity, whose back surface is forcedly cooled. A method for producing a fire-resistant insulator characterized by performing the following steps:
JP17896484A 1984-08-27 1984-08-27 Flame resistant electric insulator and method of producing same Pending JPS6155812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17896484A JPS6155812A (en) 1984-08-27 1984-08-27 Flame resistant electric insulator and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17896484A JPS6155812A (en) 1984-08-27 1984-08-27 Flame resistant electric insulator and method of producing same

Publications (1)

Publication Number Publication Date
JPS6155812A true JPS6155812A (en) 1986-03-20

Family

ID=16057739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17896484A Pending JPS6155812A (en) 1984-08-27 1984-08-27 Flame resistant electric insulator and method of producing same

Country Status (1)

Country Link
JP (1) JPS6155812A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239200A (en) * 1975-09-23 1977-03-26 Nitto Electric Ind Co Ltd Electric insulation tape
JPS5368900A (en) * 1976-11-30 1978-06-19 Mitsubishi Electric Corp Heat-proof insulation layer-built unit and preparation
JPS57138718A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Insulating material for electric machine coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239200A (en) * 1975-09-23 1977-03-26 Nitto Electric Ind Co Ltd Electric insulation tape
JPS5368900A (en) * 1976-11-30 1978-06-19 Mitsubishi Electric Corp Heat-proof insulation layer-built unit and preparation
JPS57138718A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Insulating material for electric machine coil

Similar Documents

Publication Publication Date Title
JP5430645B2 (en) Heat conductive plastic material heat sink
TWI322176B (en) Fire resistant compositions
US4375493A (en) Refractory coated and conductive layer coated flame resistant insulating fabric composition
CA1280243C (en) Flexible fibrous endothermic sheet material for fire protection
US4428999A (en) Refractory coated and vapor barrier coated flame resistant insulating fabric composition
JP4810418B2 (en) Refractory wire / cable
US4396661A (en) Refractory coated and dielectric coated flame resistant insulating fabric composition
JP2006524412A5 (en)
HU216542B (en) Fire-retardant electric conducting coating material
US3791863A (en) Method of making electrical resistance devices and articles made thereby
JPS60193288A (en) Sheetlike heater
US6051642A (en) Silicone composition with improved high temperature tolerance
JPS6027639A (en) Sagging fireproofing endothermic sheet substance
JPS6155812A (en) Flame resistant electric insulator and method of producing same
JPH0283276A (en) Porous composite ceramic structure
US4351878A (en) Coating for gasifiable carbon-graphite fibers
CA2050339C (en) Insulated wire for high temperature use
JPS6149305A (en) Flame resistant electric insulator
US20060105656A1 (en) Copper vermiculite thermal coating
JPS63191892A (en) Exothermic fireproof material
JPH024418B2 (en)
JP2681976B2 (en) Laminated film and its use
JPH0223961B2 (en)
JPS5941244B2 (en) Heat resistant magnet wire
JP2008149712A (en) Heat shield oxidation resistant coating for organic matrix composite substrate and coated article