JPS6155749B2 - - Google Patents

Info

Publication number
JPS6155749B2
JPS6155749B2 JP53111951A JP11195178A JPS6155749B2 JP S6155749 B2 JPS6155749 B2 JP S6155749B2 JP 53111951 A JP53111951 A JP 53111951A JP 11195178 A JP11195178 A JP 11195178A JP S6155749 B2 JPS6155749 B2 JP S6155749B2
Authority
JP
Japan
Prior art keywords
paste
lead
fluororesin
amount
calcium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53111951A
Other languages
Japanese (ja)
Other versions
JPS5539133A (en
Inventor
Tsutomu Iwaki
Yoshihiro Kobayashi
Toshihide Eguchi
Nobuharu Koshiba
Katsuhiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11195178A priority Critical patent/JPS5539133A/en
Publication of JPS5539133A publication Critical patent/JPS5539133A/en
Publication of JPS6155749B2 publication Critical patent/JPS6155749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

電解液として硫酸を用いる鉛電池の主要な極板
は、ペースト式極板とクラツド式極板である。こ
れらの極板のうち、ペースト式極板は製法が簡単
で、放電特性も比較的良好であり、コストも安価
であるが寿命がやや短い。一方、クラツド式極板
は構造が堅牢で長寿命であるが、急放電特性がや
や劣り、比較的高価である。 本発明では、ペースト式極板のとくに低温急放
電特性および寿命の延長を目的とする。 通常、ペースト式鉛極板は、鉛粉(鉛と酸化鉛
の混合物で、酸化鉛の割合が50〜80重量%程度の
場合が多い)に、水、希硫酸などを加えて練合し
て得られた鉛ペーストを鉛もしくは鉛合金製の格
子体、エキスパンデツドメタル、パンチングメタ
ルなどの支持体に練塗して充てんし、熟成、乾燥
を行なう工程により得られる。このようにペース
ト式鉛極板は、製法、電極構造が比較的簡単であ
るため、充放電サイクル数の少ない間は放電特性
が良好であるが、繰り返し充放電の進行とともに
極板に保持された活物質(上記の鉛ペーストより
化成により転化されたもの)の軟化、脱落が著し
くなるとともに特性の劣化がみられるようにな
る。 そこで、この活性質の軟化、脱落を改善する目
的で、鉛ペースト中へフツ素樹脂を添加すること
が有効であることが既に知られている。この方法
によると、フツ素樹脂の微粒子がペースト調製時
の混練工程に加える機械的な力により相互に強固
に付着して繊維化し、生成する鉛ペーストがゴム
状の弾性を有する程になる結果、活性質の軟化、
脱落が抑制され、無添加のものに比べて寿命がは
るかに大となる。 しかし、上述のようにフツ素樹脂を加えて混練
して得られたゴム状弾性を有する、あるいは粘度
のきわめて高い鉛ペーストは、極板の支持体に練
塗により充てんすることがむずかしく、この傾向
は添加するフツ素樹脂の量が多い程顕著となる問
題がある。また、鉛ペーストの支持体への練塗に
よる充てん性を良くするために、フツ素樹脂の添
加量を少なくして、得られる鉛ペーストのゴム状
弾性あるいは粘度を下げすぎると、繊維状となつ
たフツ素樹脂が少なくなり、活物質の軟化、脱落
の抑制に対する効果が少なくなるなどの問題があ
つた。 そこで、本発明は、鉛ペースト中の繊維化され
るフツ素樹脂の量を減らすことなく、鉛ペースト
の練塗性を向上させる方法を提供するものであ
る。 すなわち、本発明は鉛粉、水、硫酸、フツ素樹
脂デイスパージヨンの他に、ケイ酸カルシウムを
添加した鉛ペーストを用いることを特徴とする。
ここで用いるケイ酸カルシウムは、鉛ペースト中
で、ケイ酸カルシウム微粒子自身の内部に無数の
細孔を有してペーストの多孔度を高く保つととも
に含水性が高いのでペーストの弾性を低く保つこ
とに役立つものである。なお、この際、ペースト
調製時におけるフツ素樹脂の繊維化に対してはほ
とんど悪影響は認められない。 鉛ペースト中において、フツ素樹脂を繊維化さ
せるために適当なフツ素樹脂デイスパージヨン中
のフツ素樹脂の量は、鉛粉1Kgに対して0.5〜10
gであり、また、フツ素樹脂を添加した鉛ペース
トの特色、つまり繊維化したフツ素樹脂による弾
性を保持しながら練塗性を改善させるために加え
るケイ酸カルシウムの適当な添加量は3〜50gの
範囲である。 この範囲であれば、フツ素樹脂によつてもたら
されるペーストのゴム状弾性を損なうことなく、
ケイ酸カルシウムのもつ高多孔度と高い含水性と
により、ペースト全体の弾性を低く保つことがで
き、支持体への練塗性を高めて電極としての放電
特性、寿命を向上させることができる。 以下本発明を自動車の起動用鉛電池の正極板に
適用した例について詳しく説明する。 鉛粉1Kgに対して、水200ml、ポリテトラフロ
ロエチレンの水性デイスパージヨン(比重1.6、
ポリテトラフロロエチレン樹脂の含有量60重量
%)2ml、およびケイ酸カルシウム(二酸化ケイ
素および酸化カルシウムの含有量がそれぞれ約40
重量%、強熱減量が約20%)20gをニーダー中で
練合しながら比重1.40の硫酸を70ml滴下して鉛ペ
ーストとする。得られた鉛ペーストを自動充てん
機で鉛格子に充てんし、公知の方法で正極板とし
たのち、公知のペースト式負極板と組み合わせて
NS40Z形電池を構成した。 比較例1として、実施例におけるペースト練合
時にケイ酸カルシウムを加えない場合について調
べた。この場合は自動充てん機による鉛ペースト
の充てんにおいて、鉛ペーストのゴム状弾性のた
めに格子への充てん状態が悪く、多数の亀裂ある
いは小さな空隙部を残した状態となつた。なお、
この場合の充てん量は実施例に比べて約5重量%
少なかつた。 比較例2として、鉛粉化合物1Kgに対して、水
170ml、比重1.40の硫酸70mlを加え、フツ素樹脂
デイスパージヨンおよびケイ酸カルシウムを加え
ない場合について調べた。なお、この場合の充て
ん量は実施例の場合とほぼ同じであつた。 以上に述べた電池を−15℃の温度で、150Aの
電流で放電したときの放電5秒目の電圧および
6Vの電圧に至るまでの放電時間は第1表の通り
であつた。
The main electrode plates for lead-acid batteries that use sulfuric acid as the electrolyte are paste-type plates and clad-type plates. Among these electrode plates, paste-type electrode plates are easy to manufacture, have relatively good discharge characteristics, and are inexpensive, but have a rather short lifespan. On the other hand, the clad type plate has a robust structure and long life, but its rapid discharge characteristics are somewhat inferior and it is relatively expensive. The purpose of the present invention is to particularly improve the low-temperature rapid discharge characteristics and extend the life of a paste-type electrode plate. Paste-type lead electrode plates are usually made by mixing lead powder (a mixture of lead and lead oxide, where the lead oxide ratio is often around 50 to 80% by weight) with water, dilute sulfuric acid, etc. It is obtained by a step of applying the obtained lead paste to a support such as a grid made of lead or a lead alloy, expanded metal, punched metal, etc., filling it, aging, and drying. In this way, the paste type lead electrode plate has a relatively simple manufacturing method and electrode structure, so it has good discharge characteristics during a small number of charge/discharge cycles, but as the number of charge/discharge cycles progresses, the paste type lead electrode plate becomes retained in the plate. The active material (converted from the above-mentioned lead paste by chemical conversion) becomes noticeably softened and falls off, and the characteristics begin to deteriorate. Therefore, it is already known that it is effective to add a fluororesin to the lead paste in order to improve the softening and shedding of the active substance. According to this method, fine particles of fluororesin firmly adhere to each other and become fibrous due to the mechanical force applied during the kneading process during paste preparation, resulting in the resulting lead paste having rubber-like elasticity. softening of active substances,
It suppresses shedding and has a much longer lifespan compared to additive-free products. However, as mentioned above, lead paste with rubber-like elasticity or extremely high viscosity obtained by adding and kneading fluororesin is difficult to fill into the support of the electrode plate by kneading, and this tendency This problem becomes more pronounced as the amount of fluororesin added increases. In addition, in order to improve the filling properties of the lead paste by kneading it onto the support, the amount of fluororesin added may be reduced, and if the rubber-like elasticity or viscosity of the resulting lead paste is lowered too much, it will become fibrous. However, there were problems such as a decrease in the amount of fluororesin and a decrease in the effectiveness in suppressing the softening and falling off of the active material. Therefore, the present invention provides a method for improving the kneading properties of a lead paste without reducing the amount of fluororesin to be made into fibers in the lead paste. That is, the present invention is characterized by using a lead paste to which calcium silicate is added in addition to lead powder, water, sulfuric acid, and fluorine resin dispersion.
The calcium silicate used here has countless pores inside the calcium silicate fine particles itself in the lead paste, keeping the paste's porosity high, and its high water content keeps the paste's elasticity low. It's useful. In addition, at this time, almost no adverse effect is observed on the fiberization of the fluororesin during paste preparation. In the lead paste, the amount of fluororesin in the fluororesin dispersion suitable for making the fluororesin into fibers is 0.5 to 10% per 1 kg of lead powder.
g, and the appropriate amount of calcium silicate added to improve the kneading properties while maintaining the characteristics of the lead paste containing fluororesin, that is, the elasticity due to the fibrous fluororesin, is 3 to 3. It is in the range of 50g. Within this range, the rubber-like elasticity of the paste provided by the fluororesin will not be impaired.
Due to the high porosity and high water content of calcium silicate, the elasticity of the paste as a whole can be kept low, making it possible to improve the spreadability on the support and improve the discharge characteristics and life of the electrode. Hereinafter, an example in which the present invention is applied to a positive electrode plate of a lead-acid battery for starting an automobile will be described in detail. For 1 kg of lead powder, 200 ml of water, aqueous dispersion of polytetrafluoroethylene (specific gravity 1.6,
2 ml of polytetrafluoroethylene resin (content of 60% by weight), and calcium silicate (content of silicon dioxide and calcium oxide of approximately 40% each)
While kneading 20g (weight%, loss on ignition of approximately 20%) in a kneader, 70ml of sulfuric acid with a specific gravity of 1.40 is added dropwise to form a lead paste. The obtained lead paste is filled into a lead grid using an automatic filling machine, and after being made into a positive electrode plate using a known method, it is combined with a known paste-type negative electrode plate.
An NS40Z type battery was constructed. As Comparative Example 1, a case in which calcium silicate was not added during paste kneading in Examples was investigated. In this case, when filling the lead paste with an automatic filling machine, the rubber-like elasticity of the lead paste resulted in poor filling of the grid, leaving many cracks or small voids. In addition,
The amount of filling in this case is about 5% by weight compared to the example.
There weren't many. As Comparative Example 2, water was added to 1 kg of lead powder compound.
The case where 170 ml of sulfuric acid with a specific gravity of 1.40 and 70 ml of sulfuric acid with a specific gravity of 1.40 was added and no fluororesin dispersion and calcium silicate were added was investigated. Note that the filling amount in this case was almost the same as in the example. When the battery described above is discharged with a current of 150A at a temperature of -15℃, the voltage at the 5th second of discharge and
The discharge time until the voltage reached 6V was as shown in Table 1.

【表】 また、5Aの電流で5時間充電し、20Aで1時
間放電する充放電における寿命は第2表の通りで
あつた。
[Table] Table 2 shows the lifespan when charging and discharging at a current of 5A for 5 hours and discharging at 20A for 1 hour.

【表】 以上のように、フツ素樹脂デイスパージヨンと
ケイ酸カルシウムを添加した鉛ペーストを用いた
場合には、充てん性が良好で、放電特性、寿命と
もすぐれた結果を得ることができる。 この実施例では、本発明のなかで、鉛粉1Kgに
対してポリテトラフロロエチレン樹脂1.92g(2
ml×比重1.6×60/100)、ケイ酸カルシウム20g
を加 える例を述べた。つぎに、ケイ酸カルシウムを20
g一定とし、ポリテトラフロロエチレン樹脂量を
変化させて、好ましい量を明らかにすることにし
た。第3表に加えたポリテトラフロロエチレン樹
脂の量と製法上での特徴、電池としての5秒目電
圧、放電時間、寿命をまとめて示す。
[Table] As shown above, when a lead paste containing a fluororesin dispersion and calcium silicate is used, it is possible to obtain good filling performance and excellent discharge characteristics and life. In this example, in the present invention, 1.92 g of polytetrafluoroethylene resin (2
ml x specific gravity 1.6 x 60/100), calcium silicate 20g
I gave an example of adding . Next, add 20% calcium silicate.
It was decided to clarify the preferable amount by changing the amount of polytetrafluoroethylene resin while keeping g constant. Table 3 summarizes the amount of polytetrafluoroethylene resin added, the characteristics of the manufacturing method, the voltage at 5 seconds as a battery, the discharge time, and the lifespan.

【表】 この結果より、ポリテトラフロロエチレン樹脂
は、少量加えても性能改善の効果はあるが、顕著
な性能改善効果を示すのには、0.5g以上が適当
である。また、上限については、あまり多く加え
ると繊維状になり過ぎて充てんが困難になるとと
もに、電極の活性質が結着剤で覆われる度合が多
くなり、放電電圧や放電時間が低下し、寿命もむ
しろ劣化する。したがつて10g以下が適当であ
る。勿論、ケイ酸カルシウムの量によつては、こ
の範囲も若干影響を受けるが、それでも0.5〜10
gが適当であることにはかわりがない。 つぎに、ポリテトラフロロエチレン樹脂を一定
にして、ケイ酸カルシウムの量をかえて調べた。
第4表は、その添加量と結果を示す。
[Table] From this result, even if a small amount of polytetrafluoroethylene resin is added, there is an effect of improving performance, but 0.5 g or more is appropriate to show a significant performance improving effect. Regarding the upper limit, if too much is added, it will become too fibrous and difficult to fill, and the active substance of the electrode will be covered with the binder, which will reduce the discharge voltage and discharge time, and shorten the lifespan. Rather, it deteriorates. Therefore, 10g or less is appropriate. Of course, this range will be affected slightly depending on the amount of calcium silicate, but it is still within the range of 0.5 to 10.
There is no change in the fact that g is appropriate. Next, the amount of calcium silicate was varied while keeping the amount of polytetrafluoroethylene resin constant.
Table 4 shows the amounts added and the results.

【表】【table】

【表】 この場合もケイ酸カルシウムを少量でも加えれ
ば、それだけの効果はある。しかし、顕著な効果
は3g以上とみられる。一方、上限はあまり加え
すぎると活性質量が減少し、かえつて電圧特性や
寿命が劣化するので、50g以下が好ましい。この
場合もポリテトラフロロエチレン樹脂量がかわる
と、ケイ酸カルシウムの最適量も若干影響を受け
るが、3〜50gの範囲が好適であることにかわり
はない。 以上の結果から、ポリテトラフロロエチレン樹
脂は、鉛粉1Kgに対して0.5〜10g、ケイ酸カル
シウムは3〜50gの範囲が好ましいことが明らか
になつた。 なお、ケイ酸カルシウム中の二酸化ケイ素と酸
化カルシウムの割合、強熱減量(減量分はほとん
どが水分である)の割合などはきわめて広範囲に
わたつているが、いずれの割合を選択しても本発
明の効果を得ることは可能である。 さらに、実施例ではペースト式鉛正極に対する
適用例について説明したが、本発明はペースト式
鉛正極に対すると同様に、ペースト式負極に対し
ても適用することが可能である。
[Table] In this case as well, adding even a small amount of calcium silicate will have the same effect. However, significant effects appear to occur at doses above 3g. On the other hand, the upper limit is preferably 50 g or less because if too much is added, the active mass will decrease and the voltage characteristics and life will deteriorate. In this case as well, if the amount of polytetrafluoroethylene resin changes, the optimum amount of calcium silicate will be slightly affected, but the range of 3 to 50 g is still suitable. From the above results, it has become clear that the amount of polytetrafluoroethylene resin is preferably 0.5 to 10 g and the amount of calcium silicate is preferably 3 to 50 g per 1 kg of lead powder. Note that the ratio of silicon dioxide and calcium oxide in calcium silicate, the ratio of loss on ignition (most of the loss is water), etc. vary widely, but the present invention will work no matter which ratio is selected. It is possible to obtain the effect of Further, in the embodiment, an example of application to a paste-type lead positive electrode has been described, but the present invention can be applied to a paste-type negative electrode as well as a paste-type lead positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛粉、硫酸、水、前記鉛粉1Kgに対しフツ素
樹脂を0.5〜10g含むフツ素樹脂デイスパージヨ
ンおよび前記鉛粉1Kgに対し3〜50gのケイ酸カ
ルシウムを練合したペーストを支持体に塗着する
ことを特徴とする鉛電池用ペースト式電極の製造
法。
1. A support made of lead powder, sulfuric acid, water, a fluororesin dispersion containing 0.5 to 10 g of fluororesin per 1 kg of the lead powder, and a paste prepared by kneading 3 to 50 g of calcium silicate per 1 kg of the lead powder. A method for producing a paste-type electrode for a lead-acid battery, characterized by applying the paste to the electrode.
JP11195178A 1978-09-11 1978-09-11 Method of preparing pasted electrode for lead battery Granted JPS5539133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195178A JPS5539133A (en) 1978-09-11 1978-09-11 Method of preparing pasted electrode for lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195178A JPS5539133A (en) 1978-09-11 1978-09-11 Method of preparing pasted electrode for lead battery

Publications (2)

Publication Number Publication Date
JPS5539133A JPS5539133A (en) 1980-03-18
JPS6155749B2 true JPS6155749B2 (en) 1986-11-28

Family

ID=14574231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195178A Granted JPS5539133A (en) 1978-09-11 1978-09-11 Method of preparing pasted electrode for lead battery

Country Status (1)

Country Link
JP (1) JPS5539133A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331266C (en) * 2004-04-30 2007-08-08 比亚迪股份有限公司 Alkaline storage battery and preparation method thereof
CN107121472B (en) * 2017-05-25 2023-09-08 天能电池集团股份有限公司 Lead storage battery negative electrode lead plaster electrode for electrochemical test, special die and test groove

Also Published As

Publication number Publication date
JPS5539133A (en) 1980-03-18

Similar Documents

Publication Publication Date Title
EP0607138B1 (en) High performance positive electrode for a lead-acid battery
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP2000251896A (en) Lead-acid battery and its manufacture
JPS6155749B2 (en)
JP2000048814A (en) Positive electrode plate for lead-acid battery
JP2001210320A (en) Lead-acid storage battery and its manufacturing method
JPS6161228B2 (en)
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JP2815439B2 (en) Sealed lead-acid battery
JP2815440B2 (en) Sealed lead-acid battery
JPS59173956A (en) Manufacture of pasted lead plate
JPS6030054A (en) Manufacture of plate for paste type lead-acid battery
JP3013623B2 (en) Sealed lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPS5933758A (en) Sealed nickel cadmium battery
JPH0550813B2 (en)
JPS649706B2 (en)
JPH0487153A (en) Positive electrode plate for lead storage battery and manufacture thereof
JPS6028171A (en) Manufacture of paste type pole plate for lead storage battery
JP2023540042A (en) Manufacturing method for parts for lead-acid batteries
JP2003346887A (en) Valve regulated lead-acid battery
JP3427402B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH01183067A (en) Electrode for lead-acid battery
JPH10106576A (en) Sealed lead-acid battery
JPH08180857A (en) Electrode plate for lead-acid battery