JPS6155563B2 - - Google Patents

Info

Publication number
JPS6155563B2
JPS6155563B2 JP83384A JP83384A JPS6155563B2 JP S6155563 B2 JPS6155563 B2 JP S6155563B2 JP 83384 A JP83384 A JP 83384A JP 83384 A JP83384 A JP 83384A JP S6155563 B2 JPS6155563 B2 JP S6155563B2
Authority
JP
Japan
Prior art keywords
powder
tantalum
tantalum powder
present
magnesium component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP83384A
Other languages
Japanese (ja)
Other versions
JPS60145304A (en
Inventor
Tomoo Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA KYABOTSUTO SUUPAA METARU KK
Original Assignee
SHOWA KYABOTSUTO SUUPAA METARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA KYABOTSUTO SUUPAA METARU KK filed Critical SHOWA KYABOTSUTO SUUPAA METARU KK
Priority to JP83384A priority Critical patent/JPS60145304A/en
Publication of JPS60145304A publication Critical patent/JPS60145304A/en
Publication of JPS6155563B2 publication Critical patent/JPS6155563B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の対象) 本発明はタンタル粉末の製造法に係り、特に微
細で酸素含有量の低いコンデンサー特性にすぐれ
たタンタル粉末の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Subject of the Invention) The present invention relates to a method for producing tantalum powder, and particularly to a method for producing tantalum powder that is fine, has a low oxygen content, and has excellent capacitor properties.

(従来技術) タンタル電解コンデンサーの製造においては従
来、原料タンタル粉末中に他の不純物はなるべく
少いことが望まれていた。その理由は不純物が酸
化皮膜中またはタンタル粒子母材との境域に存在
することにより金属組織欠陥を形成し、コンデン
サー特性とくに漏洩電流の過大化、または破壊原
因になるためである。
(Prior Art) In the production of tantalum electrolytic capacitors, it has conventionally been desired that the raw tantalum powder contains as few other impurities as possible. The reason for this is that the presence of impurities in the oxide film or in the boundary with the tantalum particle base material forms metallographic defects, leading to an increase in capacitor characteristics, particularly leakage current, or destruction.

しかしながら近時、第三成分を積極的に添加す
ることによつてコンデンサー特性を改善する提案
がなされている。
However, recently, proposals have been made to improve capacitor characteristics by actively adding a third component.

たとえば特公昭57―34321においてはタンタル
粉末に燐を含有させることによつて特に電気容量
を改良した陽極を製造することができる粉末およ
び一具体例として改良された流動特性を有する粉
末が開示されている。
For example, Japanese Patent Publication No. 57-34321 discloses a powder that can be used to produce an anode with particularly improved capacitance by incorporating phosphorus into tantalum powder, and as a specific example, a powder that has improved flow characteristics. There is.

また特開昭58―71614においては硼素または硼
素化合物を含む電子材料用タンタル粉末の製造法
が提唱されている。
Furthermore, Japanese Patent Application Laid-Open No. 71614/1983 proposes a method for producing tantalum powder for electronic materials containing boron or a boron compound.

更に米国特許第3825802号においてはN,Si,
P,Bから選ばれたドーパントによつてドープさ
れたフイルム状金属タンタル粒子の提唱が見られ
る。
Furthermore, in U.S. Pat. No. 3,825,802, N, Si,
Proposals have been made for film-like metallic tantalum particles doped with dopants selected from P, B.

上記従来発明技術における第三成分は不可避的
に介入する不純物ではなく、むしろ積極的に制御
された限定量を添加してタンタル粉末またはこれ
を使用したコンデンサーの特性を改善するための
必須成分と見られる。
The third component in the prior art described above is not an impurity that inevitably intervenes, but rather an essential component that is added in an actively controlled limited amount to improve the characteristics of the tantalum powder or the capacitor using it. It will be done.

しかしながらタンタル粉末を、フツ化タンタル
酸カリウムのナトリウム還元によつて製造する過
程における水洗、酸洗、真空熱処理等の過程にお
ける洗浄効果もしくは含有酸素増加防止効果につ
いて有効な手段を提唱する技術はそれがタンタル
コンデンサ特性に大きな改善をもたらすにもかか
わらず従来見ることができなかつた。
However, there is no technology that proposes an effective means for cleaning or preventing an increase in oxygen content during processes such as water washing, pickling, and vacuum heat treatment in the process of manufacturing tantalum powder by sodium reduction of potassium tantalate fluoride. Although it brings about a great improvement in tantalum capacitor characteristics, it has not been possible to see it in the past.

(発明の目的) 本発明の目的は効率的微粉化に加え上記従来技
術の着目し及ばなかつたタンタル粉末の洗浄特性
及び特にタンタル粉末中の酸素含有量の低いコン
デンサー特性にすぐれたタンタル粉末の製造法を
提供することにある。
(Object of the Invention) In addition to efficient pulverization, the object of the present invention is to produce a tantalum powder that has excellent cleaning properties and condenser properties, especially with a low oxygen content in the tantalum powder, which has not been noticed by the above-mentioned prior art. It is about providing law.

(発明の構成) 本発明はフツ化タンタル酸カリウムを希釈剤ア
ルカリハライドの存在下においてナトリウムにて
還元するに際し、マグネシウム成分を添加するこ
とによるタンタル粉末の製造法にある。
(Structure of the Invention) The present invention is a method for producing tantalum powder by adding a magnesium component when reducing potassium tantalate fluoride with sodium in the presence of an alkali halide diluent.

フツ化タンタル酸カリウムとナトリウムとの基
本反応は次式で表わされている: K2TaF7+5Na→2KF+5NaF+Ta 上記反応の実際工程においては反応温度を低下
して反応を容易にするため希釈剤としてアルカリ
ハライドが添加される。アルカリハライドのうち
最頻に使用されるものはNaClであるがKF,KCl
などもしばしば使用される。
The basic reaction between potassium tantalate fluoride and sodium is expressed by the following formula: K 2 TaF 7 +5Na→2KF+5NaF+Ta In the actual process of the above reaction, a diluent is used to lower the reaction temperature and facilitate the reaction. Alkali halide is added. The most frequently used alkali halide is NaCl, but KF, KCl
etc. are also often used.

重要な点は、電解コンデンサー用としてのタン
タル粉末の具備すべき大半の特性は上記還元工程
において決定されるという事実である。
An important point is the fact that most of the properties of tantalum powder for use in electrolytic capacitors are determined in the reduction step.

一般にタンタル粉末の製造工程は第1図に示す
通り原料K2TaF7をNaで還元したのち生成物を粗
砕、水洗、酸洗、篩分け、真空熱処理、解砕粉末
調整する各過程がある。
In general, the manufacturing process for tantalum powder, as shown in Figure 1, involves reducing the raw material K 2 TaF 7 with Na, then crushing the product, washing with water, pickling, sieving, vacuum heat treatment, and preparing the crushed powder. .

本発明は上記タンタル粉末製造過程において、
K2TaK7のNa還元時にマグネシウム成分を添加し
てタンタル粉末を製造する点に特徴を有する。
The present invention provides the above-mentioned tantalum powder manufacturing process,
It is characterized in that a magnesium component is added during Na reduction of K 2 TaK 7 to produce tantalum powder.

マグネシウム成分はTa金属格子中に割り込み
型、あるいは侵入型で介入し、Ta格子に一種の
格子欠陥を与えるためTa粉末の微細化をうなが
し、その結果タンタルコンデンサー特性たる比静
電容量、漏洩電流、電力損失および破壊電圧等の
諸特性改善に寄与する。
The magnesium component intervenes in the Ta metal lattice in an interstitial or intrusive manner and gives a kind of lattice defect to the Ta lattice, promoting the refinement of the Ta powder.As a result, the characteristics of tantalum capacitors such as specific capacitance, leakage current, Contributes to improvements in various characteristics such as power loss and breakdown voltage.

マグネシウム成分の一部はMg単体としてTa中
に存在し得るが、本来Taと結合すべきO2と結合
してスラグ除去されたり、Ta粉末中に残留して
O2を固定化するため結果的にはTaと結合するこ
とが好ましくないO2の増加を防止する効果を有
する。すなわち上記工程における真空熱処理
(10-4〜10-5Torr、約1200℃、30分前後)におい
て易酸化性のタンタルの高温酸化を防止する効果
は極めて大である。
A part of the magnesium component may exist in Ta as Mg alone, but it may combine with O 2 , which should originally combine with Ta, and be removed from the slag, or it may remain in the Ta powder.
Since O 2 is fixed, it has the effect of preventing an increase in O 2 , which is undesirable for binding with Ta. That is, in the vacuum heat treatment (10 -4 to 10 -5 Torr, about 1200°C, about 30 minutes) in the above step, the effect of preventing high-temperature oxidation of easily oxidizable tantalum is extremely large.

工程的には真空熱処理前に位置するが、Ta粉
末の酸洗工程においてMgの脱酸効果が発現され
る。酸洗剤H2SO4またはHClを使用することによ
つてマグネシウム成分添加により生成された
MgOは極めて容易に溶解除去される利点を有す
る。
Although the process is located before vacuum heat treatment, the deoxidizing effect of Mg is expressed in the pickling process of Ta powder. produced by addition of magnesium component by using acid detergent H 2 SO 4 or HCl
MgO has the advantage of being extremely easily dissolved and removed.

マグネシウム成分をTa中に添加するには
MgCl2,MgSO4が最も通常的である。
To add magnesium component to Ta
MgCl 2 and MgSO 4 are the most common.

金属マグネシウムの添加は金属自体が廉価でな
いこと、高温酸化性が極めて大であり、爆発的燃
焼のおそれがある等安全性の点から使用し難い。
Addition of metallic magnesium is difficult to use from safety points of view, such as the fact that the metal itself is not inexpensive, its high temperature oxidation is extremely high, and there is a risk of explosive combustion.

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例 1) K2TaF7100Kg、NaCl50Kg、およびMgCl2を0.2
Kgを混和し、800℃においてNa33Kgにて還元し生
成粉末を第1図に示す工程により処理してMg含
有Ta粉末Aを取得した。酸洗液にはH2SO4水溶
液を使用し、真空熱処理条件は、10-5Torr、
1200℃、30分であつた。取得粉末Aの平均粒径は
3μm、かさ密度1.65g/cm3、Mg含有量
20ppm、不純物O2の含有量は1.800ppmであつ
た。またその電気的特性値として次の諸値を有す
るものであつた。
(Example 1) 100Kg of K2TaF7 , 50Kg of NaCl, and 0.2Kg of MgCl2
Kg was mixed and reduced with Na33Kg at 800°C, and the resulting powder was processed according to the steps shown in FIG. 1 to obtain Mg-containing Ta powder A. An aqueous H 2 SO 4 solution was used as the pickling solution, and the vacuum heat treatment conditions were 10 -5 Torr,
It was heated at 1200℃ for 30 minutes. The average particle size of the obtained powder A is 3 μm, the bulk density is 1.65 g/cm 3 , and the Mg content is
The content of impurity O 2 was 1.800 ppm. In addition, it had the following electrical characteristic values.

比静電容量CV=12000μFV/g 漏洩電流LC≒3.0μA/g 電力損失tanδ=20% (実施例 2) K2TaF7100Kg、NaCl50Kg、MgSO40.3Kgを33Kg
のNaにて還元し生成粉末を実施例1と同様の方
法にて処理しマグネシウム成分含有Ta粉末Bを
取得した。本粉末Bは平均粒径3.5μm、かさ密
度1.55g/cm3、Mg25ppm、不純物O2含有量
1600ppm、CV=11000μFV/g、LC=3.0μ
A/g、tanδ=15%が得られた。
Specific capacitance CV=12000μFV/g Leakage current LC≒3.0μA/g Power loss tanδ=20% (Example 2) K 2 TaF 7 100Kg, NaCl 50Kg, MgSO 4 0.3Kg to 33Kg
The resulting powder was treated in the same manner as in Example 1 to obtain magnesium component-containing Ta powder B. This powder B has an average particle size of 3.5 μm, a bulk density of 1.55 g/cm 3 , Mg 25 ppm, and an impurity O 2 content.
1600ppm, CV=11000μFV/g, LC=3.0μ
A/g, tan δ=15% was obtained.

(比較例) K2TaF7100Kg、NaCl50Kg、Na33Kgによる、800
℃における還元反応生成物を実施例1と同様の処
理を行いTa粉末Cを取得した。該粉末Cの平均
粒径7.5μm、かさ密度3.2g/cm3、不純物O2含有
量2500ppm、CV=6400μFV/g、LC=1.5μ
A/g、tanδ=15%が得られた。
(Comparative example) K 2 TaF 7 100Kg, NaCl50Kg, Na33Kg, 800
The reduction reaction product at °C was treated in the same manner as in Example 1 to obtain Ta powder C. The average particle size of the powder C is 7.5 μm, bulk density 3.2 g/cm 3 , impurity O 2 content 2500 ppm, CV=6400 μFV/g, LC=1.5 μ
A/g, tan δ=15% was obtained.

上記実施例1,2および比較例を通覧するに本
発明方法を適用した実施例1,2においてはいづ
れもTa粉末中の不純物O2含有量においてマグネ
シウムを含まない比較例Ta粉末にくらべて大き
く減じていることが知られ、本発明の脱酸効果の
顕著性は明らかである。しかもコンデンサー電気
特性における比静電容量は本発明において高いこ
とが知られ本発明の優位性は十分に実証されてい
る。
Looking at the above Examples 1 and 2 and Comparative Examples, in both Examples 1 and 2 in which the method of the present invention was applied, the impurity O 2 content in the Ta powder was greater than that of the comparative Ta powder that did not contain magnesium. It is known that the deoxidizing effect of the present invention is significant. Moreover, it is known that the specific capacitance of the capacitor in the electrical characteristics of the present invention is high, and the superiority of the present invention has been fully demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタンタル粉末の製造工程図である。 FIG. 1 is a diagram showing the manufacturing process of tantalum powder.

Claims (1)

【特許請求の範囲】[Claims] 1 弗化タンタル酸カリウムを希釈剤アルカリハ
ライドの存在下においてナトリウムにて還元する
に際しマグネシウム成分を添加することを特徴と
する、タンタル粉末の製造法。
1. A method for producing tantalum powder, which comprises adding a magnesium component when reducing potassium fluorotantalate with sodium in the presence of an alkali halide diluent.
JP83384A 1984-01-09 1984-01-09 Manufacture of tantalum powder Granted JPS60145304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP83384A JPS60145304A (en) 1984-01-09 1984-01-09 Manufacture of tantalum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP83384A JPS60145304A (en) 1984-01-09 1984-01-09 Manufacture of tantalum powder

Publications (2)

Publication Number Publication Date
JPS60145304A JPS60145304A (en) 1985-07-31
JPS6155563B2 true JPS6155563B2 (en) 1986-11-28

Family

ID=11484616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP83384A Granted JPS60145304A (en) 1984-01-09 1984-01-09 Manufacture of tantalum powder

Country Status (1)

Country Link
JP (1) JPS60145304A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621346B2 (en) * 1986-06-11 1994-03-23 日本鉱業株式会社 Method for manufacturing high-purity metal tantalum target
JPH0270028A (en) * 1988-09-02 1990-03-08 Nippon Mining Co Ltd Manufacture of ta or nb
US5242481A (en) * 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
JP2688452B2 (en) * 1990-05-17 1997-12-10 キャボット コーポレイション Method for producing tantalum powder with high surface area and low metal impurities
CN1169643C (en) * 2001-09-29 2004-10-06 宁夏东方钽业股份有限公司 Preparation method of high specific surface area tantalum powder and/or niobium powder
EP1620868A2 (en) * 2003-04-25 2006-02-01 Cabot Corporation A method of forming sintered valve metal material
WO2007130483A2 (en) * 2006-05-05 2007-11-15 Cabot Corporation Tantalum powder with smooth surface and methods of manufacturing same
CN102994780B (en) * 2012-12-18 2014-05-28 宁夏东方钽业股份有限公司 Method for purifying tantalum powder

Also Published As

Publication number Publication date
JPS60145304A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
US5605561A (en) Tantalum powder and electrolytic capacitor using same
JP4616313B2 (en) Tantalum powder, process for its production, and sintered anode obtainable therefrom
CN1046878C (en) A process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
WO1997038143A1 (en) Method for lowering the oxygen content in valve metal materials
JP2007335883A (en) Tantalum powder, method for manufacturing it, and sintered capacitor anode obtained from it
US6563695B1 (en) Powdered tantalum, niobium, production process thereof, and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium
JP4049964B2 (en) Nitrogen-containing metal powder, production method thereof, porous sintered body and solid electrolytic capacitor using the same
CA2075922A1 (en) Deoxidation of a refractory metal
JPS61295308A (en) Production of alloy powder containing rare earth metal
US4645533A (en) Tantalum powder and method of making
US1728941A (en) Production of rare metals
CN105377481A (en) High-purity tantalum powder and preparation method therefor
JPS6155563B2 (en)
US2992095A (en) Process of separating niobium and tantalum values in oxidic ores and of producing pure niobium
WO2023109172A1 (en) Tantalum powder production method and tantalum powder obtained thereby
JP2024515196A (en) Method for producing tantalum powder for capacitors by reducing tantalum oxide with alkaline earth metals
KR101779348B1 (en) Recovering method of valuable metal from used denitration catalyst, manufacturing method of aluminum alloy and aluminum alloy manufactured thereby
JP3428035B2 (en) Aluminum foil for anode of ultra-high voltage Al electrolytic capacitor
JP3716908B2 (en) Recovery method of rare earth elements from sludge containing rare earth elements
JP2019163542A (en) Tantalum powder and process for preparing the same, and sintered anode prepared from tantalum powder
JPWO2015053239A1 (en) Method for producing niobium granulated powder
JP2665928B2 (en) Tantalum powder and method for producing the same
US2904430A (en) Purification of refractory metals
JP2505324B2 (en) Method for producing tantalum powder
JPS5929659B2 (en) Indium separation method