JPS6155482A - Differential pressure driven three way type valve - Google Patents

Differential pressure driven three way type valve

Info

Publication number
JPS6155482A
JPS6155482A JP17782784A JP17782784A JPS6155482A JP S6155482 A JPS6155482 A JP S6155482A JP 17782784 A JP17782784 A JP 17782784A JP 17782784 A JP17782784 A JP 17782784A JP S6155482 A JPS6155482 A JP S6155482A
Authority
JP
Japan
Prior art keywords
pressure
valve
chamber
screw shaft
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17782784A
Other languages
Japanese (ja)
Other versions
JPH0261676B2 (en
Inventor
Akihiko Shizuri
志津利 晃彦
Hirokazu Irisa
入佐 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP17782784A priority Critical patent/JPS6155482A/en
Publication of JPS6155482A publication Critical patent/JPS6155482A/en
Publication of JPH0261676B2 publication Critical patent/JPH0261676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0672Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using several spring-loaded membranes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

PURPOSE:To present a compact three way type valve selectively operated by the difference of a signal pressure for the reference pressure, by constituting a differential pressure detecting mechanism equipping two diaphragms for dividing the inside of a chamber, providing an adjusting screw shaft having a valve, into three parts in a direction of the adjusting screw shaft. CONSTITUTION:A valve case 62, resectively forming in its inner upper part the first chamber 63 and in the central path the decond chamber 65 communicating with he first chamber 63 through a communication hole 64, while provides in the bottom part a three way type valve 66. The first chamber 63 arranges a pressure setting screw shaft 71 appearing in the center part while provides two diaphragms 75, 76, dividing the inside of the chamber 63 int three chambers 72-74, in two parts on the half way in th vertical direction. The diaphargm 76 secures a valve seat 81, which can be seated by a valve 77 provided in said screw shaft 71, and the both diaphragms 75, 76 are constituted as a differential pressure detecting mechanism 111. The second chamber 65, providing a diaphragm 93 dividing the chamber 65 into two chambers 91, 92 and mounting a driving bar 95 to this diapharagm 93, constituted a driving mechanism 112 of the three way type valve 66.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、差圧駆動型三方弁に関する。更に詳しくは、
信号圧力と基準圧力とを比較し、信号圧力が基準圧力に
対して所定値低下した際、三方弁を切換え作動させる差
圧駆動型三方弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential pressure driven three-way valve. For more details,
The present invention relates to a differential pressure driven three-way valve that compares a signal pressure with a reference pressure and switches the three-way valve to operate when the signal pressure decreases by a predetermined value with respect to the reference pressure.

[1ソLl技術とその問題点] 例えば、三次元測定機では、測定子等を保持するZ軸を
本体静11二部に対し摺動自在に案内させるとともに、
Z軸の重量をエアーによってバランスさせ、J11定子
等を比較的軽い力で移動させることが行なわれている。
[1SOL technology and its problems] For example, in a three-dimensional measuring machine, the Z axis that holds the probe etc. is slidably guided to the main body stationary part 11, and
The weight of the Z-axis is balanced by air, and the J11 constantor and the like are moved with a relatively light force.

このようなエアーバランス装置は、供給空気圧が変動或
いは喪失すると、測定子を含むZ軸が落下し、測定機や
被測定物を破損させる問題がある。
Such an air balance device has a problem in that when the supply air pressure fluctuates or is lost, the Z-axis including the probe falls, damaging the measuring device and the object to be measured.

そこで、この対策として、従来、例えばコンプレッサー
の停止を検出し、これによって電磁ブーキを作動させる
方法が採られていた。また、考え方として、エアーバラ
ンス装置のシリンダ内の圧力を圧力検出器で検出し、こ
の圧力検出器からの検出信号により電磁ブレーキを作動
させる方法も考えられる。
Therefore, as a countermeasure against this problem, a method has conventionally been adopted in which, for example, a stop of the compressor is detected and an electromagnetic booster is activated accordingly. Another possible way of thinking is to use a pressure detector to detect the pressure inside the cylinder of the air balance device, and to operate the electromagnetic brake based on a detection signal from the pressure detector.

ところが、いずれの方法でも、エアーバランス装置のエ
アー回路とは別に電気制御回路を設けなければならない
ので、取扱いが面倒であるばかりでなく、構造的にも複
雑化する欠点がある。
However, in either method, an electric control circuit must be provided separately from the air circuit of the air balance device, which has the drawback of not only being troublesome to handle but also complicating the structure.

このようなことから、シリンダ内の圧力を検出し、この
圧力が基準圧力に対して所定値低下した際、切換え作動
するとともに、全体として小型な弁の開発が望まれてい
る。
For this reason, it is desired to develop a valve that detects the pressure inside the cylinder and switches when the pressure decreases by a predetermined value with respect to the reference pressure, and that is compact overall.

[発明の目的] ここに、本発明の目的は、このような要望に応える差圧
駆動型三方弁を提供することにある。
[Object of the Invention] An object of the present invention is to provide a differential pressure driven three-way valve that meets such demands.

[問題点を解決するための手段および作用]そのため、
本発明では、回動可能かつ軸方向へ変位不能で弁を有す
る調整ねじ軸が設けられた室内を調整ねじ軸方向へ3区
分するための第1および第2のダイヤフラムと、前記調
整ねじ軸に螺合されたねじブツシュと、このねじブツシ
ュに軸方向へ変位可能に嵌合されかつ第1のダイヤフラ
ムに取付けられた駒と、前記第2のダイヤフラムに取付
けられかつ前記調整ねじ軸の弁によって閉塞される貫通
孔を有する弁座と、この弁座と前記駒との間に介装され
両者を互いに離隔させる方向へ付勢する第1のばねとか
ら構成された差圧検出機構、この差圧検出機構の最下区
分室と連通された密閉空間を仕切る第3のダイヤフラム
と、この第3のダイヤフラムに取付けられかつ軸方向へ
変位可能な駆動棒と、この駆動棒を前記最下区分室方向
へイ・1勢する第2のばねとから構成された駆動機構、
およびこの駆動機構の駆動棒の軸方向への変位により切
換えられる三方弁を備え、前記差圧検出機構の最1−区
分室に供給された基準圧力と最下区分室に供給された信
号圧力との圧力差によって前記駆動棒を2位置のいずれ
かに変位させるよう構成した、ことを特徴としている。
[Means and actions to solve the problem] Therefore,
The present invention includes first and second diaphragms for dividing a chamber into three sections in the direction of the adjustment screw shaft, in which the adjustment screw shaft is rotatable but not displaceable in the axial direction, and has a valve; A threaded bushing, a piece fitted to the threaded bushing so as to be displaceable in the axial direction and attached to the first diaphragm, and a piece attached to the second diaphragm and closed by the valve of the adjusting screw shaft. A differential pressure detection mechanism is constructed of a valve seat having a through hole, and a first spring that is interposed between the valve seat and the piece and biases the valve seat and the piece in a direction to separate them from each other. a third diaphragm partitioning a sealed space communicating with the lowest compartment of the detection mechanism; a drive rod attached to the third diaphragm and movable in the axial direction; A drive mechanism consisting of a second spring and a first spring;
and a three-way valve that is switched by displacement of the drive rod of the drive mechanism in the axial direction, and a reference pressure supplied to the first compartment of the differential pressure detection mechanism and a signal pressure supplied to the lowest compartment of the differential pressure detection mechanism. The present invention is characterized in that the drive rod is configured to be displaced to one of two positions by a pressure difference between the two positions.

[実施例] 第1図は本実施例の差圧駆動型三方弁を示している。同
図において、弁箱62の内部には、その上部に第1の室
63が、中央部に前記第1の室63に連通孔64を介し
て連通された第2の室65がそれぞれ形成されていると
ともに、下部に三方弁66が設けられている。
[Example] FIG. 1 shows a differential pressure driven three-way valve of this example. In the figure, inside a valve box 62, a first chamber 63 is formed in its upper part, and a second chamber 65, which communicates with the first chamber 63 through a communication hole 64, is formed in its center. At the same time, a three-way valve 66 is provided at the bottom.

前記第1の室63には、その中心部に前記弁箱62の上
面に回動可能かつ軸方向へ変位不能に支持された調整ね
じ軸としての圧力設定ねじ軸71が臨ませられていると
ともに、上下方向の途中2個所にはその第1の室63を
3つの各室72,73.74に区分する第1.第2のダ
イヤフラム75.76が設けられている。前記圧力設定
ねじ軸71には、その先端に球状の弁77が設けられて
いるとともに、回り止め78により回動規制されかつ圧
力設定ねじ軸71の軸方向へ変位可能なねじブツシュ7
9が螺合されている。ねじブツシュ79には、前記第1
のダイヤフラム75の中心部に固着された駒80が軸方
向へ変位可能に嵌合されている。一方、第2のダイヤフ
ラム76の中心部には、弁座81が固着されている。弁
座81の中心には、前記弁77によって閉塞される貫通
孔82が上下面に貫通して形成されている。
In the first chamber 63, a pressure setting screw shaft 71 as an adjusting screw shaft supported on the upper surface of the valve box 62 so as to be rotatable but not displaceable in the axial direction is exposed at the center thereof. , there are two first chambers in the middle in the vertical direction that divide the first chamber 63 into three chambers 72, 73, and 74. A second diaphragm 75,76 is provided. The pressure setting screw shaft 71 is provided with a spherical valve 77 at its tip, and a screw bush 7 whose rotation is restricted by a rotation stopper 78 and which is movable in the axial direction of the pressure setting screw shaft 71.
9 are screwed together. The screw bush 79 has the first
A piece 80 fixed to the center of the diaphragm 75 is fitted so as to be displaceable in the axial direction. On the other hand, a valve seat 81 is fixed to the center of the second diaphragm 76 . A through hole 82, which is closed by the valve 77, is formed in the center of the valve seat 81 and extends through the upper and lower surfaces thereof.

また、弁座81の上面と前記駒80の下面との間にはそ
の両者を互いに離隔する方向へ付勢するばね83が、弁
座81の下面と第1の室63の底壁との間には弁座81
を上方へ付勢するばね84が、それぞれ介装されている
。なお、ばね84による付勢力は、ばね83による付勢
力よりも十分小さい値になっている。更に、前記各室7
2の周壁には基準空気圧力を各室72へ導入する供給孔
85が、各室73の周壁には大気CH放孔86が、各室
74の周壁には信号空気圧力を各室74へ導入するため
の供給孔87が、それぞれ穿設されている。ここにおい
て、前記圧力設定ねじ軸71を有する第1の室63、第
1.第2のダイヤフラム75.76、ねじブツシュ79
.駒80、貫通孔82を有する弁座81およびばね83
により、本実施例の差圧検出機構lllが構成されてい
る。
Further, between the upper surface of the valve seat 81 and the lower surface of the piece 80, a spring 83 is provided between the lower surface of the valve seat 81 and the bottom wall of the first chamber 63. Valve seat 81
A spring 84 is interposed in each case to bias the two upwards. Note that the biasing force exerted by the spring 84 is sufficiently smaller than the biasing force exerted by the spring 83. Furthermore, each chamber 7
A supply hole 85 for introducing reference air pressure into each chamber 72 is provided on the peripheral wall of No. 2, an atmospheric CH discharge hole 86 is provided on the peripheral wall of each chamber 73, and a signal air pressure is introduced into each chamber 74 on the peripheral wall of each chamber 74. Supply holes 87 are drilled in each case. Here, a first chamber 63 having the pressure setting screw shaft 71, a first chamber 63 having the pressure setting screw shaft 71; Second diaphragm 75,76, screw bushing 79
.. A bridge 80, a valve seat 81 having a through hole 82, and a spring 83
Thus, the differential pressure detection mechanism lll of this embodiment is configured.

また、前記第2の室65には、その室65を上下の各室
91.92に仕切る第3のダイヤフラム93が設けられ
ている。前記上方の各室91は、前記連通孔64を介し
て前記各室74と連通ずる密閉空間に形成されている。
Further, the second chamber 65 is provided with a third diaphragm 93 that partitions the chamber 65 into upper and lower chambers 91 and 92. Each of the upper chambers 91 is formed in a closed space that communicates with each of the chambers 74 through the communication hole 64 .

また、前記各室92の周壁には大気開放孔94が穿設さ
れている。更に、前記ダイヤフラム93には、前記弁箱
62の中心に軸方向へ移動自在に設けられた駆動棒95
の上端が一体的に取付けられている。駆動棒95は、ば
ね96により前記各室74へ向って付勢されている。こ
こにおいて、前記各室91、第3のダイヤフラム93、
駆動棒95およびばね96により、本実施例の駆動機構
112が構成されている。
Further, an atmosphere opening hole 94 is bored in the peripheral wall of each chamber 92. Further, the diaphragm 93 has a drive rod 95 provided at the center of the valve box 62 so as to be movable in the axial direction.
The upper end of the is integrally attached. The drive rod 95 is urged toward each chamber 74 by a spring 96. Here, each chamber 91, the third diaphragm 93,
The drive rod 95 and the spring 96 constitute the drive mechanism 112 of this embodiment.

また、前記三方弁66は、前記弁箱62の周壁に形成さ
れた入力口101、出力口102および大気開放口10
3と、これらを互いに連通させる流路104の途中に形
成された弁座105と、ばね106によりこの弁座10
5を閉塞する方向へ付勢されかつ前記駆動棒95によっ
てばね106の付勢方向とは反対方向へ変位されるバル
ブ107とから構成されている。前記入力口lotには
作動空気圧供給源が、前記出力口102には前記基準空
気圧力に対して信号空気圧力が所定値低下した際切換作
動される制御機器がそれぞれ接続されるようになってい
る。ここで、バルブ107が第1図の状態では、入力口
101と出力口102とが互いに連通される。すると、
作動空気圧が入力口101および出力口102を通って
制御機器へ供給される。一方、バルブ107が弁座10
5を閉塞した状態では、入力口101が閉塞され、出力
口102が大気開放口103と連通される。
Further, the three-way valve 66 includes an input port 101, an output port 102, and an atmosphere opening port 10 formed on the peripheral wall of the valve box 62.
3, a valve seat 105 formed in the middle of a flow path 104 that communicates these with each other, and a spring 106 that allows the valve seat 10 to
The valve 107 is biased in a direction to close the valve 5 and is displaced by the drive rod 95 in a direction opposite to the direction in which the spring 106 is biased. An operating air pressure supply source is connected to the input port lot, and a control device that is switched and activated when the signal air pressure decreases by a predetermined value with respect to the reference air pressure is connected to the output port 102, respectively. . Here, when the valve 107 is in the state shown in FIG. 1, the input port 101 and the output port 102 are communicated with each other. Then,
Operating air pressure is supplied to the control equipment through an input port 101 and an output port 102. On the other hand, the valve 107 is
5 is closed, the input port 101 is closed and the output port 102 is communicated with the atmosphere opening port 103.

すると、制御機器内の空気が出力l:1102および大
気開放口103を通って大気に排出される。
Then, the air inside the control device is discharged to the atmosphere through the output 1102 and the atmosphere opening 103.

次に、本差圧駆動型三方弁61の使用方法の一例を説明
する。例えば、三次元測定機のエアーバランス装置を有
するZ軸(n電子等を取付けたスピンドル)の落下防止
装置に適用する場合には、第2図に示す如く、入力口1
01および供給孔85をエアー供給回路30に接続する
。また、供給孔87をエアーバランス装置17のシリン
ダー9に接続するとともに、出力0102をスピンドル
13を静1に部材側へ一体化係止するための制御機器、
ここでは供給圧力が遮断されたときスピンドル13を静
1に部材側へ一体化係止するよう形成されたシリンダ装
置53に接続する。
Next, an example of how to use the differential pressure driven three-way valve 61 will be explained. For example, when applied to a fall prevention device for a Z-axis (spindle with n-electrons, etc. attached) that has an air balance device of a coordinate measuring machine, as shown in Fig. 2, the input port 1
01 and the supply hole 85 are connected to the air supply circuit 30. Also, a control device for connecting the supply hole 87 to the cylinder 9 of the air balance device 17 and integrally locking the output 0102 to the spindle 13 to the member side;
Here, the spindle 13 is connected to a cylinder device 53 which is designed in such a way that it locks integrally with the component side 1 when the supply pressure is cut off.

前記、エアーバランス装置17は、上下方向へ摺動自在
に設けられたスピンドル13内に収納されたシリンダ1
9と、このシリンダ19内に摺動自在に収納されたピス
トン21と、下端がピストン21に連結されかつ−L端
が静止部材等に保持されたピストンロッド22とから構
成されている。
The air balance device 17 includes a cylinder 1 housed in a spindle 13 that is slidably provided in the vertical direction.
9, a piston 21 slidably housed within the cylinder 19, and a piston rod 22 whose lower end is connected to the piston 21 and whose -L end is held by a stationary member or the like.

なお、スピンドル13の下端には、測定子等を取付ける
ためのホルダ16が設けられている。
Note that a holder 16 is provided at the lower end of the spindle 13 for attaching a probe or the like.

また、前記エアー供給回路30は、高圧の空気圧源31
から供給される一定空気圧、例えば5Kg・f /cr
fの空気がエアーフィルタ32およびマイクロミストセ
パレータ33を通ってエアーレギュレータ34へ与えら
れている。エアーレギュレータ34は、二次側が流量調
整減圧弁35および前記差圧駆動型三方弁61の入力口
101にそれぞれ接続され、かつ二次側の圧力が設定圧
例えば4Kg*f/cm″に維持されるようになってい
る。流量調整減圧弁35は、二次側が前記シリンダ19
内および差圧駆動型三方弁61の供給孔87にそれぞれ
接続され、かつ二次側の圧力つまりシリンダ19内の圧
力が設定圧例えば2Kg−f/crn’に維持されるよ
うになっている。
Further, the air supply circuit 30 includes a high-pressure air pressure source 31
Constant air pressure supplied from, for example, 5Kg・f/cr
f air is supplied to an air regulator 34 through an air filter 32 and a micro mist separator 33. The air regulator 34 has a secondary side connected to the flow rate regulating pressure reducing valve 35 and the input port 101 of the differential pressure driven three-way valve 61, respectively, and maintains the pressure on the secondary side at a set pressure, for example, 4 kg*f/cm''. The flow rate adjustment pressure reducing valve 35 has a secondary side connected to the cylinder 19.
It is connected to the supply hole 87 of the internal and differential pressure driven three-way valve 61, respectively, and the pressure on the secondary side, that is, the pressure inside the cylinder 19, is maintained at a set pressure, for example, 2 Kg-f/crn'.

使用に当っては、まず、流量調整減圧弁35を調整し、
その流量調整減圧弁35の二次側圧力をスピンドル13
の可動部の重量に見合う圧力に設定スる。いま、スピン
ドル13の可動部の総重量をM[Kg・f]、シリンダ
19の内径(直径)をD[II璽]とすると、シリンダ
19内の圧力Pは、 P = 4 M/ πD 2[Kg11f/c rn’
]となる。
In use, first adjust the flow rate adjustment pressure reducing valve 35,
The secondary side pressure of the flow rate adjustment pressure reducing valve 35 is adjusted to the spindle 13.
Set the pressure to match the weight of the moving parts. Now, if the total weight of the movable parts of the spindle 13 is M [Kg・f] and the inner diameter (diameter) of the cylinder 19 is D [II], then the pressure P inside the cylinder 19 is P = 4 M/ πD 2 [ Kg11f/c rn'
].

従って、流量調整減圧弁35の二次側圧力を圧力Pに設
定する。これにより、流量調整減圧弁35の二次側圧力
Pがシリンダ19内へ供給されるとともに、差圧駆動型
三方弁61の供給口85を通って各室72へ供給される
。一方、シリンダ19内の圧力が信号圧力として差圧駆
動型三方弁61の供給口87を通って各室74へ与えら
れる。
Therefore, the pressure on the secondary side of the flow rate adjustment pressure reducing valve 35 is set to pressure P. Thereby, the secondary side pressure P of the flow rate adjustment pressure reducing valve 35 is supplied into the cylinder 19 and is also supplied to each chamber 72 through the supply port 85 of the differential pressure driven three-way valve 61. On the other hand, the pressure within the cylinder 19 is applied as a signal pressure to each chamber 74 through the supply port 87 of the differential pressure driven three-way valve 61.

ここで、予め、差圧駆動型三方弁61の圧力設定ねじ軸
71を回動させ、ばね83の圧縮力を各室74内の信号
圧力に平衡するように設定しておくと、第2のダイヤフ
ラム76の下面には信号圧力による力とばね84の反撥
力(これは、信号圧力の微小変動により信号圧力が設定
圧力より減少するのをさけるための予圧)とが、」二面
にはばね83の反撥力が作用する結果、第2のダイヤフ
ラム76は第1図中上方へ押−ヒげられる。すると、第
2のダイヤフラム76の押上げによって貫通孔82が弁
77によって閉じられる結果、各室74の信号圧力は連
通孔64を通って各室91へ入り、第3のダイヤフラム
93を第1図中下方へ押下げる。第3のダイヤフラム9
3が押下げられると、駆動棒95を介してバルブ107
がばね106に抗して弁座105から解放される結果、
入力口lotと出力口102とが連通される。
Here, if the pressure setting screw shaft 71 of the differential pressure driven three-way valve 61 is rotated in advance and the compression force of the spring 83 is set to be balanced with the signal pressure in each chamber 74, the second The lower surface of the diaphragm 76 has a force due to the signal pressure and the repulsive force of the spring 84 (this is a preload to prevent the signal pressure from decreasing below the set pressure due to minute fluctuations in the signal pressure). As a result of the repulsive force 83 acting, the second diaphragm 76 is pushed upward in FIG. Then, as the second diaphragm 76 is pushed up, the through hole 82 is closed by the valve 77, and as a result, the signal pressure in each chamber 74 enters each chamber 91 through the communication hole 64, causing the third diaphragm 93 to close as shown in FIG. Press down in the middle. third diaphragm 9
3 is pressed down, the valve 107 is activated via the drive rod 95.
is released from the valve seat 105 against the spring 106,
The input port lot and the output port 102 are communicated.

これにより、レギュレータ34の二次側圧力がシリンダ
装置53へ供給されると、スピンドル13は上下方向へ
昇降できる状態となる。
Thereby, when the secondary side pressure of the regulator 34 is supplied to the cylinder device 53, the spindle 13 becomes in a state where it can move up and down in the vertical direction.

この状態において、測定を行う。測定にあたっては、ス
ピンドル13の下端を手で持ち測定子等を三次元方向へ
移動させ、被測定物へ順次当接させる。すると、測定子
等が被測定物に当接したx、y、z軸方向へおける位置
が図示しない検出器によりそれぞれ検出された後、表示
器等に表示される。
Measurement is performed in this state. During measurement, the lower end of the spindle 13 is held in the hand and the measuring element is moved in three-dimensional directions and successively brought into contact with the object to be measured. Then, the positions in the x-, y-, and z-axis directions where the contact point or the like contacts the object to be measured are detected by detectors (not shown) and then displayed on a display or the like.

この測定時において、各測定項目毎に各種の測定子等を
ホルダ16に取付けると、測定子等5に応じて総重量が
変化するため、その総重量に応じてシリンダ19内の圧
力を変化させる必要がある。そこで、流量調整減圧弁3
5の二次側圧力を総重量に見合う圧力に設定し、その二
次側圧力をシリンダ19に供給してバランスをとる一方
、差圧駆動型三方弁61の供給孔85を通じて各室72
にも供給する。
At the time of this measurement, when various types of probes etc. are attached to the holder 16 for each measurement item, the total weight changes depending on the probes etc. 5, so the pressure inside the cylinder 19 is changed according to the total weight. There is a need. Therefore, the flow rate adjustment pressure reducing valve 3
5 is set to a pressure commensurate with the total weight, and the secondary pressure is supplied to the cylinder 19 to maintain balance.
also supplied.

この際、ねじブツシュ79は固定されているが、各室7
2内に供給された空気圧力が第1のダイヤフラム75を
介して駒80に作用するので、その駒80の変位に応じ
てばね83が圧縮される。従って、ホルダ16に取付け
られた測定子等によって総重量が変化し、その総重量に
応じて流星調整減圧弁35の二次側圧力を変化させたと
しても、その二次側圧力に応じてばね83の圧縮力が変
化するので、前記と同様に信号圧力が設定圧力より高い
場合は入力口lO1と出力口102とが互いに連通され
たままである。
At this time, although the screw bushing 79 is fixed, each chamber 7
Since the air pressure supplied into the bridge 2 acts on the bridge 80 via the first diaphragm 75, the spring 83 is compressed in accordance with the displacement of the bridge 80. Therefore, even if the total weight changes due to the measuring tip etc. attached to the holder 16 and the secondary side pressure of the meteor adjustment pressure reducing valve 35 is changed according to the total weight, the spring will change depending on the secondary side pressure. Since the compressive force of 83 changes, similarly to the above, when the signal pressure is higher than the set pressure, the input port lO1 and the output port 102 remain in communication with each other.

仮に、信号圧力が何らかの原因、例えばエアー配管のリ
ーク等により設定圧より低下すると、第2のダイヤフラ
ム76が押下げられる。すると、弁座81の貫通孔82
が弁77から解放されるので、各室74内の空気は貫通
孔82を通って各室73へ入り、大気開放孔86から排
出される。そのため、駆動棒95がばね96により押上
げられる結果、バルブ107はばね106により今まで
通じていた回路を遮断し、出力口102と大気開放口1
03とを連通させる。
If the signal pressure drops below the set pressure due to some reason, such as a leak in the air piping, the second diaphragm 76 is pushed down. Then, the through hole 82 of the valve seat 81
is released from the valve 77, the air in each chamber 74 enters each chamber 73 through the through hole 82 and is exhausted from the atmosphere opening hole 86. Therefore, as a result of the driving rod 95 being pushed up by the spring 96, the valve 107 interrupts the circuit that has been connected until now by the spring 106, and the output port 102 and the atmosphere opening port 1 are connected to each other.
03.

これにより、レギュレータ34の二次側圧力がシリンダ
装置53へ供給されなくなるとともに、シリンダ装置5
3が大気に解放される。その結果、スピンドル13が静
止部材に一体化係止され、落下が防止される。
As a result, the secondary side pressure of the regulator 34 is no longer supplied to the cylinder device 53, and the cylinder device 5
3 is released to the atmosphere. As a result, the spindle 13 is integrally locked to the stationary member and is prevented from falling.

従って、本実施例の差圧駆動型三方弁61によれば、基
準圧力と信号圧力との比較によって、信号圧力が基準圧
力に対して所定値低下した際、三方弁66が切換え作動
するので、基準圧力の変化に伴って信号圧力も変化する
ような場合でも、基準圧力が変化するたびにばね83の
設定圧力を圧力設定ねじ軸71によって調整しなくても
、基準圧力に対する信号圧力の低下を正確に検知でき、
かつそれによって三方弁66を切換え作動させることが
できる。
Therefore, according to the differential pressure driven three-way valve 61 of this embodiment, when the signal pressure decreases by a predetermined value with respect to the reference pressure by comparing the reference pressure and the signal pressure, the three-way valve 66 switches and operates. Even in the case where the signal pressure changes as the reference pressure changes, it is possible to prevent the signal pressure from decreasing with respect to the reference pressure without adjusting the set pressure of the spring 83 using the pressure setting screw shaft 71 every time the reference pressure changes. Can be detected accurately,
And thereby the three-way valve 66 can be switched into operation.

また、ばね83による設定圧を変化させる場合でも、圧
力設定ねじ軸71を回動させれば微調整できる。このほ
か、圧力設定ねじ軸71以外に基準圧力を変化させれば
よいので、遠隔操作できる。更に、これらの機能が一体
的に構成されているので、全体としてコンパクトに構成
できる。
Further, even when changing the set pressure by the spring 83, fine adjustments can be made by rotating the pressure setting screw shaft 71. In addition, since the reference pressure can be changed using a device other than the pressure setting screw shaft 71, remote control is possible. Furthermore, since these functions are integrated, the overall structure can be made compact.

なお、例えば二次元測定機のエアーバランス装置を有す
るZ軸(測定子等を取付けたスピンドル)の落下時1F
装置に適用すれば、シリンダ19内の圧力をスピンドル
13の重量に見合う圧力に設定する流量調整減圧弁35
の二次側出力直後の圧力とシリンダ19内の圧力とを比
較し、シリンダ19内の圧力が二次側出力直後の圧力に
対して所定値低下したとき落下防止装置のシリンダ装置
53を解放するようにできるため、空気圧源側が一時的
に変動しても、シリンダ装置53が解放されることがな
いので、これによる測定作業の中断がない。
For example, when a Z-axis (spindle with a measuring head etc. attached) that has an air balance device of a two-dimensional measuring machine falls,
If applied to the device, a flow rate regulating pressure reducing valve 35 that sets the pressure in the cylinder 19 to a pressure commensurate with the weight of the spindle 13.
The pressure immediately after the output from the secondary side is compared with the pressure inside the cylinder 19, and when the pressure inside the cylinder 19 decreases by a predetermined value with respect to the pressure immediately after the output from the secondary side, the cylinder device 53 of the fall prevention device is released. Therefore, even if the air pressure source side changes temporarily, the cylinder device 53 will not be released, so there will be no interruption of measurement work due to this.

また、測定子等の交換により、スピンドル13の可動部
の重量が変化し、その重量に応じて流量調整減圧弁35
の二次側圧力を変化させると、その二次側出力によって
シリンダ19内の圧力と平衡するばね83の圧縮量が変
化するので、流量調整減圧弁35を変化させても、ばね
83の圧縮力を調整する圧力設定ねじ軸71を微調整し
なくてもよいから、減圧弁35のみを調整すればよく、
従って調整が容易である。
In addition, due to the replacement of the measuring head etc., the weight of the movable part of the spindle 13 changes, and the flow rate adjustment pressure reducing valve 35 changes depending on the weight.
When the secondary side pressure of Since there is no need to finely adjust the pressure setting screw shaft 71 that adjusts the pressure, it is only necessary to adjust the pressure reducing valve 35.
Therefore, adjustment is easy.

なお、」−記実施例では、使用の一例として、三次元測
定機のエアーバランス装置を有するZ軸(測定子等を取
付けたスピンドル)の落下時1に装置に適用した場合に
ついて述べたが、本発明は。
In addition, in the embodiment mentioned above, as an example of use, a case was described in which it was applied to a device when a Z-axis (spindle to which a probe, etc. is attached) of a coordinate measuring machine is dropped. The present invention is.

この例に限られるものでなく、基準圧力に対する信号圧
力の差によって制御機器等を作動させる弁として広く応
用することができる。
The present invention is not limited to this example, and can be widely applied as a valve that operates a control device or the like based on the difference in signal pressure with respect to a reference pressure.

[発明の効果] 以−]二の通り、本発明によれば、コンパクトで、かつ
基準圧力に対する信号圧力の差によって切換え作動する
差圧駆動型三方弁を提供することができる。
[Effects of the Invention] As described below, according to the present invention, it is possible to provide a differential pressure-driven three-way valve that is compact and that switches and operates based on the difference in signal pressure with respect to the reference pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の内部構造を示す断面図、第
2図は使用状態の系統図である。 63・・・第1の室、66・・・三方弁、71・・・調
整ねじ軸としての圧力設定ねじ軸、75・・・第1のダ
イヤフラム、76・・・第2のダイヤフラム、93・・
・第3のダイヤフラム、79・・・ねじブツシュ、80
・・・駒、81・・・弁座、82・・・貫通孔、83・
・・ばね、93・・・ダイヤフラム、96・・・ばね、
91・・・各室、95・・・駆動棒、111・・・差圧
検出機構、112・・・駆動機構。
FIG. 1 is a sectional view showing the internal structure of an embodiment of the present invention, and FIG. 2 is a system diagram of the system in use. 63... First chamber, 66... Three-way valve, 71... Pressure setting screw shaft as adjustment screw shaft, 75... First diaphragm, 76... Second diaphragm, 93...・
・Third diaphragm, 79...Screw bushing, 80
... Piece, 81... Valve seat, 82... Through hole, 83.
...Spring, 93...Diaphragm, 96...Spring,
91... Each chamber, 95... Drive rod, 111... Differential pressure detection mechanism, 112... Drive mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)回動可能かつ軸方向へ変位不能で弁を有する調整
ねじ軸が設けられた室内を調整ねじ軸方向へ3区分する
ための第1および第2のダイヤフラムと、前記調整ねじ
軸に螺合されたねじブッシュと、このねじブッシュに軸
方向へ変位可能に嵌合されかつ第1のダイヤフラムに取
付けられた駒と、前記第2のダイヤフラムに取付けられ
かつ前記調整ねじ軸の弁によって閉塞される貫通孔を有
する弁座と、この弁座と前記駒との間に介装され両者を
互いに離隔させる方向へ付勢する第1のばねとから構成
された差圧検出機構、 この差圧検出機構の最下区分室と連通された密閉空間を
仕切る第3のダイヤフラムと、この第3のダイヤフラム
に取付けられかつ軸方向へ変位可能な駆動棒と、この駆
動棒を前記最下区分室方向へ付勢する第2のばねとから
構成された駆動機構、および この駆動機構の駆動棒の軸方向への変位により切換えら
れる三方弁、を備え、 前記差圧検出機構の最上区分室に供給された基準圧力と
最下区分室に供給された信号圧力との圧力差によって前
記駆動棒を2位置のいずれかに変位させるよう構成した
、 ことを特徴とする差圧駆動型三方弁。
(1) First and second diaphragms for dividing a chamber into three sections in the direction of the adjustment screw shaft, in which the adjustment screw shaft is rotatable but not displaceable in the axial direction and has a valve; a piece fitted to the threaded bush so as to be displaceable in the axial direction and attached to the first diaphragm; and a piece attached to the second diaphragm and closed by the valve of the adjusting screw shaft. A differential pressure detection mechanism comprising: a valve seat having a through hole; and a first spring interposed between the valve seat and the piece and biasing the valve seat and the piece in a direction to separate them from each other; a third diaphragm that partitions a sealed space communicating with the lowest compartment of the mechanism; a drive rod attached to the third diaphragm and movable in the axial direction; and a drive rod that moves the drive rod toward the lowest compartment. and a three-way valve that is switched by displacement of the drive rod of the drive mechanism in the axial direction, and is supplied to the uppermost compartment of the differential pressure detection mechanism. A differential pressure driven three-way valve, characterized in that the drive rod is configured to be displaced to one of two positions by a pressure difference between a reference pressure and a signal pressure supplied to the lowest compartment.
(2)特許請求の範囲第1項において、前記弁座を、前
記第1のばねの付勢力とは反対方向へ、かつ第1のばね
の付勢力よりも弱い力で付勢する第2のばねが設けられ
ていることを特徴とする差圧駆動型三方弁。
(2) In claim 1, a second spring biases the valve seat in a direction opposite to the biasing force of the first spring and with a force weaker than the biasing force of the first spring. A differential pressure driven three-way valve characterized by being equipped with a spring.
JP17782784A 1984-08-27 1984-08-27 Differential pressure driven three way type valve Granted JPS6155482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17782784A JPS6155482A (en) 1984-08-27 1984-08-27 Differential pressure driven three way type valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17782784A JPS6155482A (en) 1984-08-27 1984-08-27 Differential pressure driven three way type valve

Publications (2)

Publication Number Publication Date
JPS6155482A true JPS6155482A (en) 1986-03-19
JPH0261676B2 JPH0261676B2 (en) 1990-12-20

Family

ID=16037796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17782784A Granted JPS6155482A (en) 1984-08-27 1984-08-27 Differential pressure driven three way type valve

Country Status (1)

Country Link
JP (1) JPS6155482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014244A1 (en) * 1998-12-25 2000-06-28 Advance Denki Kougyou Kabushiki Kaisha Flow control valve
EP1022633A1 (en) * 1999-01-22 2000-07-26 Idr Holding S.A. A valve for regulating pressurised gas
CN101900213A (en) * 2010-07-09 2010-12-01 杭州浙大精益机电技术工程有限公司 Membrane type flow quantity adjusting valve with circulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014244A1 (en) * 1998-12-25 2000-06-28 Advance Denki Kougyou Kabushiki Kaisha Flow control valve
KR100580809B1 (en) * 1998-12-25 2006-05-16 아드반스 덴키 고교 가부시키가이샤 Flow rate control valve
EP1022633A1 (en) * 1999-01-22 2000-07-26 Idr Holding S.A. A valve for regulating pressurised gas
CN101900213A (en) * 2010-07-09 2010-12-01 杭州浙大精益机电技术工程有限公司 Membrane type flow quantity adjusting valve with circulation

Also Published As

Publication number Publication date
JPH0261676B2 (en) 1990-12-20

Similar Documents

Publication Publication Date Title
US3578278A (en) Vibration-isolated self-leveling platform and method
US8573560B2 (en) Vacuum control valve and vacuum control system
CN101532818A (en) Contact type measuring instrument
US9316472B2 (en) Slide guide device
US6305264B1 (en) Actuator control circuit
US4346732A (en) Pressure regulator for gaseous and liquid fluids
JPS6155482A (en) Differential pressure driven three way type valve
US3556125A (en) Pressure regulating valves
US3189303A (en) Pneumatic system for machinery support
US3601148A (en) Fluid-pressure-regulating valve device
CN108593188A (en) A kind of pressure capsule system
US3046778A (en) Pneumatic gauge
JPH07259801A (en) Air servocylinder system
JPS6154410A (en) Safety device of three-dimensional measuring machine
US3683968A (en) Reverse-acting relay valve
US3024803A (en) Regulator valve
JPH0435768B2 (en)
JPS6154409A (en) Three-dimensional measuring machine
US5038670A (en) Pneumatic control valve apparatus
JPH1061807A (en) Damper built-in type valve device
JP2562505Y2 (en) Pneumatic controller
JP2001271878A (en) Positioning device for vibration control base
JP2002107258A (en) Artificial leak device for air leak tester
US2850035A (en) Pulsating type air-dispensing apparatus
SU941954A1 (en) Reduction-type pneumatic valve