JPS6155405B2 - - Google Patents

Info

Publication number
JPS6155405B2
JPS6155405B2 JP53155496A JP15549678A JPS6155405B2 JP S6155405 B2 JPS6155405 B2 JP S6155405B2 JP 53155496 A JP53155496 A JP 53155496A JP 15549678 A JP15549678 A JP 15549678A JP S6155405 B2 JPS6155405 B2 JP S6155405B2
Authority
JP
Japan
Prior art keywords
slurry
tank
fine particles
coarse
containing fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53155496A
Other languages
Japanese (ja)
Other versions
JPS5581710A (en
Inventor
Susumu Fukami
Katsumi Hatanaka
Tooru Sano
Koichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Engineering Co Ltd
Original Assignee
Nikko Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Engineering Co Ltd filed Critical Nikko Engineering Co Ltd
Priority to JP15549678A priority Critical patent/JPS5581710A/en
Publication of JPS5581710A publication Critical patent/JPS5581710A/en
Publication of JPS6155405B2 publication Critical patent/JPS6155405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、微細粒子を含むスラリーの過法に
よる脱水処理法およびそのための装置に関する。 鉄鋼の熱間圧延工程の冷却水、トンネル掘さく
又はさく井作業における排水や湧水、砕石工場に
おける水洗排水、鉱業排出スラリー等は一般に微
細粒子を含むスラリー形態であるため、これらの
スラリーは固形分と水分とに分離し、固形分は回
収して再利用するか又は埋立廃棄され、一方水分
は作業用水として再利用するか又は排出基準値を
満足させたのち放流水として河川等に放流される
のが普通である。 従来、上述したごとき微細粒子を含むスラリー
の固液分離法として、スラリー濃度が高い場合は
そのまま、低濃度の場合はシツクナーのごとき沈
降分離装置を用いて濃縮したのち、フイルタープ
レスのごとき圧機もしくはオリバーフイルター
のごとき真空過機で処理することが行われてい
る。しかしながら、これらの過機はいずれも高
価であるうえにその保守管理が面倒であるという
欠点がある。 本発明は、上述したごときスラリーを簡単な装
置を用いて効果的に固液分離しうる方法および該
方法に用いる装置を提供することを目的とする。 以下本発明について詳しく説明する。 本発明は、堆積状態で通水性を保有する粗粒物
質を円錐状に堆積して形成したものを過層と
し、これに微細粒子を含むスラリーを該円錐状の
過層の周縁部から順次通過させることにより、
該スラリーの固液分離が極めて効率的に遂行しう
るとの知見に基いてなされたものである。 本発明でいう“粗粒物質”とは、(例えば通常
の砂過法などの材として用いられる硬質の石
英質粒子およびアンスラサイトなどの如く微細部
分を含有せず均等な粒径の粒子からなるもの、あ
るいは通水性を阻害する20〜30ミクロン以下の微
細部分を含有しない砂状の粒子のごとき)堆積状
態で通水性を保持しうる物質を意味する。したが
つて、処理すべきスラリー中に粗粒物質が含まれ
ている場合には該スラリーを湿式分級して得られ
る粗粒物質も本発明でいう粗粒物質として適用し
得る。 本発明により、このような粗粒物質を過層と
して用いるには、まず、粗粒物質を、下方の周壁
部を内方向に傾斜させて逆角錐状もしくは逆円錐
状に形成した槽内へ連続的に供給することにより
該粗粒物質から成る円錐状の堆積物を槽内の下方
部から逐次形成させる。 次に、上記堆積物が或る程度形成された段階
で、処理すべきスラリー(微細粒子を含むもの)
を、場合によつてはそれを濃縮したものを槽内の
上方周縁部に配設した、多数の孔を有する環状管
を介して、槽の周辺内壁に沿つて槽内へ連続的に
滴下的に一定量宛流入させる。なお、上記環状管
はダイヤフラムポンプのごときスライムポンプに
連通しており、スラリーはこのポンプにより環状
管へ移送されるようになつている。上述のように
して槽内へ流入したスラリーは槽内の下方部に形
成されている粗粒物質の円錐状堆積物に達し、該
堆積物を過層として過脱水される。水は槽
内の底部ゲートに設けた排出口から連続的に排出
される。スラリーの槽内への流入が終了すると、
所定時間放置して堆積物からの水を排出したの
ち、上記ゲートを開放してスラリー残渣を堆積物
と共に槽外へ搬出する。なお、この搬出物は、必
要に応じ乾燥、焼却、篩分、風ひ等の公知の選別
手段により粗粒物質を分離して本発明で再利用す
ることも可能である。 本発明では、上述したごとく、過層としての
粗粒物質とスラリーが同時的に槽内へ連続供給さ
れ、その際粗粒物質は円錐状に堆積され、一方ス
ラリーは槽内の周辺部から内壁に沿つて供給され
るので、スラリーは当初常に新しく供給された粗
粒物質層に達し、この粗粒物質層は通水性良好で
あつて恰も水路の役目をしてスラリーを通過さ
せ、ついで下方の堆積された粗粒物質層に達して
過される。すなわち、本発明によると過層と
しての円錐状堆積物の上部は常に新しい粗粒物質
から成つているので上述したごとく通水路として
作用し、下部は実質的な過層として作用するの
でスラリーの過が円滑に行われるようになる。 しかしながら、上記円錐状堆積物の頂面がスラ
リー面下に水没したり、さらにはスラリーを粗粒
物質と混合して一緒に槽内へ供給したりするとき
は、上述した堆積物上部における通水路としての
作用が失われ、その結果スラリーの過性が劣化
するに至る。したがつて、本発明では、スラリー
を槽内の上方周壁部に沿つて流下させると共に槽
内下方に形成する堆積物の頂面を常にスラリー面
より高くなるごとく保持することが必要となる。
なお、この事情は後記実施例と共に示した比較例
から明らかである。 また、スラリーを槽内へ流下するに先立つて槽
内下方部に形成する円錐状堆積物の高さは、その
安息角および槽内底部に設けた水排出口の全体
寸法により変化可能であるが、少くとも堆積物の
下部が水排出口全体を完全に覆うまでに至る高
さに堆積させる。また、スラリーを槽内に供給す
る際槽内周縁部から全周壁に亘つて流下させるこ
とが好ましく、このためには、上記周縁部に設け
る環状管は多数個の孔を有するものを使用すると
よい。なお、処理すべきスラリーの沈降性が良好
な場合には、槽内への供給後短時間で(−その水面
付近に澄水層が形成−)され直ちに円錐面で過排
出されるためスラリーが比較的低濃度でも処理可
能である。 次に、本発明の脱水処理法に使用される装置を
添付図面に基いて説明する。添付図面は、本発明
の装置の一実施例を模式的に例示したものであつ
て、図中1は下部をホツパー形体に形成した槽本
体を、2は槽本体の上部周縁部に配設した多孔を
有する環状管を、3は環状管をスラリー移送手段
と連通させるための連通管の一部を、4は水排
出口を、5は脱水処理物の搬出ゲートをそれぞれ
示す。また図中6は粗粒物質を槽内へ供給するた
めのスクリーフイーダーを、7は粗粒物質の堆積
物を、8はスラリーの滴下状態を示す。 上記スラリーの移送手段としては既述したごと
く例えばダイヤフラムポンプが用いられる。ま
た、槽内底部は排出口4を設けたゲート5に形成
されているが、ゲートに設けた排出口はゲートと
上記ホツパー形体との間隙をもつて代用させ得る
が、ゲート又はホツパー形体に開孔して排出口と
することも可能である。また、ホツパー形体の下
部もしくは底部に、内部が中空で表面が材から
構成された体を配置して真空手段と接続するこ
とにより、スラリーの強制的な過脱水を行わせ
ると脱水効果が一そう高くなる。 次に実施例を例示して本発明を具体的に説明す
る。なお、実施例ではスラリーとして鉄鋼の熱間
圧延工程の冷却排水を用いた。 実施例 1 本例で用いた冷却排水は微細粒子のほかに粗粒
物質を含んでいるので、予め粗粒物質を分離し、
これを堆積物の形成に供した。 スケール固形分濃度1100ppm、固形物粒度1.6
mm〜3μ以下の粗粒と微粒を含む熱間圧延工程の
冷却排水を流量477m3/Hでリボン径600mmφ、機
長11m、回転数5γpm、動力3.7KW、プール面
積14m2のスパイラル型湿式分級機にかけた。その
ときの分級割合はかき上げ生成物(粗粒部分)が
77%、溢流生成物(微細部分)が23%で、各々の
粒度はモード径150μ(最大粒径1.6mm、最小粒径
30μ)、10μ(最大粒径300μ、最小粒径3μ以
下)であつた。粗粒部分の水分はかき上げ直後27
%でこれを羽根径300mmφ、長さ6m、回転数15γ
pm、能力1.5トン/H、動力0.4KWのスクリユー
フイーダにより3.5mφ、円筒部長さ1.5m、コー
ン角度60℃排出口寸法700mm×700mm容量40トンの
円形ホツパー中心部に乾量41.7Kg/m2・H(3.5m
φの断面積に対し)の割合で連続投入堆積した。
スクリユーフイーダ通過中に脱水され供給時の水
分は10%であつた。またこの堆積物の安息角は45
℃であつた。一方微細部分を含むスパイラル分級
機溢流水を21.4mφのシツクナーで沈降濃縮し、
底部抜出口より濃度7%および15%でポンプで移
送し、前述のホツパーの全周8箇所から平均に
159/m2・Hおよび72/m2・Hで、粗粒部分
堆積物の高さが1mになつた時点から連続供給を
開始した。 微細部分を含む濃度7および15%のスラリーは
粗粒部分堆積物の下部に流下し過され、固形物
は堆積物内および表面に残留し、水は水となつ
て排水口より連続的に排水された。このときの
水は透明であつた。このまま24時間連続運転した
ときの過水量を測定したところ下記表の結果を
得た。
The present invention relates to a method for dehydrating a slurry containing fine particles by a filtration method and an apparatus for the same. Cooling water in the steel hot rolling process, wastewater and spring water in tunnel boring or well drilling work, washing wastewater in stone crushing plants, mining discharge slurry, etc. are generally in the form of slurry containing fine particles, so these slurries have a low solid content. The solid content is collected and reused or disposed of in a landfill, while the water content is either reused as work water or discharged into rivers, etc. after meeting discharge standards. is normal. Conventionally, as a solid-liquid separation method for slurry containing fine particles as described above, if the slurry concentration is high, it is used as is, or if the concentration is low, it is concentrated using a sedimentation separator such as a thickner, and then concentrated using a pressure machine such as a filter press or an oliver. Treatment is carried out using a vacuum filtration machine such as a filter. However, all of these machines have the drawbacks of being expensive and requiring troublesome maintenance. An object of the present invention is to provide a method for effectively separating solid-liquid from the slurry as described above using a simple device, and an apparatus for use in the method. The present invention will be explained in detail below. In the present invention, an overlayer is formed by depositing coarse-grained material that has water permeability in a deposited state in a conical shape, and a slurry containing fine particles is passed through this layer sequentially from the periphery of the conical overlayer. By letting
This was done based on the knowledge that solid-liquid separation of the slurry can be carried out extremely efficiently. The term "coarse-grained material" as used in the present invention refers to (for example, hard quartz particles used as a material for ordinary sand filtering) and particles of uniform size without containing fine parts, such as anthracite. means a substance that can maintain water permeability in a deposited state (such as sand-like particles that do not contain fine particles of 20 to 30 microns or less that inhibit water permeability). Therefore, if the slurry to be treated contains coarse particles, the coarse particles obtained by wet classification of the slurry can also be used as the coarse particles in the present invention. According to the present invention, in order to use such a coarse-grained material as an overlayer, first, the coarse-grained material is continuously poured into a tank formed into an inverted pyramid or inverted conical shape by inclining the lower peripheral wall inward. A cone-shaped deposit consisting of the coarse-grained material is successively formed from the lower part of the tank. Next, when the above deposits have formed to a certain extent, the slurry to be treated (containing fine particles) is
, or in some cases a concentrated product, is continuously dripped into the tank along the peripheral inner wall of the tank through an annular pipe with a large number of holes located at the upper periphery of the tank. A certain amount of water is allowed to flow into the area. The annular pipe is connected to a slime pump such as a diaphragm pump, and the slurry is transferred to the annular pipe by this pump. The slurry that has flowed into the tank as described above reaches the conical deposit of coarse particles formed in the lower part of the tank, and is over-dehydrated using the deposit as an overlayer. Water is continuously discharged from the outlet provided at the bottom gate within the tank. When the slurry has finished flowing into the tank,
After leaving the tank for a predetermined period of time to drain water from the deposit, the gate is opened and the slurry residue is carried out of the tank along with the deposit. Incidentally, this discharged material can be reused in the present invention by separating the coarse particles by known sorting means such as drying, incineration, sieving, and blowing, if necessary. In the present invention, as described above, coarse grain material and slurry as an overlayer are simultaneously and continuously supplied into the tank, and at this time, the coarse grain material is deposited in a conical shape, while the slurry is fed from the periphery of the tank to the inner wall. Since the slurry is supplied along the flow path, the slurry always initially reaches the newly supplied coarse material layer, and this coarse material layer has good water permeability and acts as a waterway to allow the slurry to pass through. It passes through the deposited coarse material layer. That is, according to the present invention, the upper part of the cone-shaped deposit as an overlayer is always made of new coarse-grained material, so it acts as a passageway as described above, and the lower part acts as a substantial overlayer, so that the slurry does not pass through. will be carried out smoothly. However, when the top surface of the conical deposit is submerged below the slurry surface, or furthermore, when the slurry is mixed with coarse-grained material and supplied into the tank together, the above-mentioned water passageway in the upper part of the deposit As a result, the properties of the slurry deteriorate. Therefore, in the present invention, it is necessary to allow the slurry to flow down along the upper circumferential wall of the tank, and to maintain the top surface of the deposit formed in the lower part of the tank so that it is always higher than the slurry surface.
Note that this situation is clear from the comparative examples shown together with the examples described later. In addition, the height of the conical deposit that forms in the lower part of the tank before the slurry flows down into the tank can be varied depending on its angle of repose and the overall dimensions of the water outlet provided at the bottom of the tank. , at least to a height such that the lower part of the deposit completely covers the entire water outlet. Furthermore, when supplying the slurry into the tank, it is preferable to allow the slurry to flow down from the inner peripheral edge of the tank to the entire peripheral wall, and for this purpose, it is preferable to use an annular pipe provided at the peripheral edge that has a large number of holes. . In addition, if the slurry to be treated has good settling properties, it will be discharged in a short time after being supplied into the tank (a clear water layer will form near the water surface) and will be immediately over-discharged on the conical surface. Treatment is possible even at low concentrations. Next, the apparatus used in the dehydration treatment method of the present invention will be explained based on the accompanying drawings. The attached drawings schematically illustrate one embodiment of the device of the present invention, in which 1 shows a tank body whose lower part is shaped like a hopper, and 2 shows a tank body arranged at the upper periphery of the tank body. 3 shows a circular pipe having porous holes, 3 is a part of a communication pipe for communicating the circular pipe with a slurry transfer means, 4 is a water outlet, and 5 is a discharge gate for the dehydrated material. Further, in the figure, 6 indicates a scree feeder for supplying coarse particles into the tank, 7 indicates a deposit of coarse particles, and 8 indicates a dripping state of slurry. As described above, for example, a diaphragm pump is used as the means for transferring the slurry. Further, the bottom of the tank is formed with a gate 5 provided with a discharge port 4, but the discharge port provided in the gate may be replaced by a gap between the gate and the hopper shape, but the discharge port provided in the gate may be replaced by a gap between the gate and the hopper shape. It is also possible to make a hole and use it as a discharge port. In addition, the dehydration effect can be improved by forcibly over-dehydrating the slurry by placing a body with a hollow interior and a surface made of wood at the bottom or bottom of the hopper and connecting it to a vacuum means. It gets expensive. Next, the present invention will be specifically described by way of examples. In the examples, cooling wastewater from a steel hot rolling process was used as the slurry. Example 1 The cooling waste water used in this example contains coarse particles in addition to fine particles, so the coarse particles were separated in advance and
This was used to form a deposit. Scale solid content concentration 1100ppm, solid particle size 1.6
Spiral type wet classifier with ribbon diameter 600mmφ, machine length 11m, rotation speed 5γpm, power 3.7KW, pool area 14m 2 for cooling wastewater from hot rolling process containing coarse particles and fine particles of mm~3μ or less with flow rate 477m 3 /H. I put it on. The classification ratio at that time is that the scraped product (coarse part)
77%, overflow product (fine part) is 23%, each particle size is mode diameter 150μ (maximum particle size 1.6mm, minimum particle size
30μ), 10μ (maximum particle size 300μ, minimum particle size 3μ or less). The moisture in the coarse grain part is removed immediately after scraping27
%, the blade diameter is 300mmφ, length is 6m, and rotation speed is 15γ.
pm, capacity 1.5 tons/H, power 0.4KW screw feeder, 3.5mφ, cylindrical length 1.5m, cone angle 60℃, outlet dimensions 700mm x 700mm, dry weight 41.7Kg/dry weight at the center of the 40t capacity circular hopper. m2・H (3.5m
It was deposited continuously at a ratio of φ to the cross-sectional area of φ.
The water was dehydrated while passing through the screw feeder, and the moisture content at the time of feeding was 10%. Also, the angle of repose of this deposit is 45
It was warm at ℃. On the other hand, the overflow water from the spiral classifier containing fine particles is sedimented and concentrated using a 21.4 mφ thickener.
The concentration of 7% and 15% is transferred from the outlet at the bottom using a pump, and the average amount is transferred from 8 points around the circumference of the hopper mentioned above.
Continuous feeding was started at 159/m 2 ·H and 72/m 2 ·H when the height of the coarse part deposit reached 1 m. Slurries with concentrations of 7 and 15% containing fine fractions flow down to the bottom of the coarse fraction deposit, solids remain within the deposit and on the surface, and water is continuously drained from the drain outlet. It was done. The water at this time was clear. When we measured the amount of excess water during continuous operation for 24 hours, we obtained the results shown in the table below.

【表】 この間円錐部の高さを測定したところほぼ一定
であつた。24時間後にスラリー供給のみを停止し
供給スラリー濃度7%のときのホツパー内部の脱
水産物の水分を測定した。停止直後16.2%、1時
間後14.8%、2時間後14.8%であつた。 以上の実施例は原排水中の固形物と、ホツパー
供給物量がバランスするように処理したものであ
り、微細粒子を含むスラリーが脱水されることが
分つた。 比較例 2 実施例1で示したものと同条件の排水、同じ装
置を用い、ホツパーへの供給方法とスラリー濃度
のみを変え、その他は同じ方法で実施した。粗粒
部分と微細部分スラリーが混合供給されるように
スクリユーフイーダ排出口にスラリーをかける供
給方法を採り、このときのスラリー濃度を10%と
した。その結果を表に示す。
[Table] During this period, the height of the conical portion was measured and found to be almost constant. After 24 hours, only the slurry supply was stopped, and the water content of the dehydrated product inside the hopper was measured when the supplied slurry concentration was 7%. The rate was 16.2% immediately after stopping, 14.8% after 1 hour, and 14.8% after 2 hours. In the above examples, the treatment was carried out so that the solids in the raw wastewater and the amount fed to the hopper were balanced, and it was found that the slurry containing fine particles was dehydrated. Comparative Example 2 A test was conducted under the same conditions as those shown in Example 1, using the same waste water and the same equipment, and only changing the method of supplying to the hopper and the slurry concentration, and otherwise carried out in the same manner. A feeding method was adopted in which the slurry was applied to the screw feeder outlet so that the coarse grain part and fine part slurry were mixed and supplied, and the slurry concentration at this time was set to 10%. The results are shown in the table.

【表】 以上の実施により混合供給すると脱水性が悪く
なることが分つた。 比較例 2 実施例1で示したものと同条件の排水、同じ装
置を用い、粗粒部分と微細部分スラリーを交互に
1時間間隔で間欠供給することおよび供給スラリ
ー濃度を変える以外は同じ方法で実施した。粗粒
部分と微細部分の供給量(乾量)は運転時には見
掛上例1の2倍量となるが、休転時を含めると同
一量となるようにした。結果を表に示す。
[Table] Through the above implementation, it was found that the dehydration performance worsened when mixed and fed. Comparative Example 2 The same method was used as in Example 1, except that the same drainage conditions, the same equipment, and the intermittent supply of coarse part and fine part slurry were alternately supplied at 1 hour intervals, and the supplied slurry concentration was changed. carried out. The supply amount (dry amount) of the coarse grain portion and the fine grain portion was apparently twice that of Example 1 during operation, but was made to be the same amount when the time of rest was included. The results are shown in the table.

【表】 以上の実施により脱水性が悪くなることが分つ
た。 本比較例においては微細粒子を含むスラリーの
供給時に2サイクル以降円錐の頂点がスラリー面
下に入つてしまうことが観察され、ホツパー底部
から排出される水の量が3サイクル以降ざん減す
ることから前述の円筒形通水路が形成されず過
抵抗がるい積されたためと考えられた。
[Table] It was found that the dehydration properties deteriorated due to the above implementation. In this comparative example, when feeding slurry containing fine particles, it was observed that the apex of the cone went under the slurry surface after the 2nd cycle, and the amount of water discharged from the bottom of the hopper gradually decreased after the 3rd cycle. This is thought to be due to the fact that the cylindrical water passage mentioned above was not formed and excessive resistance was accumulated.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の装置の実施例を模式的に例示し
たものであつて、図中において 1……槽本体、2……スラリー供給の環状管、
4……水排出口、5……搬出ゲート。
The drawing schematically illustrates an embodiment of the apparatus of the present invention, and in the drawing, 1...tank main body, 2... annular pipe for supplying slurry,
4...Water outlet, 5...Export gate.

Claims (1)

【特許請求の範囲】 1 堆積状態で通水性を保有する粗粒物質を、下
方の周壁部をホツパー形体に形成して成る槽内に
連続的に供給して円錐状の堆積物を形成すると共
に、微細粒子を含むスラリーを上記槽内の上方周
壁部に沿つて連続的に流下させることにより、上
記堆積物を過層として該スラリーを脱水し、そ
の際槽内における上記堆積物の頂面がスラリー面
より常に高くなるごとく保持することを特徴とす
る微細粒子を含むスラリーの脱水処理法。 2 上部を開口した角柱状もしくは円筒状の槽の
下方周壁部をホツパー形体に形成し、上記槽の上
方周縁部にスラリー供給孔を多数個設けた環状管
を配設すると共に該管をスラリーの移送手段に連
設し、槽の底部を排出口を設けたゲートに形成し
て成る微細粒子を含むスラリーの脱水処理装置。
[Claims] 1. Continuously supplying coarse grained material that has water permeability in a deposited state into a tank whose lower peripheral wall is formed into a hopper shape to form a conical deposit. , the slurry containing fine particles is continuously flowed down along the upper circumferential wall of the tank to dehydrate the slurry with the sediment as an overlayer; at this time, the top surface of the sediment in the tank is A dewatering method for slurry containing fine particles, which is characterized by maintaining the slurry so that it is always higher than the slurry surface. 2. The lower circumferential wall of a prismatic or cylindrical tank with an open top is formed into a hopper shape, and an annular pipe with a large number of slurry supply holes is provided at the upper peripheral edge of the tank, and the pipe is connected to the slurry. A dewatering device for slurry containing fine particles, which is connected to a transfer means and has a bottom of a tank formed into a gate with a discharge port.
JP15549678A 1978-12-15 1978-12-15 Dehydration treatment method and apparatus for slurry containing fine particle Granted JPS5581710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15549678A JPS5581710A (en) 1978-12-15 1978-12-15 Dehydration treatment method and apparatus for slurry containing fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15549678A JPS5581710A (en) 1978-12-15 1978-12-15 Dehydration treatment method and apparatus for slurry containing fine particle

Publications (2)

Publication Number Publication Date
JPS5581710A JPS5581710A (en) 1980-06-20
JPS6155405B2 true JPS6155405B2 (en) 1986-11-27

Family

ID=15607313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15549678A Granted JPS5581710A (en) 1978-12-15 1978-12-15 Dehydration treatment method and apparatus for slurry containing fine particle

Country Status (1)

Country Link
JP (1) JPS5581710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222005U (en) * 1988-07-22 1990-02-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222005U (en) * 1988-07-22 1990-02-14

Also Published As

Publication number Publication date
JPS5581710A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
CN102921532B (en) Laminar centrifugal beneficiation method for diatomite ores
CN107352678A (en) Silt particle recycling technique
CN109721191A (en) A kind of sandstone building stones production wastewater treatment system
CN111847730A (en) Stone material waste water cyclic utilization system
CN102205263B (en) Coal slime classified concentration device
CN204747062U (en) Surplus mud processing system of building
JPS6155405B2 (en)
JP2825770B2 (en) Dredging sludge treatment equipment
JP3936652B2 (en) Method and apparatus for separating solid particles from suspension
CN111847731B (en) Method for recycling stone wastewater and by-producing building raw materials
US3064813A (en) Method and means for filtration of slurries
CN106621486A (en) A continuous settling tank
CN202129140U (en) Coal slime water classified concentration device
JPH0713765Y2 (en) Direct-type solid-liquid gravity separator
JP6186063B1 (en) Dehydration apparatus and dehydration method
RU2343982C1 (en) Three-product centrifugal-type separator
KR20210023274A (en) Integrated waste water treatment tank facility for wet type sand product plant
US3702135A (en) Filtration apparatus for use in treating sludge
JP2775213B2 (en) Gravity drainage dewatering tank
CN219923265U (en) Wet magnetic separation system for solid waste garbage sorting
JP2002331395A (en) Screw press type dehydration device
KR101573624B1 (en) Dredged processing device using a magnetic field
CN211726164U (en) Magnetic mud-removing groove with water-facing cap
CN105879445B (en) Two sections of filtering techniques of black water
DE19704206A1 (en) Concrete sand washing assembly which recovers fine sand and regenerates water for reuse for sand washing