JPS6155214B2 - - Google Patents

Info

Publication number
JPS6155214B2
JPS6155214B2 JP12343078A JP12343078A JPS6155214B2 JP S6155214 B2 JPS6155214 B2 JP S6155214B2 JP 12343078 A JP12343078 A JP 12343078A JP 12343078 A JP12343078 A JP 12343078A JP S6155214 B2 JPS6155214 B2 JP S6155214B2
Authority
JP
Japan
Prior art keywords
well
stem
small diameter
diameter neck
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12343078A
Other languages
Japanese (ja)
Other versions
JPS5550565A (en
Inventor
Yoshuki Tokuda
Seiji Saegusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12343078A priority Critical patent/JPS5550565A/en
Publication of JPS5550565A publication Critical patent/JPS5550565A/en
Publication of JPS6155214B2 publication Critical patent/JPS6155214B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は短アークキセノンランプなどのよう
な超高圧放電灯に関する。 たとえば短アークキセノンランプは、低いラン
プ電圧でありながら大きなランプ電流で点灯する
ものであるから、陽極および陰極が大形であり、
これら陽極および陰極を機械的に支持し、かつ外
部と電気的に導通するためのウエルズも大径のも
のを用いている。たとえば2kWの短アークキセ
ノンランプの場合、陽極は約80Aの放電電流に耐
えるため、外径約15mmに形成され、また80Aの直
流電流を流すためのウエルズは外径3.5mm程度の
ウエルズを使用している。 しかして陽極、陰極およびウエルズはそれぞれ
難溶融性金属たとえばタングステンにて形成さ
れ、これらを収容するバルブは石英ガラスが使用
されている。このような石英ガラス製バルブの端
部に上記ウエルズを封止するため石英製ステムを
用いているが、このステムと上記ウエルズとの熱
膨張率が大きいため、石英ガラスとタングステン
との間の熱膨張率を有しかつ順次熱膨張率が段階
的に変化するガラス層、いわゆるグレデツドチユ
ーブを上記ステムとウエルズとの間に介装してい
る。 また、上記ステムと電極との間は、放電空間の
熱影響が少くなるように大きく離間させてあり、
バルブの端部に延長して形成した小径ネツク部内
に上記ウエルズを間隙を存して挿通させてある。
したがつて陽極、陰極はウエルズを介していわゆ
る一点支持、つまり片持支持されることになる。 このような構成では、衝撃や振動が加えられた
場合、質量の大きな電極のためウエルズに大きな
応力が発生し、この応力はステムとの封止部に集
中するのでステム、特にグレイデツドチユーブに
クラツクを発生させる原因となつていた。 これを防止するために、ウエルズにおける各極
とステムとの間を、バルブの小径ネツク部に保持
させ、いわゆる2点支持構造を採用することが考
えられているが、石英バルブで直接ウエルズを支
持すると前述のごとき両者の熱膨張差のために、
石英バルブにクラツクを生じさせる欠点があり、
また間隙を形成させるとウエルズの保持目的が達
成できない欠点がある。 そこで従来においてはウエルズにモリブデン箔
を巻装したり、コイルを巻回して石英バルブとの
間の緩衝作用をさせるなどの試みもなされている
が、熱膨張の差を充分に吸収できないばかりでな
く、緩衝機能が不充分であり、ステムに多大な応
力を生じさせてステムの破損、特にグレイデツド
チユーブの破損を招く場合がある。 この発明はこのような事情にもとづきなされた
もので、その目的とするところは、ウエルズの途
中部分を周方向に複数の凹凸を形成した波板筒体
を介してバルブの小径ネツク部に保持させるよう
にし、緩衝能力に優れてステムに無理な応力を発
生させずグレイデツドチユーブの破損を防止し、
各電極の支持強度も向上するなどの利点を奏する
超高圧放電灯を提供しようとするものである。 以下この発明の一実施例を図面にもとづき説明
する。 図中1は石英ガラスからなるバルブであり、中
央部に略球状部分を有しているとともに両端には
小径ネツク部16,16を有している。上記小径
ネツク部16,16の開口端部には硬質ガラスな
どからなるステム2,2が封止されており、この
ステム2,2にはタングステン線からなるウエル
ズ3,3が気密に貫通封止されている。なお、ウ
エルズ3,3とステム2,2との封着部には熱膨
張率が順次異なるように複数層のガラス層からな
るグレイデツドチユーブ4,4が介装されてい
る。上記一方のウエルズ3の内端には、タングス
テンからなる陽極(アノード)5が接続されてお
り、また他方のウエルズ3の内端には酸化トリウ
ム添加タングステンからなり、上記陽極5に対向
する陰極6が接続されている。そして上記ウエル
ズ3の途中には後述する波板円筒7,7が巻装さ
れ、この波板円筒7,7は、バルブ1の小径ネツ
ク部16,16に溶着した石英ガラス製の支持チ
ユーブ8,8に保持されている。なお9,9は口
金、10は接着剤、11,11は給電端子をそれ
ぞれ示す。 しかして上記ウエルズ3の途中を保持する波板
円筒7は第2図に断面して示されるように構成さ
れている。すなわち、この波板円筒7はモリブデ
ンなどの難溶融性金属からなり、ウエルズ3の周
方向に沿つて凹凸を交互に設けてこのウエルズ3
に巻回されている。そしてこの波板円筒7の各谷
部12の底面は、ウエルズ3の外面に当接し、ま
た、各山部13の頂面は上記支持チユーブ8の内
面に形成した凹部17内に嵌入されている。した
がつて、各谷部12と支持チユーブ8との隙間1
4および各山部13とウエルズ3との隙間15
は、ウエルズ3の軸方向に沿つて導通しており、
バルブ1において上記支持チユーブ8によつて区
割される放電空間側およびステム2側をこれら隙
間14,15によつて互に連通させている。また
このような谷部12の底点P1と山部13の頂点P2
間の高さは第3図でlとして示され、l≦1.5mm
に形成され、かつ頂点P2を中心とした底点P1,P1
間の開き具合は角度θで示され、θ≦130゜と
し、しかも凹凸形状は、P1,P2間を結ぶ直線より
も外方に向つて彎曲されているものである。そし
てまた、本実施例では、波板筒体7の山部13の
外面は、支持チユーブ8に形成した凹部17の内
面に密着して所定の接触面積を保つている。 このような構成に係る実施例のランプは、各ウ
エルズ3の途中を波板筒体7を介して小径ネツク
部16に保持させたため、陽極5および陰極6の
荷重がウエルズ3に加わつても、このウエルズ3
の途中で上記波板筒体7を介してバルブ1に支承
させるから、ステム2に無理な力が作用しなくな
り、よつてステム2、特にグレイデツドチユーブ
4にクラツクを生じさせるなどの不具合はない。
殊にバルブ1に振動や衝撃が加えられたときに
は、質量が大きな両極5および6の振動がウエル
ズ3を介してステム2に伝えられようとするが、
ウエルズ3の途中に設けた波板筒体7は凹凸状を
なしているのでこの凹凸形状のたわみによつて振
動を吸収し、いわゆる緩衝作用をなす。すなわ
ち、ウエルズ3が径方向に変位しようとすると波
板筒体7を径方向に押すことになり、波板筒体7
の谷部12が第4図に示されるように変形する。
波板筒体7の山部13は、支持チユーブ8に設け
た凹部17に嵌まり込んでいるからこの部分で周
方向の移動を生じなく、よつてウエルズ3にて押
される谷部12は、その谷の深さlを小さくする
ようにたわみ変形する。このとき、凹凸形状は
P1,P2を結ぶ線より外方に向かって彎曲した形状
をなしているので、上記谷部12の深さlを減小
しようとする変形は曲率を大きくするようなたわ
みとなり、したがつてへたり(永久変形)を生じ
ない。このため、確実な弾性変形を生じ、しかも
ある程度の剛性を保つから、緩衝作用が良好に行
えるとともに、ウエルズ3が支持チユーブ8に接
触するような不具合も生じない。 また、この場合、波形筒体7の山部13は支持
チユーブ8の凹部17内面に面接触しているた
め、上記谷部12が押されたときの荷重を広い面
積で分散して支持チユーブ8に伝えることにな
り、山部13のへたりがないとともにガラス製支
持チユーブ8の破損も少くなる。このようなこと
からウエルズ3の振動を防止してステム2および
バルブ1の破損を防止する。 またランプ点灯中においては陽極5と陰極6と
の間の放電によりバルブ1内の温度が上昇するこ
とになり、殊にウエルズ3は各極5および6から
の熱伝導のために昇温されることになるが、ウエ
ルズ3の途中に介装した波板筒体7は周方向に沿
つて凹と凸とを交互に形成してあるため、ウエル
ズ3の軸方向に沿う膨張は、ウエルズ3が波板筒
体7の谷部12に接したまま軸方向に摺動できる
ため各極5,6の先端方向に向つて熱膨張する。
またウエルズ3の半径方向の熱膨張は、波板筒体
7を凹凸形状に形成したため、前記緩衝作用の場
合と同様に、この波板筒体の谷部12が弾性変形
することによつて吸収する。したがつて、ウエル
ズ3の熱膨張はステム2に無理な応力を生じさせ
ることはない。なお、ウエルズ3とステム2との
間の熱膨張の差は、グレイデツドチユーブ4で吸
収するので、これらの間にも応力の発生は少いも
のである。 また、バルブ1内における放電空間側とステム
2側とは、波板筒体7の隙間14,15を介して
連通しているので、排気の際にバルブ1の1箇所
から排気でき、そのときこれら隙間14,15が
大きいから排気が容易にかつ迅速に行える。 なお、本発明を実験した結果について説明す
る。 バルブ1における中央部の最大部分の内径を55
mm、ステム2部の管径20mmとした2kWの短アー
クキセノンランプにおいて、陽極5は外径15mm、
長さ30mmのタングステンで構成し、陰極6は外径
7mm、長さ15mmの円柱円錐状をなした酸化トリウ
ム添加タングステンで構成する。またウエルズ3
は外径3.5mmのタングステン線を用いる。 このようなランプにおいて、(a)ウエルズ3の途
中を微小な隙間を存して支持チユーブ8内に挿通
させたもの、(b)ウエルズ3の途中に平板状の40μ
の板厚をなすモリブデン薄板を巻回して支持チユ
ーブ8に保持させたもの、(c)ウエルズ3の途中に
凹凸状をなした40μの板厚のモリブデン薄板より
なる波板筒体を巻装した前記実施例のごとき構成
のもの、の3種類を準備し、5Gの荷重振動およ
び定格の120%の過負荷で2時間点灯試験して歩
留りを調べると下表の結果を得た。
This invention relates to ultra-high pressure discharge lamps such as short arc xenon lamps. For example, short arc xenon lamps operate with a large lamp current at a low lamp voltage, so the anode and cathode are large.
A large-diameter well is also used to mechanically support the anode and cathode and to electrically conduct them with the outside. For example, in the case of a 2 kW short arc xenon lamp, the anode is formed with an outer diameter of about 15 mm in order to withstand a discharge current of about 80 A, and a well with an outer diameter of about 3.5 mm is used to flow a direct current of 80 A. ing. The anode, cathode and well are each made of a refractory metal such as tungsten, and the bulb housing them is made of quartz glass. A quartz stem is used at the end of such a quartz glass bulb to seal the well, but since the coefficient of thermal expansion between this stem and the well is large, the heat between the quartz glass and tungsten is A so-called graded tube, which is a glass layer having a coefficient of expansion and whose coefficient of thermal expansion changes in stages, is interposed between the stem and the well. Further, the stem and the electrode are spaced apart from each other to reduce the thermal influence of the discharge space.
The well is inserted through a small diameter neck extending from the end of the bulb with a gap therebetween.
Therefore, the anode and cathode are supported at one point, that is, cantilevered, through the wells. In such a configuration, when a shock or vibration is applied, a large stress is generated in the well due to the large mass of the electrode, and this stress is concentrated at the sealing part with the stem, causing damage to the stem, especially the graded tube. This was a cause of cracks. In order to prevent this, it has been considered to adopt a so-called two-point support structure in which the small-diameter neck of the bulb is held between each pole and the stem of the well, but the well is directly supported by the quartz bulb. Then, due to the difference in thermal expansion between the two as mentioned above,
Quartz valves have the disadvantage of causing cracks,
Furthermore, if a gap is formed, the purpose of holding the wells cannot be achieved. Conventionally, attempts have been made to wrap molybdenum foil around the well or wind a coil to provide a buffering effect between the well and the quartz bulb, but these efforts not only fail to absorb the difference in thermal expansion sufficiently; , the buffering function is insufficient, and a large amount of stress is generated on the stem, which may lead to damage to the stem, especially to the graded tube. This invention was made based on the above circumstances, and its purpose is to hold the midway portion of the well in the small diameter neck portion of the valve via a corrugated plate cylinder having a plurality of irregularities formed in the circumferential direction. It has excellent buffering capacity and prevents damage to the graded tube without creating excessive stress on the stem.
The present invention aims to provide an ultra-high pressure discharge lamp that has advantages such as improved support strength of each electrode. An embodiment of the present invention will be described below based on the drawings. In the figure, reference numeral 1 denotes a bulb made of quartz glass, which has a substantially spherical portion in the center and small-diameter neck portions 16, 16 at both ends. Stems 2, 2 made of hard glass or the like are sealed at the open end portions of the small diameter neck portions 16, 16, and wells 3, 3 made of tungsten wire are hermetically sealed through the stems 2, 2. has been done. Incidentally, graded tubes 4, 4 made of a plurality of glass layers are interposed in the sealed portions between the wells 3, 3 and the stems 2, 2 so as to have successively different coefficients of thermal expansion. An anode 5 made of tungsten is connected to the inner end of one of the wells 3, and a cathode 5 made of tungsten doped with thorium oxide is connected to the inner end of the other well 3, facing the anode 5. is connected. A corrugated cylinder 7, 7, which will be described later, is wound in the middle of the well 3, and the corrugated cylinder 7, 7 is connected to a support tube 8 made of quartz glass, which is welded to the small diameter neck portion 16, 16 of the bulb 1. It is held at 8. Note that 9 and 9 indicate a base, 10 an adhesive, and 11 and 11 a power supply terminal, respectively. The corrugated plate cylinder 7 that holds the middle of the well 3 is constructed as shown in cross section in FIG. That is, this corrugated plate cylinder 7 is made of a hard-to-melt metal such as molybdenum, and is provided with concavities and convexities alternately along the circumferential direction of the wells 3.
is wrapped around. The bottom surface of each trough 12 of this corrugated plate cylinder 7 comes into contact with the outer surface of the well 3, and the top surface of each peak 13 is fitted into a recess 17 formed on the inner surface of the support tube 8. . Therefore, the gap 1 between each valley 12 and the support tube 8
4 and the gap 15 between each peak 13 and the well 3
is conductive along the axial direction of well 3,
In the bulb 1, the discharge space side divided by the support tube 8 and the stem 2 side are communicated with each other by these gaps 14 and 15. Also, the bottom point P 1 of the valley 12 and the apex P 2 of the peak 13
The height between is shown as l in Figure 3, and l≦1.5mm.
, and the bottom points P 1 , P 1 centered on the vertex P 2
The degree of opening between them is indicated by the angle θ, which is θ≦130°, and the uneven shape is curved outward from the straight line connecting P 1 and P 2 . Furthermore, in this embodiment, the outer surface of the peak portion 13 of the corrugated sheet cylinder 7 is in close contact with the inner surface of the recess 17 formed in the support tube 8 to maintain a predetermined contact area. In the lamp of this embodiment having such a configuration, the middle of each well 3 is held by the small diameter neck portion 16 via the corrugated plate cylinder 7, so that even if the loads of the anode 5 and the cathode 6 are applied to the well 3, this wells 3
Since it is supported by the valve 1 through the corrugated plate cylinder 7 in the middle of the process, no unreasonable force is applied to the stem 2, thereby preventing problems such as cracks in the stem 2, especially in the graded tube 4. do not have.
In particular, when vibrations or shocks are applied to the valve 1, the vibrations of the poles 5 and 6, which have large masses, tend to be transmitted to the stem 2 via the wells 3.
Since the corrugated plate cylinder 7 provided in the middle of the wells 3 has an uneven shape, vibrations are absorbed by the flexure of the uneven shape, thereby providing a so-called buffering effect. That is, when the wells 3 try to displace in the radial direction, it pushes the corrugated sheet cylinder 7 in the radial direction, and the corrugated sheet cylinder 7
The valley portion 12 of is deformed as shown in FIG.
Since the peaks 13 of the corrugated sheet cylinder 7 fit into the recesses 17 provided in the support tube 8, no movement occurs in the circumferential direction at this portion, and therefore the valleys 12 pushed by the wells 3 are It is deflected and deformed so as to reduce the depth l of the valley. At this time, the uneven shape is
Since the shape is curved outward from the line connecting P 1 and P 2 , deformation that attempts to reduce the depth l of the valley portion 12 results in a deflection that increases the curvature. Does not cause wear (permanent deformation). Therefore, since reliable elastic deformation occurs and a certain degree of rigidity is maintained, a good buffering effect can be achieved and problems such as the wells 3 coming into contact with the support tube 8 do not occur. In addition, in this case, since the peaks 13 of the corrugated cylinder 7 are in surface contact with the inner surface of the recess 17 of the support tube 8, the load when the valleys 12 are pushed is dispersed over a wide area, and the support tube 8 As a result, the peak portion 13 does not sag, and the glass support tube 8 is less likely to be damaged. For this reason, vibration of the well 3 is prevented and damage to the stem 2 and the valve 1 is prevented. Furthermore, while the lamp is on, the temperature inside the bulb 1 rises due to the discharge between the anode 5 and the cathode 6, and the temperature of the wells 3 in particular rises due to heat conduction from the respective electrodes 5 and 6. However, since the corrugated plate cylinder 7 inserted in the middle of the well 3 has concave and convex portions alternately formed along the circumferential direction, the expansion along the axial direction of the well 3 is caused by the expansion of the well 3. Since it can slide in the axial direction while in contact with the trough portion 12 of the corrugated plate cylinder 7, it thermally expands toward the tip of each pole 5, 6.
In addition, since the corrugated sheet cylinder 7 is formed into an uneven shape, thermal expansion in the radial direction of the wells 3 is absorbed by the elastic deformation of the troughs 12 of the corrugated sheet cylinder, similar to the case of the buffering effect described above. do. Therefore, thermal expansion of the wells 3 does not cause undue stress on the stem 2. Incidentally, since the difference in thermal expansion between the wells 3 and the stem 2 is absorbed by the graded tube 4, little stress is generated between them. Furthermore, since the discharge space side and the stem 2 side in the bulb 1 are in communication through the gaps 14 and 15 of the corrugated sheet cylinder body 7, the exhaust can be exhausted from one location in the bulb 1 at the time of exhaustion. Since these gaps 14 and 15 are large, exhaust can be easily and quickly performed. Note that the results of experiments on the present invention will be explained. The inner diameter of the largest part in the center of valve 1 is 55
In a 2 kW short arc xenon lamp with a tube diameter of 20 mm in the stem 2, the anode 5 has an outer diameter of 15 mm,
It is made of tungsten with a length of 30 mm, and the cathode 6 is made of tungsten doped with thorium oxide and has a cylindrical cone shape with an outer diameter of 7 mm and a length of 15 mm. Wells 3 again
uses a tungsten wire with an outer diameter of 3.5 mm. In such lamps, (a) one in which the support tube 8 is inserted into the support tube 8 with a small gap in the middle of the well 3, and (b) one in which a flat plate of 40 μm is inserted in the middle of the well 3.
(c) A corrugated sheet cylinder made of a thin molybdenum plate with a thickness of 40 μm is wound around the wells 3 and has an uneven shape in the middle. Three types of lamps having the same configuration as in the above example were prepared, and a lighting test was conducted for 2 hours under a load vibration of 5G and an overload of 120% of the rating, and the yield was examined, and the results shown in the table below were obtained.

【表】 この表からも判るように、ウエルズ3の途中を
波板筒体を介して支持チユーブに支持させたもの
(c)は、他の支持構造のもの(a)および(b)に較べてス
テムの破損防止効果が大きいことが確認された。 なお、波板筒体7の谷部12の底点P1と、山部
13の頂点P2との間の高さ寸法lは1.5mmを越す
と緩衝効果が減少し、これは剛性が低下して弾性
力も小さくなるためと考えられる。 また山部13の頂点P2を中心として隣接する谷
部12の底点P1,P1間の開き角度θが130゜を越
えるとやはり弾性力が低下し、前記実験(b)と同様
に単に平担な金属薄板をウエルズに巻回したと同
等の効果しかないものである。 さらに、凹凸形状はP1とP2を結ぶ直線よりも外
方に向つて彎曲していることが大切であり、これ
が逆の場合には弾性変形がきわめて少なくて緩衝
能力が低下し、場合によつてはへたりを生じるも
のである。 なお上記実施例においては短アークキセノンラ
ンプについて説明したが、この発明はバルブ内に
おけるウエルズの長さが長いものには適用できる
ので短アークキセノンランプには制約されるもの
ではない。 また波板筒体はモリブデンに限らず、タングス
テンやタンタルなどであつても実施可能である。 以上詳述したようにこの発明は、バルブ端部の
ステムを貫通して導入されたウエルズの途中に、
周方向に複数の凹凸を設けた波板筒体を巻回し、
この波板筒体の山部を小径ネツク部の内面に形成
した凹部に嵌め込んで該波板筒体を介して上記ウ
エルズを小径ネツク部に支持させるようにしたか
ら、ウエルズはステムと波板筒体との2箇所で支
持されることになり、よつて振動や衝撃が作用し
ても波板筒体で弾性的に支承するのでステムに無
理な応力を発生させることがなく、ステムの破損
を防止できる。この場合、波板筒体の山部は小径
ネツク部の内面に形成した凹部に嵌め込んである
から、波板筒体の谷部がたわみ変形してウエルズ
を支え、へたりを生じることなく振動や吸収を良
好に吸収し、また上記波板筒体の単一の山部は小
径ネツク部の内面の単一の凹部に対し、複数箇所
で接触もしくは大きな面積で接触するので荷重の
分散がなされ、よつてへたりや小径ネツク部の破
損が防止される。しかも上記振動や衝撃ばかりで
なく、ウエルズが半径方向に熱膨張してもこの膨
張分は上記波板筒体の弾性変形によつて吸収で
き、かつ軸方向に熱膨張しても電気導入体が波板
円筒に摺接して延びるため、ステム部分に応力を
生じさせることもなく、ステム特にグレデツドチ
ユーブの破壊を防止できるなどの利点がある。
[Table] As can be seen from this table, the middle part of Wells 3 is supported by a support tube via a corrugated sheet cylinder.
It was confirmed that (c) has a greater effect on preventing stem damage than the other support structures (a) and (b). Note that if the height dimension l between the bottom point P 1 of the trough 12 of the corrugated plate cylinder 7 and the apex P 2 of the crest 13 exceeds 1.5 mm, the buffering effect will decrease, which is due to a decrease in rigidity. This is thought to be because the elastic force also becomes smaller. Furthermore, when the opening angle θ between the bottom points P 1 and P 1 of the adjacent valley portions 12 with the apex P 2 of the peak portion 13 as the center exceeds 130°, the elastic force decreases, as in the experiment (b) above. It has the same effect as simply winding a flat thin metal plate around a well. Furthermore, it is important that the uneven shape curves outward from the straight line connecting P 1 and P 2 ; if this is the other way around, there will be very little elastic deformation and the buffering capacity will decrease. This will eventually lead to fatigue. In the above embodiments, a short arc xenon lamp has been described, but the invention is not limited to short arc xenon lamps, as it can be applied to lamps with long wells in the bulb. Furthermore, the corrugated plate cylinder is not limited to molybdenum, but may also be made of tungsten, tantalum, or the like. As described in detail above, the present invention provides for a well that is introduced through the stem at the end of the valve.
A corrugated sheet cylinder with multiple irregularities in the circumferential direction is wound,
The ridges of the corrugated sheet cylinder are fitted into the recesses formed on the inner surface of the small-diameter neck portion, and the well is supported by the small-diameter neck portion through the corrugated sheet cylinder. Since it is supported at two places with the cylindrical body, even if vibrations or shocks are applied, the corrugated plate cylindrical body will elastically support it, so there will be no excessive stress on the stem, and no damage to the stem will occur. can be prevented. In this case, the peaks of the corrugated sheet cylinder are fitted into the recesses formed on the inner surface of the small-diameter neck, so the troughs of the corrugated sheet cylinder flex and deform to support the wells and prevent vibrations without sagging. In addition, the single peak of the corrugated sheet cylinder contacts the single recess on the inner surface of the small diameter neck at multiple locations or over a large area, so the load is distributed. This prevents bending and damage to the small diameter neck. Moreover, in addition to the above-mentioned vibrations and shocks, even if the wells expands thermally in the radial direction, this expansion can be absorbed by the elastic deformation of the corrugated plate cylinder, and even if the wells expand thermally in the axial direction, the electricity introduction body Since it extends in sliding contact with the corrugated plate cylinder, it does not generate stress on the stem portion and has the advantage of preventing the stem, particularly the graded tube, from breaking.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示し、第1図は短
アークキセノンランプの側面図、第2図は第1図
中−線に沿う拡大断面図、第3図は位置、寸
法関係を説明する図、第4図は変形状態を示す図
である。 1……バルブ、2……ステム、3……ウエル
ズ、5……陽極、6……陰極、7……波板筒体、
8……支持チユーブ、12……谷部、13……山
部、14,15……間隙、16……小径ネツク
部、17……凹部。
The drawings show an embodiment of the present invention, in which Fig. 1 is a side view of a short arc xenon lamp, Fig. 2 is an enlarged sectional view taken along the line - in Fig. 1, and Fig. 3 explains the position and dimensional relationship. FIG. 4 is a diagram showing a deformed state. 1... Valve, 2... Stem, 3... Wells, 5... Anode, 6... Cathode, 7... Corrugated plate cylinder,
8... Support tube, 12... Valley portion, 13... Peak portion, 14, 15... Gap, 16... Small diameter neck portion, 17... Recessed portion.

Claims (1)

【特許請求の範囲】[Claims] 1 両端に小径ネツク部を有する石英ガラス製の
バルブ内に、ウエルズに接合された陽極と陰極を
互に対向して配置し、上記ウエルズは上記小径ネ
ツク部内を間隙を存して挿通され、これらウエル
ズの端部を熱膨張率の順次異なる複数のガラス層
を介してステムに封着し、該ステムを上記小径ネ
ツク部の端部に封着した超高圧放電灯において、
上記ウエルズに、周方向に複数の凹凸を形成した
難溶融性金属薄板よりなる波板筒体を巻き付け、
この波板筒体の凸部を上記小径ネツク部の内面に
形成した凹部に嵌め込み、該波板筒体を介して上
記ウエルズを小径ネツク部に保持させたことを特
徴とする超高圧放電灯。
1. An anode and a cathode bonded to a well are arranged facing each other in a quartz glass bulb having a small diameter neck portion at both ends, and the well is inserted through the small diameter neck portion with a gap between them. An ultra-high pressure discharge lamp in which the end of the well is sealed to the stem via a plurality of glass layers having sequentially different coefficients of thermal expansion, and the stem is sealed to the end of the small diameter neck part,
Wrapping a corrugated plate cylinder made of a refractory metal thin plate with a plurality of irregularities formed in the circumferential direction around the well,
An ultra-high pressure discharge lamp characterized in that the convex portion of the corrugated sheet cylinder is fitted into a recess formed on the inner surface of the small diameter neck portion, and the wells are held in the small diameter neck portion via the corrugated sheet cylinder.
JP12343078A 1978-10-06 1978-10-06 Super high voltage discharging lamp Granted JPS5550565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12343078A JPS5550565A (en) 1978-10-06 1978-10-06 Super high voltage discharging lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12343078A JPS5550565A (en) 1978-10-06 1978-10-06 Super high voltage discharging lamp

Publications (2)

Publication Number Publication Date
JPS5550565A JPS5550565A (en) 1980-04-12
JPS6155214B2 true JPS6155214B2 (en) 1986-11-26

Family

ID=14860363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12343078A Granted JPS5550565A (en) 1978-10-06 1978-10-06 Super high voltage discharging lamp

Country Status (1)

Country Link
JP (1) JPS5550565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235040A (en) * 1988-03-14 1989-09-20 Asahi Optical Co Ltd Objective lens supporting device for optical information recording/reproducing device
JPH02273332A (en) * 1989-04-14 1990-11-07 Nec Corp Objective lens driver
JPH04229421A (en) * 1990-12-27 1992-08-18 Nec Corp Objective lens driving device for optical disk device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602083U (en) * 1983-06-17 1985-01-09 鐘淵化学工業株式会社 insulation duct
JPS60196414A (en) * 1984-03-16 1985-10-04 Hitachi Ltd Rectifier for gas turbine duct
JPS61104885U (en) * 1984-12-14 1986-07-03
JP3298453B2 (en) * 1997-03-18 2002-07-02 ウシオ電機株式会社 Short arc discharge lamp

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4223016Y1 (en) * 1964-10-26 1967-12-27
JPS4325734Y1 (en) * 1966-07-30 1968-10-28

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235040A (en) * 1988-03-14 1989-09-20 Asahi Optical Co Ltd Objective lens supporting device for optical information recording/reproducing device
JPH02273332A (en) * 1989-04-14 1990-11-07 Nec Corp Objective lens driver
JPH04229421A (en) * 1990-12-27 1992-08-18 Nec Corp Objective lens driving device for optical disk device

Also Published As

Publication number Publication date
JPS5550565A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
US3882346A (en) Ceramic arc tube mounting structure
EP0926703A2 (en) Metal vapor discharge lamp
JPS6155214B2 (en)
EP0560935B1 (en) Arc discharge lamp with spring-mounted arc tube, shroud and frame
JP3075086B2 (en) Discharge lamp
JP3275912B2 (en) Metal vapor discharge lamp
US5075588A (en) Arc discharge lamp with spring-mounted arc tube and shroud
US3351803A (en) Seal and lead-in conductor assembly for gaseous discharge lamps
US4825126A (en) Ceramic envelope device for high-pressure discharge lamp
US2348216A (en) Electron discharge device mount spacer
US1969496A (en) Electric discharge device
JP2004502278A (en) Halogen incandescent lamps with filament legs clamped in a press seal
US6583562B1 (en) Metal halide lamp with gas-tight seal
US6614188B1 (en) High-pressure discharge lamp
US3629915A (en) Arc lamp construction
JP3127459B2 (en) High pressure discharge lamp
JP4556347B2 (en) Sealing structure of high-intensity discharge lamp
JP6929763B2 (en) Discharge lamp and manufacturing method of discharge lamp
US6459192B1 (en) Electric lamp
JP4273589B2 (en) light bulb
JPS598355Y2 (en) semiconductor equipment
JPS6318124Y2 (en)
JPH039246Y2 (en)
JPH0447425B2 (en)
JPS61240561A (en) Small-type high pressure metallic vapor discharge lamp