JPS6155013B2 - - Google Patents

Info

Publication number
JPS6155013B2
JPS6155013B2 JP56108976A JP10897681A JPS6155013B2 JP S6155013 B2 JPS6155013 B2 JP S6155013B2 JP 56108976 A JP56108976 A JP 56108976A JP 10897681 A JP10897681 A JP 10897681A JP S6155013 B2 JPS6155013 B2 JP S6155013B2
Authority
JP
Japan
Prior art keywords
fluid
secondary winding
power source
pipe
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56108976A
Other languages
Japanese (ja)
Other versions
JPS5811344A (en
Inventor
Masao Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Engineering Co Ltd
Original Assignee
Chisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Engineering Co Ltd filed Critical Chisso Engineering Co Ltd
Priority to JP10897681A priority Critical patent/JPS5811344A/en
Publication of JPS5811344A publication Critical patent/JPS5811344A/en
Publication of JPS6155013B2 publication Critical patent/JPS6155013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は管路に直接通電発熱させ、管内を通る
流体を加熱、保温する場合、この管路に通常必要
な、管路出入口における絶縁フランジを省略でき
る流体加熱管路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluid heating conduit that can omit insulating flanges at the inlet and outlet of the conduit, which are normally required for the conduit, when the conduit is directly energized to generate heat and the fluid passing through the conduit is heated and kept warm. Regarding.

管路に直接通電して管内を通る流体を加熱保温
する場合の1例として燃料重油、或いは一部の原
油のように常温では高粘度が固体に近いものをパ
イプライン輸送する場合、これらを加熱昇温して
低粘度の液体とするのが通常であるが、なおパイ
プラインそのものを直接通電発熱保温させること
がある。
An example of heating and keeping fluid flowing through the pipe by directly applying electricity to the pipe is when transporting materials with high viscosity that are close to solid at room temperature, such as heavy fuel oil or some crude oil, by heating them. Although it is normal to raise the temperature to make a low-viscosity liquid, the pipeline itself may be directly energized to generate heat and keep it warm.

このような場合、パイプラインの両端のうち少
なくとも一端は絶縁フランジが必要となるし、パ
イプラインそのものは勿論大地から絶縁しなけれ
ばならない。
In such a case, at least one of both ends of the pipeline needs an insulating flange, and the pipeline itself must of course be insulated from the ground.

さらに例えば電気加熱反応器に関する特開昭56
−38132号公報に見られるように、反応器内の装
備された負荷管路となる内外発熱管(該公報第1
図の1,2)は、直接反応物質と接触し、かつ反
応物質が電導性でも、発熱管よりの漏電を防止す
るような構造とすることが可能であるが、反応器
内へ反応流体を導く導管の絶縁フランジ(第1図
の13)を省略することは不可能である。
Furthermore, for example, Japanese Patent Application Laid-open No. 56 (1983) regarding electrically heated reactors
As seen in Publication No. 38132, internal and external heating tubes (No.
1 and 2) in the figure are in direct contact with the reactant, and even if the reactant is conductive, it is possible to create a structure that prevents electrical leakage from the heat generating tube, but it is possible to create a structure that prevents electrical leakage from the heating tube. It is not possible to omit the insulating flange (13 in FIG. 1) of the leading conduit.

上に述べた絶縁フランジは管内を通る流体が電
気的絶縁性をもつときは問題ないが、電導性であ
るときは有効でなく、たとえ絶縁性があつても、
経年によつて流体に含まれる不純物のためにフラ
ンジの絶縁破壊を招くことが多い。
The above-mentioned insulating flange has no problem when the fluid passing through the pipe is electrically insulating, but it is not effective when it is electrically conductive, and even if it is insulating,
Over time, impurities contained in the fluid often cause dielectric breakdown of the flange.

本発明の目的はこのような場合の絶縁フランジ
を全く不要にするのは勿論、電導性流体、例えば
温度100℃以上の液体ナトリウムのような金属性
液体良導体の管路でも、直接通電によつて加熱保
温できるようにすることである。
The purpose of the present invention is not only to completely eliminate the need for insulating flanges in such cases, but also to eliminate the need for electrically conductive fluids, such as metallic liquids such as liquid sodium with a temperature of 100°C or higher, by direct energization. The purpose is to be able to heat and keep warm.

本発明は、前記絶縁フランジの両側の電圧差、
すなわち絶縁フランジにかかる電圧に相当する電
圧を、加熱、保温しようとする流体を通す管路を
変圧器の2次巻線とし、この2次巻線の両端の電
圧とほぼ等しくすることを要旨とするものであ
り、付随的に、所望により前記2次巻線の他に前
記変圧器に3次巻線を設け、この3次巻線と前記
2次巻線を並列に結線し、管路である2次管線に
流れる電流の一部又は全部を、前記3次巻線に分
担させる、かまたは前記変圧器に加えられる交流
電源と同じ周波数の別電源を、前記2次巻線と並
列に接続するか、もしくはさらに前記3次巻線を
も並列に接続して、3次巻線の分担電流の全部又
は一部を分担させる、等によつて前記絶縁フラン
ジを省略できるようにしたものである。
The present invention provides a voltage difference on both sides of the insulating flange,
In other words, the gist is to make the voltage equivalent to the voltage applied to the insulating flange approximately equal to the voltage across the secondary winding by using the secondary winding of the transformer as the conduit through which the fluid to be heated and kept warm is passed. Incidentally, if desired, a tertiary winding is provided in the transformer in addition to the secondary winding, the tertiary winding and the secondary winding are connected in parallel, and a conduit is connected. Part or all of the current flowing through a certain secondary pipe line is shared by the tertiary winding, or another power supply having the same frequency as the AC power supply applied to the transformer is connected in parallel with the secondary winding. Alternatively, the insulating flange can be omitted by connecting the tertiary winding in parallel so that all or part of the current shared by the tertiary winding is shared. .

これらを図面によつて説明しよう。第1図は前
記した特開昭56−38132号に示すものと同じで、
第2図は第1図の一部である負荷管路となる内外
管1,2よりなる発熱管の省略図であるが、これ
を常温で高粘度化又は固化する流体のパイプライ
ン即ち負荷管路の省略図と考えてもよい。第3,
4図は第2図に示した負荷管路の変形である。第
1〜4図までの番号は共通である。
Let's explain these using drawings. Figure 1 is the same as that shown in the above-mentioned Japanese Patent Application Laid-Open No. 56-38132,
Figure 2 is an abbreviated diagram of a heat generating tube consisting of inner and outer tubes 1 and 2 which is a part of the load pipeline in Figure 1. You can think of it as an abbreviated diagram of the road. Third,
FIG. 4 shows a modification of the load pipeline shown in FIG. The numbers in FIGS. 1 to 4 are the same.

まず第1図において1は反応原料8の供給流路
となる内管、2は外管、3は前記内外管を電気的
に絶縁するための空隙又は絶縁体で4は交流電源
である。
First, in FIG. 1, reference numeral 1 indicates an inner tube serving as a supply channel for the reaction raw material 8, 2 an outer tube, 3 a gap or an insulator for electrically insulating the inner and outer tubes, and 4 an AC power source.

反応器7内に挿入された内外管1,2は反応器
7の外部で電源4に接続され、反応器内端は5で
気密かつ電気的に接続し、電源4に対して負荷発
熱回路を形成するようになつている。
The inner and outer tubes 1 and 2 inserted into the reactor 7 are connected to a power source 4 outside the reactor 7, and the inner end of the reactor is connected airtightly and electrically at 5, and a load heating circuit is connected to the power source 4. It is beginning to form.

内外管1,2、電源4との相互関係の詳細は前
記特開昭56−38132号に譲るが、その内容は例え
ば外管2の肉厚t2が、交流電流の表皮の深さS2
対しt2>>S2であれば、たとえ反応器7が鋼材で
あり、反応器内容物9が電導性物質であつても漏
電の危検はなく、反応器の内圧が高温高圧でも、
絶縁部分3は高温には耐える必要があつても、高
圧力に耐える必要はないという趣旨であつた。
The details of the mutual relationship between the inner and outer tubes 1 and 2 and the power source 4 are given to the above-mentioned Japanese Patent Application Laid-Open No. 56-38132 . On the other hand, if t 2 >> S 2 , there is no danger of electrical leakage even if the reactor 7 is made of steel and the reactor contents 9 are conductive materials, and even if the internal pressure of the reactor is high temperature and high pressure,
The idea was that the insulating portion 3 needs to withstand high temperatures but does not need to withstand high pressures.

然し、内管1を通つて反応器内に導入される反
応原料流体8は水素ガス等のような電導性を全く
持たないものでも絶縁フランジ13は反応容器全
体が絶縁物で構成されない限り、必要であり、こ
の部分の温度は反応器内7ほどは高くないにして
も、高圧力には耐えなければならない。まして反
応原料8が電導性不純物を少しでも含有すれば絶
縁フランジ13の絶縁性能は経年的に低下する。
However, even if the reaction raw material fluid 8 introduced into the reactor through the inner tube 1 has no electrical conductivity, such as hydrogen gas, the insulating flange 13 is not necessary unless the entire reaction vessel is made of an insulator. Although the temperature in this part is not as high as that in the reactor 7, it must withstand high pressure. Furthermore, if the reaction raw material 8 contains even a small amount of conductive impurity, the insulation performance of the insulating flange 13 will deteriorate over time.

本発明は絶縁フランジ13におけるこのような
問題と、反応原料8に設けられる制限を全く無く
するために行なわれた。
The present invention was undertaken to completely eliminate these problems with the insulating flange 13 and the limitations placed on the reactant raw material 8.

第5図は本発明を第1図の反応装置に適用した
もので番号1〜12は第1ないしは4図と同じ意
味をもつ。
FIG. 5 shows the present invention applied to the reactor shown in FIG. 1, and numbers 1 to 12 have the same meanings as in FIGS. 1 to 4.

第5図において13′は変圧器であつて、本質
的に電源4に接続される1次巻線14と、負荷管
路を形成する内外管1,2を含む2次回路に必要
な電圧を供給する2次巻線とよりなり、第1図絶
縁フランジ13に相当する機能をもたせるための
ものであつて、本発明では絶縁変圧器と呼び、さ
らに2次巻線15は電力用変圧器と相違して、反
応原料8がその内部を通過する管によつて構成さ
れる。21は鉄芯である。
In FIG. 5, reference numeral 13' is a transformer, which essentially supplies the voltage necessary for the primary winding 14 connected to the power source 4 and the secondary circuit including the inner and outer tubes 1 and 2 forming the load pipeline. It consists of a secondary winding to be supplied and has a function equivalent to the insulating flange 13 in FIG. 1, and is called an insulating transformer in the present invention. On the contrary, it is constituted by a tube through which the reaction raw material 8 passes. 21 is an iron core.

そして2次巻線15の2つの端子となる管端の
一方は内管1と、他方は反応原料流体8の入口1
8と気密かつ電気的に接続され、さらに入口18
は外管2と、導体19で接続して2次回路を形成
し、発熱は主として内外管1,2を通る電流6に
よつて行われるが、2次巻線15が反応原料8の
もつ温度、圧力、腐蝕性から、銅管のような良電
導性をもたない材質よりなるときは、この部分で
も発熱があると考えねばならない。
One of the tube ends serving as two terminals of the secondary winding 15 is connected to the inner tube 1, and the other is the inlet 1 of the reaction raw material fluid 8.
8 and is further airtightly and electrically connected to the inlet 18.
is connected to the outer tube 2 by a conductor 19 to form a secondary circuit, and heat generation is mainly performed by the current 6 passing through the inner and outer tubes 1 and 2. If the tube is made of a material that does not have good electrical conductivity, such as a copper tube, it must be considered that heat will be generated in this part due to pressure and corrosive properties.

以上のように構成することによつて、第1図で
必要であつた絶縁フランジ13は省略できたの
で、被加熱流体である反応原料8が高温高圧かつ
液体金属のような良電導物質でも、さらには腐蝕
性をもつものでも加熱することが可能になつた。
By configuring as described above, the insulating flange 13 that was necessary in FIG. Furthermore, it has become possible to heat even corrosive materials.

しかし内外管1,2それぞれの発熱量W1,W2
および2次巻線15内の発熱Wt等の割合を自由
に決定できるためには、内外管1,2、2次巻線
15の材質、直径、肉厚のような寸法をそれぞれ
異るものとしただけでは十分でないかも知れな
い。
However, the calorific value W 1 and W 2 of the inner and outer tubes 1 and 2, respectively
In order to freely determine the proportion of heat generation W t in the secondary winding 15, it is necessary to make the materials, diameters, wall thicknesses, etc. of the inner and outer tubes 1, 2 and the secondary winding 15 different. That alone may not be enough.

本発明においてはさらにこのようなW1,W2
tの比を任意に選びうるようにする手段の一つ
として、絶縁変圧器13′に3次巻線16を設
け、3次巻線16と2次巻線15を並列に接続
し、負荷回路電流6の一部又は大部分を3次巻線
に分担させることもできる。なお第5図における
3次巻線16は簡略な図示法に従つているのであ
つて、通常は外鉄型又は内鉄型といわれる形態を
とる。
In the present invention, such W 1 , W 2 ,
As one means of making it possible to arbitrarily select the ratio of W t , a tertiary winding 16 is provided in the isolation transformer 13', the tertiary winding 16 and the secondary winding 15 are connected in parallel, and the load A part or most of the circuit current 6 can also be shared by the tertiary winding. Note that the tertiary winding 16 in FIG. 5 is shown in a simplified manner, and usually takes a form called an outer iron type or an inner iron type.

すなわちいまe2,i2,z2,e3,i3,z3をそれぞれ
2次巻線、3次巻線の無負荷電圧、分担電流、内
部インピーダンスとし、それぞれベクトル量とす
ると電流6をiとして i=i2+i3 (1) e2−i2z2=e3−i3z3 (2) が成立するが、仮にe2=e3とすると i/i=z/z (3) であるから、3次巻線の分担する電流i3をi2に対
して大きくするためには、z3をできるだけ小さく
すればよいことになる。
That is, now let e 2 , i 2 , z 2 , e 3 , i 3 , z 3 be the no-load voltage, shared current, and internal impedance of the secondary winding and tertiary winding, respectively, and let them be vector quantities, then the current 6 is For i, i=i 2 + i 3 (1) e 2 −i 2 z 2 = e 3 −i 3 z 3 (2) holds true, but if e 2 = e 3 then i 2 / i 3 = z 3 /z 2 (3) Therefore, in order to make the current i 3 shared by the tertiary winding larger than i 2 , z 3 should be made as small as possible.

そうするといま内外管1,2に流れる電流6を
一定とすればi2は小さくなる。このようにして2
次巻線15中の発熱Wtをいくらでも小さくでき
る。
Then, if the current 6 flowing through the inner and outer tubes 1 and 2 is kept constant, i 2 will become smaller. In this way 2
The heat generation W t in the next winding 15 can be made as small as possible.

絶縁変圧器13′の3次巻線16が、変圧器1
3′の設計上あるいは経済上の理由から、余り大
きくできないか、全く設けられない場合は、電源
4と同一周波数の別電源17を2次巻線15に並
列に結線して前記の目的を果たすことも可能であ
る。第5図では、3次巻線16及び別電源17を
2次巻線15に並列に結線してあるが、前記した
ように、種々な結線が可能である。
The tertiary winding 16 of the isolation transformer 13' is connected to the transformer 1
3' cannot be made too large for design or economical reasons, or if it cannot be provided at all, another power source 17 having the same frequency as the power source 4 is connected in parallel to the secondary winding 15 to achieve the above purpose. It is also possible. In FIG. 5, the tertiary winding 16 and the separate power supply 17 are connected in parallel to the secondary winding 15, but as described above, various connections are possible.

さて以上の説明から第1図における絶縁フラン
ジ13は本発明の1例第5図では負荷管路の何れ
の部分でも全く不要になつたが、第5図に示すよ
うに金属製反応器7、反応原料8の入口18等は
一括して接地20を行うのが安全のための通常手
段であり、2次巻線15の巻線相互は耐熱絶縁物
で絶縁されねばならぬが、耐圧性を要求されない
耐熱絶縁物は現在では有機絶縁物でも400℃に耐
えるものがあり無機質のものでは1000℃も不可能
ではない。
Now, from the above explanation, the insulating flange 13 in FIG. 1 is completely unnecessary in any part of the load pipeline in FIG. 5, which is an example of the present invention, but as shown in FIG. It is a normal safety measure to ground 20 the inlet 18 of the reaction raw material 8, etc., and the windings of the secondary winding 15 must be insulated from each other with a heat-resistant insulator, but Currently, heat-resistant insulators that are not required include organic insulators that can withstand temperatures of 400°C, and inorganic materials that can withstand temperatures of 1000°C.

以上は電気加熱反応装置へ本発明を適用した場
合を説明したが、加熱保温を要する電導性物質の
パイプライン(管路)輸送にも適用できることは
勿論である。
Although the present invention has been described above as applied to an electrically heated reaction device, it is of course also applicable to pipeline transportation of conductive substances that require heating and heat retention.

すなわち第5図において、反応器7はないも
の、従つて9,10,11等は考慮外とし、内外
管1,2は、この場合は例えば液体ナトリウム金
属8を輸送する高温パイプラインであるとする。
That is, in FIG. 5, there is no reactor 7, so 9, 10, 11, etc. are not considered, and the inner and outer tubes 1, 2 are, in this case, high-temperature pipelines transporting, for example, liquid sodium metal 8. do.

内外管1,2は往復回路を形成するが、内管1
は液体ナトリウム金属を外管2とともに加熱保温
し、かつ外管2へ肉厚t2を、それに流れる交流電
流6の表皮の深さS2より大きく、数倍以上として
おけば、この負荷管路(パイプライン)は、外管
2の何れの外表面で接地しても漏電する危険はな
い。すなわち外管2は表皮電流発熱管(電気学会
1978年発行、電気工学ハンドブツク1578頁参照)
と同一で、電流6は外管2の内表皮部分のみを流
れるから、外管2からの漏電或いは、人体動物へ
の危険はなくなると同時に、液体ナトリウム金属
8を入口側18から遠方の出口側5へ(或いはそ
の逆)絶縁フランジは勿論、外管2も大地からの
絶縁の必要をなくして、輸送可能となつた。
The inner and outer tubes 1 and 2 form a reciprocating circuit, but the inner tube 1
If the liquid sodium metal is heated and kept warm together with the outer tube 2, and the wall thickness t2 of the outer tube 2 is set to be larger than the skin depth S2 of the alternating current 6 flowing through it, and more than several times, this load pipe (pipeline), there is no risk of electrical leakage even if it is grounded on any of the outer surfaces of the outer pipe 2. In other words, the outer tube 2 is a skin current heating tube (Institute of Electrical Engineers of Japan).
(Refer to Electrical Engineering Handbook, page 1578, published in 1978)
Since the current 6 flows only through the inner skin of the outer tube 2, there is no risk of electrical leakage from the outer tube 2 or any danger to humans or animals, and at the same time, the liquid sodium metal 8 is transferred from the inlet side 18 to the far outlet side. 5 (or vice versa).Not only the insulating flange but also the outer tube 2 need not be insulated from the ground, and can now be transported.

もつともこのような場合には外管2の外部には
保温層を設けるのが通常である。
Of course, in such a case, a heat insulating layer is usually provided on the outside of the outer tube 2.

また外管2の代りに電線を電流6の帰線として
用いるときは、この電線は管路の両端18,5を
接続しなければならず、絶縁体3は省略すること
はできないことは勿論である。
Furthermore, when an electric wire is used as a return line for the current 6 instead of the outer tube 2, this electric wire must connect both ends 18 and 5 of the conduit, and it goes without saying that the insulator 3 cannot be omitted. be.

さらに又被加熱流体8が液体ナトリウム金属、
融解鉛のような液体金属であるときは2次巻線1
5、内管1を良導体金属でなく、セラミツクのよ
うな耐熱絶縁管で構成させることも可能で、この
場合は前記液体金属自体が電流6の導体となり、
絶縁体3は省略も可能であるが、被加熱流体8の
入口側18及び出口側5において導体2及び19
に相当するもので導電性被加熱流体8を電気的に
接続することが必要であり、3次巻線16、さら
には外部電源17の並列電源をもつときはこれら
の諸端子をしかるべき点で被加熱流体8と電気的
に接続することが必要なことは勿論である。
Furthermore, the fluid to be heated 8 is liquid sodium metal,
When the liquid metal is molten lead, the secondary winding 1
5. The inner tube 1 can be made of a heat-resistant insulating tube such as ceramic instead of a good conductor metal, and in this case, the liquid metal itself becomes a conductor of the current 6,
Although the insulator 3 can be omitted, the conductors 2 and 19 are provided on the inlet side 18 and outlet side 5 of the heated fluid 8.
It is necessary to electrically connect the conductive fluid to be heated 8 with a parallel power source corresponding to the tertiary winding 16 and the external power source 17, and connect these terminals at appropriate points. Of course, it is necessary to electrically connect to the fluid 8 to be heated.

念のために付言すると被加熱流体8が金属液体
であり、かつ2次巻線15、内管1等が金属であ
るときは、電流6は被加熱流体8と、管壁に分流
して流れ発熱する可能性を設計上忘れてはならな
い。
Just to be sure, when the fluid to be heated 8 is a metallic liquid and the secondary winding 15, inner tube 1, etc. are made of metal, the current 6 flows in a divided manner through the fluid to be heated 8 and the tube wall. Don't forget about the possibility of heat generation in the design.

以上説明したように本発明によつて絶縁性流体
は勿論、電導性液体金属の場合でも流路の何れの
部分にも絶縁フランジを必要とせず加熱保温或い
は管路輸送することが可能になり、本発明は産業
上極めて有用である。
As explained above, according to the present invention, not only insulating fluids but also conductive liquid metals can be heated or kept warm or transported through pipes without the need for insulating flanges in any part of the flow path. The present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電気加熱反応装置の縦断面略
図、第2〜4図は本発明の負荷管路の各種形状を
示す平面略図、第5図は本発明を第1図の電気加
熱反応装置に適用する場合の断面略図である。こ
れらの図において数字は次のものを表わす。 1:内管発熱管、2:外管発熱管、3:電気絶
縁体又は絶縁のための空隙、4:交流電源、5:
内外管の気密な電気的接続、6:内外管を流れる
電流、7:反応器、8:被加熱反応原料物質(流
体)、9:反応器内容物、10,11,12:反
応器への原料物質の供給口又は反応生成物の抜出
し口、13:絶縁フランジ、13′:絶縁変圧
器、14:13′の1次巻線、15:管によつて
構成される13′の2次巻線、16:13′の3次
巻線、17:電源4と同一周波数の別電源、1
8:反応物質8の入(又は出)口、19:外管2
と18の接続、20:反応器7の外部及び18等
の接地、21:鉄芯。
FIG. 1 is a schematic vertical cross-sectional view of a conventional electrically heated reactor, FIGS. 2 to 4 are schematic plan views showing various shapes of the load pipeline of the present invention, and FIG. 5 is a schematic diagram of the electrically heated reactor of the present invention shown in FIG. It is a cross-sectional schematic diagram when applied to. In these figures, the numbers represent: 1: Inner heat generating tube, 2: Outer heat generating tube, 3: Electrical insulator or gap for insulation, 4: AC power supply, 5:
Airtight electrical connection between the inner and outer tubes, 6: Current flowing through the inner and outer tubes, 7: Reactor, 8: Reaction raw material to be heated (fluid), 9: Reactor contents, 10, 11, 12: Connection to the reactor 13: Insulating flange, 13': Insulating transformer, 14: Primary winding at 13', 15: Secondary winding at 13' consisting of a pipe. line, 16: tertiary winding at 13', 17: separate power supply with the same frequency as power supply 4, 1
8: Inlet (or outlet) of reactant 8, 19: Outer tube 2
and 18 connection, 20: Grounding of the outside of reactor 7 and 18 etc., 21: Iron core.

Claims (1)

【特許請求の範囲】 1 外部交流電源に接続される1次巻線と、負荷
側において加熱される流体を通す管路で構成され
た2次巻線とよりなる絶縁変圧器、前記2次巻線
の2つの管端のうち、前記流体の出口(又は入
口)側管端に接続された該流体を通す負荷管路及
びこの負荷管路の他方端と前記2次巻線となる管
路の流体入口(又は出口)側管端とを電気的に接
続する手段から構成された、2次巻線、負荷管路
等の流体の流路の何れの部分にも絶縁フランジを
必要としない省絶縁フランジ流体加熱管装置。 2 前記外部電源に接続される1次巻線と、負荷
側において加熱される流体を通す管路で構成され
た2次巻線とよりなる前記絶縁変圧器において、
さらに3次巻線が前記2次巻線と並列に接続され
ていることを特徴とする第1項記載の流体加熱管
装置。 3 前記外部電源に接続される1次巻線と、負荷
側において加熱される流体を通す管路で構成され
た2次巻線とよりなる前記絶縁変圧器において、
前記外部電源と同一周波数の別電源がこの2次巻
線と並列に接続されていることを特徴とする第1
項記載の流体加熱管装置。 4 前記外部電源に接続される1次巻線と、負荷
側において加熱される流体を通す管路で構成され
た2次巻線とよりなる前記絶縁変圧器において、
さらに3次巻線と前記外部電源と同一周波数の別
電源とがいずれも前記2次巻線と並列に接続され
たことを特徴とする第1項記載の流体加熱管装
置。 5 負荷管路が内外2重管よりなり、内管には被
加熱流体を通し、外管はこれに流れる交流電流の
表皮の深さより、大きい肉厚をもち、内外管は、
電源とは反対側において電気的に接続され、他の
部分においては相互に絶縁されていることを特徴
とする第1ないし4項記載の流体加熱管装置。 6 耐熱絶縁物で作られた管内を流れる液体金属
が前記絶縁変圧器の2次巻線となるよう構成する
とともに負荷管路内を流れる前記液体金属自体も
加熱電流路となるようにしたことを特徴とする第
1ないし5項記載の流体加熱管装置。
[Scope of Claims] 1. An isolation transformer comprising a primary winding connected to an external AC power source and a secondary winding configured with a conduit through which a fluid heated on the load side passes; Of the two pipe ends of the wire, a load pipe line through which the fluid passes, which is connected to the outlet (or inlet) side pipe end of the fluid, and the other end of this load pipe line and a pipe line that becomes the secondary winding. Insulation saving that does not require an insulating flange in any part of the fluid flow path, such as the secondary winding or load pipe, which consists of a means for electrically connecting the fluid inlet (or outlet) side pipe end. Flange fluid heating tube device. 2. The isolation transformer includes a primary winding connected to the external power source and a secondary winding configured with a conduit through which fluid is heated on the load side,
2. The fluid heating tube device according to claim 1, further comprising a tertiary winding connected in parallel with the secondary winding. 3. The isolation transformer includes a primary winding connected to the external power source and a secondary winding configured with a conduit through which fluid is heated on the load side,
A first device characterized in that a separate power source having the same frequency as the external power source is connected in parallel with the secondary winding.
Fluid heating tube device as described in . 4. The isolation transformer includes a primary winding connected to the external power source and a secondary winding configured with a conduit through which fluid is heated on the load side,
2. The fluid heating tube device according to claim 1, further comprising a tertiary winding and a separate power source having the same frequency as the external power source, both of which are connected in parallel with the secondary winding. 5 The load pipeline consists of an inner and outer double pipe, the inner pipe passes the fluid to be heated, the outer pipe has a wall thickness greater than the skin depth of the alternating current flowing through it, and the inner and outer pipes are
5. A fluid heating tube device according to any one of claims 1 to 4, characterized in that the tubes are electrically connected on the side opposite to the power source and are mutually insulated in other parts. 6. The liquid metal flowing in the pipe made of heat-resistant insulator is configured to serve as the secondary winding of the insulating transformer, and the liquid metal itself flowing in the load pipe line also serves as a heating current path. 6. A fluid heating tube device according to any one of claims 1 to 5, characterized in that:
JP10897681A 1981-07-13 1981-07-13 Device of fluid heating pipe without insulated flange Granted JPS5811344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10897681A JPS5811344A (en) 1981-07-13 1981-07-13 Device of fluid heating pipe without insulated flange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10897681A JPS5811344A (en) 1981-07-13 1981-07-13 Device of fluid heating pipe without insulated flange

Publications (2)

Publication Number Publication Date
JPS5811344A JPS5811344A (en) 1983-01-22
JPS6155013B2 true JPS6155013B2 (en) 1986-11-26

Family

ID=14498415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10897681A Granted JPS5811344A (en) 1981-07-13 1981-07-13 Device of fluid heating pipe without insulated flange

Country Status (1)

Country Link
JP (1) JPS5811344A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105389A (en) * 1985-10-31 1987-05-15 東洋電機工業株式会社 Continuous loquid heater
JP6224971B2 (en) * 2013-05-30 2017-11-01 トクデン株式会社 Fluid heating device

Also Published As

Publication number Publication date
JPS5811344A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
US3617699A (en) A system for electrically heating a fluid being transported in a pipe
US5544275A (en) Electrically heated fluid carrying conduit having integrated heating elements and electrical conductors
EP0252719B1 (en) Electric fluid heater
AU2015281348B2 (en) Device and method for heating a fluid in a pipeline by means of three-phase current
US3706872A (en) System for electrically heating fluid-conveying pipe lines and other structures
US2761949A (en) Prefabricated pipe system
US2695368A (en) Dynamoelectric machine stator winding with fluid-cooling passages in conductor bars
US2740095A (en) Electrical conductor
US1394044A (en) Water-cooled transformer
TW402825B (en) Electrical leads for a fluid heater
US4142093A (en) Method and means for segmentally reducing heat output in a heat-tracing pipe
US4110599A (en) Method and means for decreasing the heat output of a segment of a heat generating pipe
JPS6155013B2 (en)
US3743854A (en) System and apparatus for dual transmission of petrochemical fluids and unidirectional electric current
US2141912A (en) Power transmission system
US3974398A (en) Wire and steel tube as AC cable
JPS63286654A (en) Transformer type fluid heater equipped with fluid cooling primary winding
US2141894A (en) Cable for transmitting electric power
US3147711A (en) Laminations and laminated structures suitable for use in electrical apparatus
US3447119A (en) Electrical terminal clamps
KR920000885Y1 (en) Electric fluid heater
JPH0119747B2 (en)
JPS6249520B2 (en)
KR101198970B1 (en) Field compensated high current bushing
RU2821060C1 (en) Heater