JPS6154860B2 - - Google Patents

Info

Publication number
JPS6154860B2
JPS6154860B2 JP53134039A JP13403978A JPS6154860B2 JP S6154860 B2 JPS6154860 B2 JP S6154860B2 JP 53134039 A JP53134039 A JP 53134039A JP 13403978 A JP13403978 A JP 13403978A JP S6154860 B2 JPS6154860 B2 JP S6154860B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
corrosion resistance
corrosion
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53134039A
Other languages
Japanese (ja)
Other versions
JPS5562144A (en
Inventor
Kyotaka Yamauchi
Etsuo Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13403978A priority Critical patent/JPS5562144A/en
Publication of JPS5562144A publication Critical patent/JPS5562144A/en
Publication of JPS6154860B2 publication Critical patent/JPS6154860B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はFe―Si―A系高透磁率合金の耐食
性の改良に係るものである。 従来、アナログ用およびデジタル用磁気記録お
よび再生用磁気ヘツドとしては、主としてパーマ
ロイおよびソフトフエライトが用いられている
が、前者は耐摩耗性に問題があり、また一部実用
化されている耐摩耗性パーマロイにおいては磁束
密度に難点がある。一方、ソフトフエライトは磁
束密度が4000〜5000Gと著るしく低いことに起因
して、高密度記録用高保磁力テープには不向きで
あるばかりでなく、コア先端部の磁気的飽和に起
因する記録波形の歪を生ずる等、数々の欠点を有
している。 これらに比して9.6%Si―5.4%A―残部Feか
らなるFe―Si―A系合金は磁性に関しては全
く問題がなく、かつ加工中および使用中における
破損に起因する故障率もフエライトに比べれば良
好であり、さらに耐摩耗性の点でフエライトには
幾分劣るもののパーマロイ系統のものに比して著
るしく優れている為、徐々に実用化されつつあ
る。特に最近は高密度、高信頼度の記録再生用と
して保磁力の大きな磁気テープが実用化されつつ
ある為、耐摩耗性および磁束密度の点で、特にこ
れらFe―Si―A系合金に対する期待が高まつ
ている。 しかしながら、Fe―Si―A系合金は、その
組成の大部分がFeから成る合金であり、その耐
食性に問題がある。すなわち、現在において磁気
ヘツドは制御された環境下で用いられる場合はわ
ずかであり、例えばカセツトテープレコーダー、
自動改札機、現金自動払出機の如く自然環境下に
おいて使用される場合が多く、はなはだしい場合
には塩分あるいは腐食性ガスの混つた雰囲気下で
使用される場合も有る。 また、これら磁気ヘツドとして使用される場合
以外にも素材から磁気ヘツドを製造する加工工程
中においても水溶液に接する機会が多く、上記理
由とともにFe―Si―A系合金の錆の発生に基
づく磁気ヘツド製造工程中の事故および磁気ヘツ
ド使用時の事故が事実上大きな問題となつてい
る。 磁気ヘツドにおける錆はコアとケースあるいは
ギヤツプスペーサ等の異種金属との間、あるいは
樹脂との境界付近に多く発生し、特にギヤツプ部
周辺に発生した場合には、記録あるいは再生情報
の信頼性を著しく阻害し、装置の誤動作あるいは
音波の低下、また出力の著るしい低下等となつて
あらわれる。 本発明はFe―Si―A系合金のもつ優れた磁
気特性を損なうことなく上記問題点を改良し得る
ものである。すなわち重量比でSi3〜16%、A
2.5〜17%、Hf0.001〜3.5%、残部主としてFeか
らなる合金、あるいはこれら組成の合金に副成分
としてCo,V,Cr,Mo,W,Ni,Cu,Geのそ
れぞれ0.01〜5%、Mg,Mn,Zr,Nb,Ca,Ta
のそれぞれ0.01〜3.5%、Re,P,Au,Ag、希土
類元素および白金属元素のそれぞれ0.001〜2.5%
のうちより選ばれた一種あるいは二種以上を総量
で0.001〜5%含むことを特徴とする耐食性高透
磁率合金である。これら副成分の添加により本系
合金の耐食性は相乗効果により一層向上する。 ここでAの量は5〜6%が最適であるがSiそ
の他の合金元素との関係から2.5〜17%の範囲に
おいても十分良好な磁気特性を有しているので下
限を2.5%、上限を17%とした。 Siの量は8〜11%が最適であるが3〜16%の範
囲においても十分良好な磁気特性を有するので、
下限を3%、上限を16%とした。 また、Hfは耐食性を向上させるために添加す
るものであるが、0.001%未満の添加ではその効
果が得られず、一方、3.5%を越えて添加した場
合には磁気特性が劣化するので、その添加量は、
0.001〜3.5%とする。 また、上記副成分の添加量は、Co,V,Cr,
Mo,W,Ni,Cu,Ge,Mg,Mn,Zr,Nb,Ca
およびTaは0.01%未満、Re,P,Au,Ag、希土
類元素および白金属元素は0.001%ではその効果
が明らかでなく、Co,V,Cr,Mo,W,Ni,
Cu,Ge,Mg,Mn,Zr,Nb,CaおよびTaは0.01
%、Re,P,Au,Ag、希土類元素および白金属
元素は0.01%をそれぞれ下限とした。 Co,V,Cr,Mo,W,Ni,Cu,Geは5%、
Mg,Mn,Zr,Nb,Ca,Taは3.5%、Re,P,
Au,Ag、希土類元素および白金属元素は2.5%そ
れぞれを越えると磁気特性が著るしく劣化し実用
的でなくなる為、Hfは3.5%、Co,V,Cr,
Mo,W,Ni,Cu,Geは5%、Mg,Mn,Zr,
Nb,Hf,Taは3.5%、Re,P,Au,Ag、希土類
元素および白金属元素は2.5%をそれぞれ上限と
した。またこれら添加物が0.001%未満ではその
効果が明らかではなく5%を越えると磁気特性が
大巾に劣化する為、いずれも実用的でなくなる。 以下本発明を実施例に基づいて説明する。 実施例 第1表に試験材の組成および磁気特性を第2表
にその耐食試験の結果を示す。試験材は所定の熱
処理をほどこした後、以下の耐食試験を行なつ
た。第2表において、素材塩水噴霧は、素材単独
での耐食性を調べる為に5mm×20mm×40mmの寸法
の試験片を用い、塩水噴霧試験を行なつた結果を
示すものであり、試料表面の錆面積を、表面積に
対する百分率で表わしたものである。 また、素材高温高湿は、同一形状の試料を用い
高温高湿試験を行なつた結果を示すものであり、
錆が発生するまでの時間で示す。 さらに異種金属および樹脂と本発明合金との耐
食性を調べる為に第1図に示す模擬ヘツドを作製
し塩水噴霧試験により発生した錆の数を模擬ヘツ
ド塩水噴霧として示す。各々の耐食性試験の条件
を第3表および第4表に示す。
The present invention relates to improving the corrosion resistance of Fe--Si--A high permeability alloys. Conventionally, permalloy and soft ferrite have been mainly used as magnetic heads for analog and digital magnetic recording and playback, but the former has problems with wear resistance, and some of the wear resistance that has been put into practical use Permalloy has a problem with magnetic flux density. On the other hand, soft ferrite has a significantly low magnetic flux density of 4,000 to 5,000 G, which makes it unsuitable for high-coercivity tapes for high-density recording. It has a number of drawbacks, such as causing distortion. In comparison, the Fe-Si-A alloy consisting of 9.6% Si, 5.4% A, and the balance Fe has no problems with magnetism and has a lower failure rate due to breakage during processing and use than ferrite. Furthermore, although it is somewhat inferior to ferrite in terms of abrasion resistance, it is significantly superior to permalloy-based materials, so it is gradually being put into practical use. In particular, recently, magnetic tapes with large coercive force have been put into practical use for high-density, highly reliable recording and reproducing, so there are high expectations for these Fe-Si-A alloys in terms of wear resistance and magnetic flux density. It's increasing. However, the Fe--Si--A alloy is an alloy whose composition consists mostly of Fe, and there is a problem in its corrosion resistance. That is, at present, magnetic heads are rarely used in controlled environments, such as in cassette tape recorders,
They are often used in natural environments, such as automatic ticket gates and automatic cash dispensers, and in extreme cases, they may be used in atmospheres containing salt or corrosive gases. In addition to the use of these magnetic heads, there are many opportunities for contact with aqueous solutions during the processing process to manufacture magnetic heads from raw materials. Accidents during the manufacturing process and when using magnetic heads have become a real problem. Rust in magnetic heads often occurs between the core and the case or dissimilar metals such as gear spacers, or near the boundary with resin, and especially when it occurs around the gap, it can significantly impede the reliability of recorded or reproduced information. However, this may manifest as equipment malfunction, a drop in sound waves, or a significant drop in output. The present invention can improve the above problems without impairing the excellent magnetic properties of Fe--Si--A alloys. That is, Si3 to 16% by weight, A
2.5 to 17%, Hf 0.001 to 3.5%, the balance mainly consisting of Fe, or alloys with these compositions with 0.01 to 5% each of Co, V, Cr, Mo, W, Ni, Cu, and Ge as subcomponents. Mg, Mn, Zr, Nb, Ca, Ta
0.01 to 3.5% each, 0.001 to 2.5% each of Re, P, Au, Ag, rare earth elements and platinum elements
It is a corrosion-resistant high magnetic permeability alloy characterized by containing one or more selected from among the above in a total amount of 0.001 to 5%. The addition of these subcomponents further improves the corrosion resistance of the present alloy due to a synergistic effect. Here, the optimum amount of A is 5 to 6%, but due to the relationship with Si and other alloy elements, it has sufficiently good magnetic properties even in the range of 2.5 to 17%, so the lower limit is set at 2.5%, and the upper limit is set at 2.5%. It was set at 17%. The optimum amount of Si is 8 to 11%, but even a range of 3 to 16% has sufficiently good magnetic properties.
The lower limit was set at 3% and the upper limit at 16%. Additionally, Hf is added to improve corrosion resistance, but if it is added less than 0.001%, this effect will not be obtained, while if it is added more than 3.5%, the magnetic properties will deteriorate. The amount added is
Set at 0.001-3.5%. In addition, the amounts of the above-mentioned subcomponents added are Co, V, Cr,
Mo, W, Ni, Cu, Ge, Mg, Mn, Zr, Nb, Ca
And Ta is less than 0.01%, Re, P, Au, Ag, rare earth elements and platinum elements have no obvious effect at 0.001%, Co, V, Cr, Mo, W, Ni,
Cu, Ge, Mg, Mn, Zr, Nb, Ca and Ta are 0.01
%, Re, P, Au, Ag, rare earth elements, and platinum metal elements each had a lower limit of 0.01%. Co, V, Cr, Mo, W, Ni, Cu, Ge is 5%,
Mg, Mn, Zr, Nb, Ca, Ta are 3.5%, Re, P,
If Au, Ag, rare earth elements, and platinum metal elements exceed 2.5% each, the magnetic properties will deteriorate significantly and become impractical, so Hf is 3.5%, Co, V, Cr,
Mo, W, Ni, Cu, Ge is 5%, Mg, Mn, Zr,
The upper limit was 3.5% for Nb, Hf, and Ta, and 2.5% for Re, P, Au, Ag, rare earth elements, and platinum metal elements. Furthermore, if the content of these additives is less than 0.001%, the effect will not be obvious, and if it exceeds 5%, the magnetic properties will be significantly degraded, making both of them impractical. The present invention will be explained below based on examples. Examples Table 1 shows the composition and magnetic properties of the test materials, and Table 2 shows the results of the corrosion resistance test. After the test materials were subjected to a prescribed heat treatment, they were subjected to the following corrosion resistance test. In Table 2, the material salt spray test shows the results of a salt water spray test using a test piece with dimensions of 5 mm x 20 mm x 40 mm to examine the corrosion resistance of the material alone. The area is expressed as a percentage of the surface area. In addition, material high temperature and high humidity indicates the results of high temperature and high humidity tests using samples of the same shape.
It is indicated by the time until rust occurs. Furthermore, in order to investigate the corrosion resistance of the alloy of the present invention with different metals and resins, a simulated head shown in FIG. 1 was prepared and the number of rust generated by a salt spray test is shown as the simulated head salt spray. Tables 3 and 4 show the conditions for each corrosion resistance test.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は模擬ヘツド表面を示す。図中1は本発
明合金、2はパーマロイ、3は樹脂、4はTi、
5はBe―Cu合金である。
FIG. 1 shows a simulated head surface. In the figure, 1 is the alloy of the present invention, 2 is permalloy, 3 is resin, 4 is Ti,
5 is a Be-Cu alloy.

Claims (1)

【特許請求の範囲】 1 重量比で、Si3〜16%、Al2.5〜17%、
Hf0.001〜3.5%、および残部主としてFeからなる
ことを特徴とする耐食性高透磁率合金。 2 重量比で、Si3〜16%、Al2.5〜17%、
Hf0.001〜3.5%、および残部Feを主成分とし、副
成分として、Co,V,Cr,Mo,W,Ni,Cu,
Geのそれぞれ0.01〜5%、Mg,Mn,Zr,Ca,
Nb,Taのそれぞれ0.01〜3.5%、Re,P,Au,
Ag、希土類元素、および白金属元素のそれぞれ
0.001〜2.5%、のうちより選ばれた一種または二
種以上(ただし、CrとNiの複合添加を除く)を
総量で0.001〜5%含むことを特徴とする耐食性
高透磁率合金。
[Claims] 1. By weight, Si3~16%, Al2.5~17%,
A corrosion-resistant high permeability alloy characterized by consisting of 0.001 to 3.5% Hf and the balance mainly Fe. 2 Weight ratio: Si3~16%, Al2.5~17%,
The main components are Hf0.001~3.5% and the balance Fe, and the subcomponents include Co, V, Cr, Mo, W, Ni, Cu,
0.01~5% of Ge, Mg, Mn, Zr, Ca,
0.01 to 3.5% each of Nb and Ta, Re, P, Au,
Each of Ag, rare earth elements, and white metal elements
A corrosion-resistant high permeability alloy characterized by containing a total amount of 0.001 to 5% of one or more selected from among 0.001 to 2.5% (excluding combined addition of Cr and Ni).
JP13403978A 1978-10-31 1978-10-31 Corrosion resistant, high permeability alloy Granted JPS5562144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13403978A JPS5562144A (en) 1978-10-31 1978-10-31 Corrosion resistant, high permeability alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13403978A JPS5562144A (en) 1978-10-31 1978-10-31 Corrosion resistant, high permeability alloy

Publications (2)

Publication Number Publication Date
JPS5562144A JPS5562144A (en) 1980-05-10
JPS6154860B2 true JPS6154860B2 (en) 1986-11-25

Family

ID=15118933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13403978A Granted JPS5562144A (en) 1978-10-31 1978-10-31 Corrosion resistant, high permeability alloy

Country Status (1)

Country Link
JP (1) JPS5562144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074174A (en) * 2019-12-11 2020-04-28 上大新材料(泰州)研究院有限公司 Composite precipitated phase reinforced 2500 MPa-grade ultrahigh-strength steel and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589140B2 (en) * 1979-12-25 1983-02-19 日本鉱業株式会社 Corrosion resistant high permeability alloy
JPS59151339A (en) * 1983-02-16 1984-08-29 Fuji Photo Film Co Ltd Ferrite magnetic body for magnetic recording and its manufacture
JPS6089552A (en) * 1983-10-21 1985-05-20 Tohoku Metal Ind Ltd Wear-resistant alloy having high magnetic permeability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119298A (en) * 1974-03-08 1975-09-18
JPS50120439A (en) * 1974-03-08 1975-09-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119298A (en) * 1974-03-08 1975-09-18
JPS50120439A (en) * 1974-03-08 1975-09-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074174A (en) * 2019-12-11 2020-04-28 上大新材料(泰州)研究院有限公司 Composite precipitated phase reinforced 2500 MPa-grade ultrahigh-strength steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5562144A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
US5961746A (en) Corrosion resistant amorphous magnetic alloys
JPS6154860B2 (en)
JPS6149381B2 (en)
US4298381A (en) Abrasion-resistive high permeability magnetic alloy
KR970011188B1 (en) Magnetic thin film & its using magnetic head
KR900002758B1 (en) Amorphous alloy for magnetic heads
JPS5811503B2 (en) Wear resistant high permeability alloy
JPS5813617B2 (en) Wear resistant high permeability alloy
JP2907899B2 (en) Method for producing molded article of high magnetic permeability alloy and magnetic head constituted by members of molded article obtained by this method
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPS5831388B2 (en) High permeability alloy
JPS58118015A (en) Magnetic head
JPS58123854A (en) Corrosion resistant alloy with high magnetic flux density
JPH0487005A (en) Magnetic head
JPS5927373B2 (en) Fe↓-Co magnetic material
JP2549145B2 (en) Magnetic head
JPS58188318A (en) Magnetic head
JPS6151023B2 (en)
JPS6151024B2 (en)
JPS6034627B2 (en) Corrosion resistant high permeability alloy
JPS58125221A (en) Magnetic head
JPS5927371B2 (en) Fe↓-Co magnetic material
JPH07130538A (en) Magnetic alloy film and magnetic head
JPS58141354A (en) Wear resistant magnetic alloy with high magnetic permeability
JPS58125222A (en) Magnetic head