JPS6154688A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS6154688A
JPS6154688A JP59175857A JP17585784A JPS6154688A JP S6154688 A JPS6154688 A JP S6154688A JP 59175857 A JP59175857 A JP 59175857A JP 17585784 A JP17585784 A JP 17585784A JP S6154688 A JPS6154688 A JP S6154688A
Authority
JP
Japan
Prior art keywords
laser
region
semiconductor
writing
semiconductor lasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59175857A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59175857A priority Critical patent/JPS6154688A/en
Publication of JPS6154688A publication Critical patent/JPS6154688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To unify both semiconductor lasers for erasing and writing by forming the two semiconductor lasers, which are isolated so as to be able to be driven independently to each other and have different astigmatism, onto the same substrate. CONSTITUTION:Two semiconductor lasers LD1, LD2 are isolated by a groove 9. Since a striped active region 7A is exposed on a cleavage plane in the laser LD1, optically confined laser beams not only in the vertical direction but also in the lateral direction are radiated, thus forming a circular spot when the laser beams are diaphragmed by a lens. Since a striped acrive region 7B is broken on its midway and there is an inactive region 8 between the region 7B and a light rediating surface in the laser LD2, beams emitted from the region 7B form a pattern extended in the lateral direction, thus shaping an elliptic spot when beams are diaphragmed by the lens. Accordingly, the circular spot is obtained because of small astigmatism in the laser LD1, the elliptic spot is acquried because of large astigmatism in the laser LD2, and the former can be used for writing and the latter for erasing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光情報処理、例えば光ディスクに書き込み及
び消去を行う場合に用いて好適な半導体発光装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light emitting device suitable for use in optical information processing, such as writing and erasing on an optical disk.

〔従来の技術〕[Conventional technology]

近年、大容量記憶が可能である装置として光デイスク装
置が有望視され、特に、書き換え可能であるものが磁気
ディスク装置に代替し得るものとして期待されている。
In recent years, optical disk devices have been viewed as promising as devices capable of large-capacity storage, and in particular, rewritable devices are expected to replace magnetic disk devices.

通常、この種の光デイスク装置では、データ書き込み用
、データ読み取り用、データ消去用の三つの半導体レー
ザを必要とする。
Normally, this type of optical disk device requires three semiconductor lasers for data writing, data reading, and data erasing.

これ等三種類の半導体レーザは光ディスクに対し光学的
に適切な位置に配設することが必要であることは勿論で
あり、特に、書き込み動作は、既に書き込まれているデ
ィスクを消去しながら直ぐその後から行うことになるの
で、消去用半導体レーザと書き込み用半導体レーザとは
近接して配置されなければならない。
It goes without saying that these three types of semiconductor lasers need to be placed at optically appropriate positions with respect to the optical disc. Therefore, the erasing semiconductor laser and the writing semiconductor laser must be placed close to each other.

また、これとは別に、書き込み用半導体レーザでは光デ
イスク面上でレーザ光を0.5 〔μm〕φ前後まで絞
り込むことが必要であり、且つ、消去用半導体レーザで
は短軸が0.5 〔μm〕程度及び長袖が2〜3〔μm
〕程度の楕円にする必要がある。
Separately, in the writing semiconductor laser, it is necessary to focus the laser beam on the optical disk surface to around 0.5 [μm]φ, and in the erasing semiconductor laser, the minor axis is 0.5 [μm]φ. [μm] and long sleeves are 2 to 3 [μm]
] It is necessary to make it an ellipse.

その理由は、現在、書き換え可能の光ディスクとしては
、結晶と非結晶とが光反射率が相違するのを利用してバ
イナリのデータに対応させることが試みられていて、例
えば、結晶となることが可能な物質にレーザ光を照射し
て溶融させてから急冷すると非結晶になるのでそれを書
き込みとし、同じく溶融させてから徐冷すると結晶にな
るのでそれを消去とするものであり、溶融−急冷を行う
には前記円形のレーザ光が、また、溶融−徐冷を行うに
は前記楕円のレーザ光が必要となる。尚、楕円のレーザ
光は、その長軸が光ディスクのトランク方向になるよう
に照射するものであり、従って、短軸はトラックの幅方
向になるから、クロス・トークを避ける必要上、円形の
レーザ光に於ける直径と略同−にしなければならない。
The reason for this is that currently, attempts are being made to make rewritable optical discs compatible with binary data by taking advantage of the difference in light reflectance between crystalline and non-crystalline discs. When a possible substance is irradiated with a laser beam, melted, and then rapidly cooled, it becomes amorphous, so it is recorded as writing, and similarly, when it is melted and then slowly cooled, it becomes crystalline, so it is erased. The circular laser beam is required to perform this, and the elliptical laser beam is required to perform melting and slow cooling. Note that an elliptical laser beam is irradiated with its long axis in the direction of the trunk of the optical disk, and its short axis is in the track width direction.To avoid crosstalk, a circular laser beam is used. It must be approximately the same as the diameter in the light.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しなから、前記のように三種類の半導体レーザを光デ
ィスクに対し光学的に適切な位置に配設すること及び前
記したようなレーザ光に於ける光束の横断面に関する要
求を満足するには複雑な光学系を必要とする為に極めて
困難であり、特に、消去用半導体レーザと書き込み用半
導体レーザとを近接して配置することに問題がある。
However, as mentioned above, it is complicated to arrange the three types of semiconductor lasers at optically appropriate positions with respect to the optical disk and to satisfy the requirements regarding the cross section of the luminous flux of the laser beam as mentioned above. This is extremely difficult because it requires a sophisticated optical system, and there is a particular problem in arranging the erasing semiconductor laser and the writing semiconductor laser close to each other.

従って、少なくとも、この消去用半導体レーザと書き込
み用半導体レーザとを一体化することができれば、光学
系全体としても極めて簡素なものとなる。
Therefore, if at least the erasing semiconductor laser and the writing semiconductor laser can be integrated, the entire optical system will be extremely simple.

本発明は、書き込み用半導体レーザと消去用半導体レー
ザとを一体化し、且つ、書き込み用半導体レーザに於け
るレーザ光の光束横断面を例えば0.5 〔μm〕程度
の円形に、また、消去用半導体レーザに於けるレーザ光
の光束横断面を例えば短軸0.5〔μm〕及び長軸2〜
3〔μm〕程度の楕円にすることができる半導体レーザ
を提供する。
The present invention integrates a semiconductor laser for writing and a semiconductor laser for erasing, and also makes the cross section of the laser beam of the laser beam in the semiconductor laser for writing into a circular shape of, for example, about 0.5 [μm]. For example, the cross section of the beam of laser light in a semiconductor laser has a short axis of 0.5 [μm] and a long axis of 2 to 2.
To provide a semiconductor laser that can be formed into an ellipse of about 3 [μm].

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体発光装置では、例えば溝に依って分離さ
れ且つ非点収差を異にした二つの半導体レーザを同一半
導体基板上に有し、その一方の半導体レーザでは、活性
領域の光放射面が臂開面に露出され、他方の半導体レー
ザでは、活性領域と臂開面との間に非活性領域が存在し
ている構造になっている。
In the semiconductor light emitting device of the present invention, two semiconductor lasers separated by, for example, a groove and having different astigmatism are provided on the same semiconductor substrate, and in one of the semiconductor lasers, the light emitting surface of the active region is The other semiconductor laser has a structure in which an inactive region exists between the active region and the arm opening.

〔作用〕[Effect]

前記一方の半導体レーザでは横断面が円形のレーザ光を
放射し、他方の半導体レーザでは横断面が楕円のレーザ
光を放射することができる。
One of the semiconductor lasers can emit laser light with a circular cross section, and the other semiconductor laser can emit laser light with an elliptical cross section.

これ等半導体レーザは同一基板上に形成されているから
、光デイスク装置に於ける書き込み用と消去用として用
いる場合、光学乎が極めて簡単化される。
Since these semiconductor lasers are formed on the same substrate, the optical process is extremely simplified when used for writing and erasing in an optical disk device.

〔実施例〕〔Example〕

第1図は本発明一実施例の要部斜面図を表している。 FIG. 1 shows a perspective view of essential parts of an embodiment of the present invention.

図に於いて、1はn型GaAs基板、2はn型AILo
、45Gao、5sAsクラ・ノド層、3はn型Afi
o、+5Gao、1IsAs活性層、4はn型A ’ 
o、 a5G ao、5sAsクラッド層、5はp型A
 E o、 ++sG a o、 5sAsクラッド層
、6はn型GaAsキャップ層、7A及び7Bは亜鉛(
Zn)拡散に依る活性領域、8は非活性領域、9は二つ
の半導体レーザを分離する為の溝、10はn側電極、1
’LA及びIIBはp側電極、LDIはレーザ光の横断
面が円形である半導体レーザ、LD2はレーザ光の横断
面が楕円である半導体レーザをそれぞれ示している。
In the figure, 1 is an n-type GaAs substrate, 2 is an n-type AILo
, 45Gao, 5sAs crano layer, 3 is n-type Afi
o, +5Gao, 1IsAs active layer, 4 is n-type A'
o, a5G ao, 5sAs cladding layer, 5 is p-type A
E o, ++sG ao, 5sAs cladding layer, 6 is n-type GaAs cap layer, 7A and 7B are zinc (
Zn) active region by diffusion, 8 is an inactive region, 9 is a groove for separating two semiconductor lasers, 10 is an n-side electrode, 1
'LA and IIB represent p-side electrodes, LDI represents a semiconductor laser whose laser beam has a circular cross section, and LD2 represents a semiconductor laser whose laser beam has an elliptical cross section.

この実施例に於ける半導体レーザLDIでは、Znが拡
散されて屈折率が高くなっているストライプ状の活性領
域7Aが光放射面、即ち、臂開面に露出されているので
、縦方向は勿論、横方向も光閉じ込めされたレーザ光が
放射されるので、これをレンズで絞ると円形スポットと
なり、また、半導体レーザLD2では、ストライプ状の
活性領域7Bが途中で切れていて光放射面との間に非活
性領域8が存在している為、活性領域7Bからでた光は
横方向の閉じ込めがされず、横方向に広がったパターン
になり、これをレンズで絞ると楕円形スポットとなるも
のである。
In the semiconductor laser LDI in this embodiment, the striped active region 7A in which Zn is diffused and has a high refractive index is exposed to the light emitting surface, that is, the arm opening surface, so that it can be used not only in the vertical direction but also in the vertical direction. Since the laser light is emitted with optical confinement in the lateral direction as well, when it is narrowed down with a lens, it becomes a circular spot.In addition, in the semiconductor laser LD2, the striped active region 7B is cut in the middle and does not meet the light emitting surface. Since there is an inactive region 8 in between, the light emitted from the active region 7B is not confined in the lateral direction, but forms a pattern that spreads in the lateral direction, and when this is narrowed down with a lens, it becomes an elliptical spot. It is.

本実施例を製造する場合について第1図及び第2図を参
照しつつ説明する。尚、第2図は工程要所に於ける半導
体発光装置の要部平面図を表し才いる。
The case of manufacturing this embodiment will be explained with reference to FIGS. 1 and 2. Incidentally, FIG. 2 shows a plan view of the main part of the semiconductor light emitting device at key points in the process.

(a)分子線エピタキシャル成長(mo I’e c 
u ]ar  beam epitaxy:MBE)法
を適用することに依り、基板1の上に厚さ約3〔μm〕
のクラッド層2、厚さ約0.08Cμm〕の活性層3、
厚さ約2cμm〕のタラッド層4、厚さ約0.5〔μm
〕のクラッド層5、厚さ約0.3 〔μm〕のキャップ
層6を成長させる。
(a) Molecular beam epitaxial growth (mo I'e c
By applying the ar beam epitaxy (MBE) method, a layer with a thickness of about 3 [μm] is formed on the substrate 1.
cladding layer 2, active layer 3 with a thickness of about 0.08 Cμm,
Talad layer 4 with a thickness of approximately 2 cm μm, and a thickness of approximately 0.5 μm.
A cladding layer 5 of ] and a cap layer 6 of approximately 0.3 [μm] in thickness are grown.

(bl  化学気相堆積(chemical  vap
(bl chemical vapor deposition
.

ur  deposition:CVD)法を適用する
ことに依り、第2図に見られるように、表面に厚さ約0
.3〔μm〕の窒化シリコン(Si3N4)膜12を成
長させる。
By applying the ur deposition (CVD) method, a thickness of about 0 is deposited on the surface, as seen in Figure 2.
.. A silicon nitride (Si3N4) film 12 with a thickness of 3 [μm] is grown.

fc)  フォト・リソグラフィ技術を適用することに
依り、同じく第2図に見られるように、窒化シリコン膜
12のパターニングを行い、幅1 〔μm〕程度の平行
する2本のストライプ状の窓12A及び12Bを形成す
る。
fc) By applying photolithography technology, as shown in FIG. 2, the silicon nitride film 12 is patterned to form two parallel striped windows 12A and 12A with a width of about 1 μm. 12B is formed.

この2木のストライプ状の窓12Aと12Bの間隔は1
0〜15〔μm〕であり、一方の窓12Aは連続してい
るが、他方の窓12Bは周期的に途切れている。
The interval between these two wooden striped windows 12A and 12B is 1
0 to 15 [μm], and one window 12A is continuous, while the other window 12B is periodically interrupted.

+d+  適宜の不純物導入法を適用することに依り、
前記窓12A及び12Bを有する窒化シリコン膜12を
マスクとしてZnの導入を行いp型活性領域7A及び7
Bを形成する。この場合、窓12B゛は周期的に途切れ
ているので、その部分にはZnが導入されず、そこは非
活性領域8となるものである。
+d+ By applying an appropriate impurity introduction method,
Zn is introduced using the silicon nitride film 12 having the windows 12A and 12B as a mask to form p-type active regions 7A and 7.
Form B. In this case, since the windows 12B' are periodically interrupted, Zn is not introduced into those portions, which become inactive regions 8.

これに依り、活性領域7A及び7Bのストライブ状側面
には電流を閉じ込める為ののpn接合が形成される。
As a result, pn junctions for confining current are formed on the striped side surfaces of active regions 7A and 7B.

tel  マスクとして用いた窒化シリコン膜12を除
去してから、二つの活性領域7A及び7Bの間を化学エ
ツチングして溝9を形成することに依り電気的に独立さ
せる。
After removing the silicon nitride film 12 used as a tel mask, chemical etching is performed to form a groove 9 between the two active regions 7A and 7B, thereby making them electrically independent.

ifl  n側電極10及び前記二つの活性領域7A及
び7Bに別個に電流を流す為のp側電極11A    
   ”及びIIBを形成する。
ifl n-side electrode 10 and p-side electrode 11A for flowing current separately to the two active regions 7A and 7B.
” and form IIB.

(g)  非活性領域8の部分で襞間することに依り、
同一基板上に二つの半導体レーザLDI及びLD2が隣
接して形成されている半導体発光装置が得られる。
(g) By forming folds in the non-active region 8,
A semiconductor light emitting device is obtained in which two semiconductor lasers LDI and LD2 are formed adjacently on the same substrate.

このようにして得られた半導体発光装置に於ける半導体
レーザLDI及びLD2に電流を流した場合、これ等は
別々に発振する。
When a current is passed through the semiconductor lasers LDI and LD2 in the semiconductor light emitting device thus obtained, they oscillate separately.

この際、光放射面、即ち、襞間面まで活性領域7Aが存
在する半導体レーザLDIでは非点収差が小さい為、レ
ンズで絞れば約0.5 〔μm〕φ程度の円形スポット
が得られ、また、襞間面に非活性領域8が存在する半導
体レーザLD2では非点収差が大きい為、0.5 〔μ
m〕×2〜3〔μm〕程度の楕円形スポットを得ること
ができる。
At this time, since the semiconductor laser LDI in which the active region 7A exists up to the light emitting surface, that is, the interfold surface, has small astigmatism, a circular spot of about 0.5 [μm]φ can be obtained by focusing with a lens. In addition, since the semiconductor laser LD2 in which the inactive region 8 exists in the interfold plane has a large astigmatism, 0.5 [μ
An elliptical spot of approximately 2 to 3 μm can be obtained.

従って、円形スポットが得られる半導体レーザLDIは
書き込み用として、また、楕円形スポットを得ることが
できる半導体レーザLD2は消去用として用いることが
でき、その場合、集束用のレンズは1個で済むことにな
る。
Therefore, the semiconductor laser LDI that can produce a circular spot can be used for writing, and the semiconductor laser LD2 that can produce an elliptical spot can be used for erasing. In that case, only one focusing lens is required. become.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体発光装置では、同一半導体基板上に隣接
して形成されてそれぞれ独立に駆動可能であるように分
離され、且つ、非点収差を異にする二つの半導体レーザ
を有してなる構成を採っている。
The semiconductor light emitting device of the present invention has a configuration including two semiconductor lasers that are formed adjacent to each other on the same semiconductor substrate, are separated so that they can be driven independently, and have different astigmatisms. are taken.

従って、光ディスクに書き込みを行う際、非点収差が大
きい、即ち、楕円形スポットのレーザ光を放射する半導
体レーザを駆動して消去を行いつつ直ぐその後から非点
収差が小さい、即ち、円形スポットのレーザ光を放射す
る半導体レーザを駆動して書き込みを行うようにするこ
とができ、そして、これ等の半導体レーザは一体化され
ているので、二つのレーザ光を取り扱う光学系は1系統
で済むから構成が非常に簡単化される。
Therefore, when writing on an optical disk, immediately after erasing is performed by driving a semiconductor laser that emits a laser beam with a large astigmatism, that is, an elliptical spot, the astigmatism is small, that is, a circular spot. Writing can be performed by driving a semiconductor laser that emits laser light, and since these semiconductor lasers are integrated, only one optical system is required to handle the two laser lights. The configuration is greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部斜面図、第2図は第1図
に見られる実施例を製造する場合を説明する為の工程要
所に於ける半導体発光装置の要部平面図をそれぞれ表し
ている。 図に於いて、1はn型GaAs基板、2はn型A Il
o、 45G a O,55A Sクラッド層、3はn
型AlO,I5G a o、 esA s活性層、4は
n型A A O,45G ao、5sAsクラッド層、
5はp型An!o、n5Gao、5sAsクラッド層、
6はn型GaAsキャップ層、7A及び7BはZn拡散
に依る活性領域、8は非活性領域、9は二つの半導体レ
ーザを分離する為の溝、10はn側電極、IIA及びI
IBはp側電極、LDIは円形スポットのレーザ光を発
生する書き込み用の半導体レーザ、LD2は楕円形スポ
ットのレーザ光を発生する消去用の半導体レーザをそれ
ぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − =
FIG. 1 is a perspective view of the main parts of an embodiment of the present invention, and FIG. 2 is a plan view of the main parts of a semiconductor light emitting device at important points in the process to explain the manufacturing of the embodiment shown in FIG. each represents. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type A Il
o, 45G a O, 55A S cladding layer, 3 is n
type AlO, I5G ao, esAs active layer, 4 is n-type AAO, 45G ao, 5sAs cladding layer,
5 is p-type An! o, n5Gao, 5sAs cladding layer,
6 is an n-type GaAs cap layer, 7A and 7B are active regions formed by Zn diffusion, 8 is an inactive region, 9 is a trench for separating two semiconductor lasers, 10 is an n-side electrode, IIA and I
IB represents a p-side electrode, LDI represents a writing semiconductor laser that generates a circular spot laser beam, and LD2 represents an erasing semiconductor laser that generates an elliptical spot laser beam. Patent applicant: Fujitsu Ltd. Representative Patent Attorney: Shoji Aitani Representative Patent Attorney: Hiroshi Watanabe - =

Claims (1)

【特許請求の範囲】[Claims] 同一半導体基板上に隣接して形成されてそれぞれ独立に
駆動可能であるように分離され、且つ、非点収差を異に
する二つの半導体レーザを有してなる半導体発光装置。
A semiconductor light emitting device comprising two semiconductor lasers formed adjacently on the same semiconductor substrate, separated so that they can be driven independently, and having different astigmatism.
JP59175857A 1984-08-25 1984-08-25 Semiconductor light-emitting device Pending JPS6154688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175857A JPS6154688A (en) 1984-08-25 1984-08-25 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175857A JPS6154688A (en) 1984-08-25 1984-08-25 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS6154688A true JPS6154688A (en) 1986-03-18

Family

ID=16003407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175857A Pending JPS6154688A (en) 1984-08-25 1984-08-25 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS6154688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637528A (en) * 1986-06-25 1988-01-13 Nec Corp Optical pickup device
JPS6310338A (en) * 1986-07-01 1988-01-16 Nec Corp Optical pickup device
EP0588575A2 (en) * 1992-09-14 1994-03-23 Canon Kabushiki Kaisha Optical recording/reproducing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637528A (en) * 1986-06-25 1988-01-13 Nec Corp Optical pickup device
JPS6310338A (en) * 1986-07-01 1988-01-16 Nec Corp Optical pickup device
EP0588575A2 (en) * 1992-09-14 1994-03-23 Canon Kabushiki Kaisha Optical recording/reproducing apparatus
EP0588575A3 (en) * 1992-09-14 1994-08-17 Canon Kk Optical recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
JP2004304111A (en) Multi-wavelength laser device
JP2000244060A (en) Semiconductor light emitting device and its manufacture
JP2004022717A (en) Multiple-wavelength laser
JPWO2003071642A1 (en) Semiconductor light emitting device and optical disk device using the same
JPS6154688A (en) Semiconductor light-emitting device
US5185755A (en) Semiconductor laser
JP4219147B2 (en) Multi-wavelength laser equipment
US5208827A (en) Semiconductor laser device having a transparent waveguide and a large second harmonic generation output
JP3818815B2 (en) Semiconductor laser device and manufacturing method thereof
JP3709077B2 (en) Semiconductor laser device, method for manufacturing the same, and pickup device
JP2002124734A (en) Semiconductor light emitting device and manufacturing method of the same
JP3608937B2 (en) Semiconductor laser
JP4123554B2 (en) Manufacturing method of semiconductor laser
JP2000138419A (en) Semiconductor laser element and its manufacture
JPS61248584A (en) Semiconductor laser
JPH0376287A (en) Broad area laser
JPH01273378A (en) Semiconductor laser device
JP4083836B2 (en) Semiconductor laser device and manufacturing method thereof
JPH07321401A (en) Semiconductor laser array and its driving method
JPH06334255A (en) Semiconductor laser and fabrication thereof
JP4821829B2 (en) Manufacturing method of semiconductor light emitting device
JPH0587997B2 (en)
JPS61236187A (en) Semiconductor laser device and its manufacture
JPS63306686A (en) Semiconductor laser device
JP2001094213A (en) Integrated semiconductor laser