JPS6154443A - Oxygen concentration detecting element - Google Patents

Oxygen concentration detecting element

Info

Publication number
JPS6154443A
JPS6154443A JP59177689A JP17768984A JPS6154443A JP S6154443 A JPS6154443 A JP S6154443A JP 59177689 A JP59177689 A JP 59177689A JP 17768984 A JP17768984 A JP 17768984A JP S6154443 A JPS6154443 A JP S6154443A
Authority
JP
Japan
Prior art keywords
oxygen
detecting element
ceramic
ion conductive
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59177689A
Other languages
Japanese (ja)
Inventor
Yasuo Ono
大野 八洲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59177689A priority Critical patent/JPS6154443A/en
Publication of JPS6154443A publication Critical patent/JPS6154443A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To eliminate the need to separate reference gas and gas to be measured and simplify the structure by clamping both sides of oxygen ion conductive solid electrolytic ceramic between opposite electrodes and coating one electrode hermetically with ceramic made of the same material with the oxygen ion conductive solid electrolytic ceramic. CONSTITUTION:The oxygen ion conductive solid electrolytic ceramic 1 uses powder of zirconia, thoria, etc., and is shaped as part of a green sheet of a plane plate, rod, or pellet, etc., which is punched into a formed body 8 consisting of many parts. Electrodes 2 and 2' are formed on both surfaces of each part sectioned by a slit 9 through screen printing treatment by using, for example, platinum paste. Division pieces obtained by dividing the formed body 8 where no electrode is printed along slits 9 are stacked and pressed to a solid electrolyte 1 as a coating body 3, and further baked and sealed to obtain the oxygen thickness detecting element 3. A reduction flaw A and an oxidation flame B are separated from the detecting element 4 during normal combustion, and the reduction flame extends as shown by C in an oxygen deficient state to cover the detecting element 4. Consequently, it is not necessary to separate the reference gas and gas to be measured, and the structure is simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、暖房機器等において酸素の欠乏による不完全
燃焼、立ち消えなどを検知する酸素濃度検出素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an oxygen concentration detection element that detects incomplete combustion, extinction, etc. due to lack of oxygen in heating equipment and the like.

(従来技術) 従来9例えば石油暖房機器の不完全燃焼、過熱防止等の
検知器として、熱電対方式、フレームロンド方式又は酸
素イオン導電性固体電解質方式のものが知られている。
(Prior Art) Thermocouple type, flame rond type, or oxygen ion conductive solid electrolyte type detectors are known as conventional detectors for detecting incomplete combustion, overheating prevention, etc., for example, in oil heating equipment.

なかでも酸素イオン導電性固体電解質方式のものは被測
定雰囲気の酸素濃度を直接測定するものでおり、他の方
式に比べて正確で1)外部電源を必要としない等の利点
から近年多用されてきている。この方式の例を第4図(
a)。
Among these, the oxygen ion conductive solid electrolyte method directly measures the oxygen concentration in the atmosphere to be measured, and has been widely used in recent years because it is more accurate than other methods and 1) does not require an external power source. ing. An example of this method is shown in Figure 4 (
a).

(b)に示す。第4図(a)では酸欠時にガスバーナー
5の還元炎がAからCまで伸長して検出素子6を包むと
、検出素子6の内外に酸素濃度の差を生じ出力の変化を
検知するものでるるか管状の検出素子の内部には生ガス
(矢印)を通さねばならず、第4図(b)は検出素子t
の開口する先端にL字形の燃焼排ガスの導入管7を接続
し、この導入管7内に燃焼排ガスを吸引しく矢印)、検
出素子6の片面は常に還元炎Aと接触させ、他の一面は
燃焼状態に応じて正常時には酸化雰囲気、酸欠時には還
元雰囲気に触れるようにしてるる。尚第4図(al、(
blにおいてBは酸化炎でるる。このように第4図にお
いては(a) 、 (b)いずれの場合も基準ガスと被
測定ガスを分離しなければならないという問題がめった
Shown in (b). In Fig. 4(a), when the reducing flame of the gas burner 5 extends from A to C and wraps around the detection element 6 during oxygen deficiency, a difference in oxygen concentration occurs inside and outside the detection element 6, and a change in output is detected. Raw gas (arrow) must be passed through the inside of the tubular detection element, and Fig. 4(b) shows the detection element t.
An L-shaped combustion exhaust gas introduction pipe 7 is connected to the open end of the combustion exhaust gas, and the combustion exhaust gas is sucked into this introduction pipe 7 (arrow), so that one side of the detection element 6 is always in contact with the reducing flame A, and the other side is kept in contact with the reducing flame A. Depending on the combustion state, the combustion chamber is exposed to an oxidizing atmosphere when it is normal, and a reducing atmosphere when there is a lack of oxygen. Furthermore, Figure 4 (al, (
In bl, B emits an oxidizing flame. As described above, in both cases (a) and (b) in FIG. 4, the problem of having to separate the reference gas and the gas to be measured frequently arises.

(発明の目的) 本発明は、このような従来の問題を解消する酸光濃度検
出素子を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide an acid light concentration detection element that solves such conventional problems.

(問題点を解決するための手段) 本発明者は、拙々検討を重ねた結果、酸素イオン導電性
同体電解質セラミックの両側を触媒金属からなる帯状の
電極で挾み、その一方の電極を前記イオン感電性固体電
解質セラミックと同じセラミックで覆い密封することに
よシ、基準ガスと被測定ガスとを分離することを考慮す
る必要がなく構造が簡単になることを見出した◇ 本発明は、酸素イオン導電性固体電解質セラミックの両
側を対向する電極で挾持した酸素濃度検出素子において
、一方の電極を前記酸素イオン導電性固体電解質セラミ
ックと同材質のセラミックで被覆循封してなる酸素濃度
検出素子に関する。
(Means for Solving the Problems) As a result of extensive studies, the inventors of the present invention sandwiched both sides of an oxygen ion conductive isoelectrolyte ceramic with band-shaped electrodes made of a catalytic metal, and one of the electrodes was It has been discovered that by covering and sealing with the same ceramic as the ion-sensitive solid electrolyte ceramic, there is no need to consider separating the reference gas and the gas to be measured, and the structure becomes simple. An oxygen concentration detection element comprising an ion-conductive solid electrolyte ceramic sandwiched between opposite electrodes, one electrode of which is covered and sealed with a ceramic made of the same material as the oxygen-ion conductive solid electrolyte ceramic. .

本発明において用いられる酸素イオン導電性固体電解質
セラミック(以下固体電解質と呼ぶ)は。
The oxygen ion conductive solid electrolyte ceramic (hereinafter referred to as solid electrolyte) used in the present invention is:

材質を特に制限しないが原料粉としてイツトリアで安定
化し次ジルコニア、ドリア等の粉末が用いられ、形状は
平板状、棒状、ベレット等である。
Although the material is not particularly limited, powders of zirconia, doria, etc. stabilized with ittria are used as the raw material powder, and the shape is flat, rod-like, pellet, etc.

また成形方法は、前記原料粉に有機バインダー等を添加
し顆粒状にし加圧成形する方法、原料粉に有機バインダ
ー、可塑剤等を加えて押出成形する方法、原料粉に有機
バインダー、溶剤等を加えて成形するグリーンシート法
等があり、量産性の点ではグリーンシート法が好ましい
Molding methods include a method in which an organic binder, etc. is added to the raw material powder and granulated and pressure molded, a method in which an organic binder, a plasticizer, etc. is added to the raw material powder and extrusion molding is carried out, and a method in which an organic binder, a solvent, etc. is added to the raw material powder. In addition, there is a green sheet method for molding, and the green sheet method is preferable in terms of mass productivity.

電極の材料は白金、白金−ロジウム等の触媒金属が使用
され特に制限はない。電極は固体電解質の表面に例えば
帯状に形成するが、その方法は固体電解質に塗布し所定
の形状に形成させるか、粘着性フィルム上に触媒金属ペ
ーストを必要形状に塗布した後固体電解質に転写接着さ
せる方法がらり、いずれを用いてもよい。
The electrode material may be a catalytic metal such as platinum or platinum-rhodium, and is not particularly limited. Electrodes are formed on the surface of a solid electrolyte in the form of a band, for example, by applying it to the solid electrolyte and forming it into a predetermined shape, or by applying a catalytic metal paste onto an adhesive film in the required shape and then transferring and adhering it to the solid electrolyte. Any method may be used.

また一方の電極を前記固体電解質と同材質のセラミック
(以下被覆物と呼ぶ)で被覆密封するには、固体電解質
の生成形体に電極を塗布した後被覆物の生成形体を重ね
合わせて圧着後、固体電解質及び被覆物を焼成する。加
圧成形し仮焼した固体電解質に電極を接着し、一方の電
極の表面に被覆物の泥漿を塗布した後、焼成する等の手
段による。
In addition, in order to cover and seal one electrode with a ceramic made of the same material as the solid electrolyte (hereinafter referred to as a coating), the electrode is coated on the solid electrolyte formed body, the formed bodies of the coating are overlapped and crimped, and then The solid electrolyte and coating are fired. Electrodes are bonded to a solid electrolyte that has been pressure-molded and calcined, and a coating slurry is applied to the surface of one electrode, followed by firing.

(実施例) 実施例1 酸化イツトリウム粉13.2重量%、酸化ジルコニウム
粉86重1及び酸化アルミニウム粉0.8M量係からな
る粉体の68重量%にブチラール樹脂(電気化学KL製
、商品名デンカ4000)6重量%、ジオクチルフタレ
ート(和光純系製)2−8重量%、ブタノール23.2
重量%を加え混合後ガラス板上に流し出し、厚さ0.7
 mのグリーンシートを得た。このグリーンシートを金
型によシ第5図(a)(b)に示すように多数個数シの
成形体8に打抜いた後、成形体8の一部をとシ、スリッ
ト9で区分される各部分の両面に第1図及び第2図に示
すような端子部分を有する形状に白金ペースト(偉力化
学g+5x03)を使ってスクリーン印刷を行なって電
極2,2′を形成した。その後成形体8をスリット9に
沿って分割し、第1図の固体電解質1を得た。電極を印
刷しない成形体8をスリット9に沿って分割した分割片
を第2図に示すように被覆物3として固体電解質1に重
ね合わせ、温度70℃、圧力30kg/cm”で圧着し
、更に16500Cで焼成して密封し酸素濃度検出素子
を得た。
(Example) Example 1 Butyral resin (manufactured by Denki Kagaku KL, trade name Denka 4000) 6% by weight, dioctyl phthalate (Wako Junkei) 2-8% by weight, butanol 23.2%
After adding weight% and mixing, pour it out onto a glass plate to a thickness of 0.7
A green sheet of m was obtained. After punching this green sheet into a mold into a large number of molded bodies 8 as shown in FIGS. The electrodes 2, 2' were formed by screen printing using platinum paste (Yairi Kagaku G+5x03) into a shape having terminal portions as shown in FIGS. 1 and 2 on both sides of each portion. Thereafter, the molded body 8 was divided along the slits 9 to obtain the solid electrolyte 1 shown in FIG. The molded body 8 on which no electrodes are printed is divided along the slits 9, and as shown in FIG. It was fired at 16500C and sealed to obtain an oxygen concentration detection element.

実施例2 実施例1と同じ組成の粉体100重斂部にパラフィン5
重量部を加え、120℃で加熱混合して32メツシユ以
下の顆粒を得た。この顆粒を金型により1000 kg
/cm2で加圧成形し、1100°Cで仮焼して第1図
と同一形状の固体電解質を得た。
Example 2 100 parts of powder with the same composition as Example 1 and 5 parts of paraffin
Parts by weight were added and mixed under heating at 120°C to obtain granules of 32 mesh or less. This granule is molded into 1000 kg
/cm2 and calcined at 1100°C to obtain a solid electrolyte having the same shape as shown in FIG.

次に実施例1と同じ素性のブチラール樹脂20重量%、
ジオクチルフタレート8重量%、nブタノール74重量
%を混合溶解してルミラーフィルム(東し社製)上に流
し出し、ルミラーフィルム上に約2μmの樹脂(粘着)
膜を形成した。樹脂膜の上に実施例1で用いた白金ペー
ストを第1図の2に示す形状になるように塗布し、この
ルミラーフィルムを前記仮焼した固体電解質の上下面に
おさえつけて、固体電解質の面に白金を転写し、第1図
及び第2図に示すように白金の電極2.2′を形成した
Next, 20% by weight of butyral resin having the same properties as in Example 1,
Mix and dissolve 8% by weight of dioctyl phthalate and 74% by weight of n-butanol, pour it onto Lumirror film (manufactured by Toshisha Co., Ltd.), and apply about 2 μm of resin (adhesive) on the Lumirror film.
A film was formed. The platinum paste used in Example 1 was applied onto the resin film in the shape shown in 2 in Figure 1, and the Lumirror film was pressed onto the upper and lower surfaces of the calcined solid electrolyte to form the solid electrolyte. Platinum was transferred onto the surface to form platinum electrodes 2.2' as shown in FIGS. 1 and 2.

実施例1と同じ組成の固体電解質の粉体を水に分散させ
た泥漿で片面の電極上に塗布被覆したのち、徐々に昇温
し1650°Cで焼成し、e索鎖度検出素子を得た。
Solid electrolyte powder having the same composition as in Example 1 was coated on one side of the electrode with a slurry dispersed in water, and then the temperature was gradually increased and baked at 1650°C to obtain an e-cord chain detection element. Ta.

(作用) 実施例1.実施例2のようにして得られた酸素濃度検出
素子を暖房機器にセントすると、第3図に示すように正
常燃焼の場合には還元炎A及び酸化炎Bは検出素子4か
ら離れておシ、燃焼排ガスが第2図に示す被包物のない
電極2’に接して電極2.2′間の酸素分圧差が大きく
第6図に示すように約068Vの高い起電力を示す。酸
欠状態になると第3図において還元炎がCのように伸長
して検出素子4を覆い、電極2.グ間の酸素分圧差が小
さくなって第6図に示すように起電力が急激に低くなる
(Function) Example 1. When the oxygen concentration detection element obtained as in Example 2 is inserted into a heating device, in the case of normal combustion, the reducing flame A and the oxidizing flame B move away from the detecting element 4 and move away from the sensor as shown in Fig. 3. When the combustion exhaust gas comes into contact with the electrode 2' having no enclosure as shown in FIG. 2, the oxygen partial pressure difference between the electrodes 2 and 2' is large and a high electromotive force of about 068 V is exhibited as shown in FIG. When an oxygen-deficient state occurs, the reducing flame extends as shown by C in FIG. 3 and covers the detection element 4, causing the electrode 2. As the oxygen partial pressure difference between the two groups becomes smaller, the electromotive force suddenly decreases as shown in FIG.

(発明の効果) 本発明によれば、基準ガスと被測定ガスとを分離する必
要がないから検知部の構造が簡単で酸素濃度検出素子の
小型化が可能となυ、燃焼炎の短い燃焼器具の安全装置
にも適用できる。
(Effects of the Invention) According to the present invention, since there is no need to separate the reference gas and the gas to be measured, the structure of the detection part is simple and the oxygen concentration detection element can be downsized. It can also be applied to equipment safety devices.

又板状固体電解質の多数個成形が可能となりコストが低
減できる。
Furthermore, it is possible to mold a large number of plate-shaped solid electrolytes, thereby reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例になる酸素濃度検出素子の平面
図、第2図は第1図の側面断面図、第3図は本発明の酸
素濃度検出素子の作用を示す説明図、第4図(a )(
b lは従来の酸素濃度検出素子の作用を示す説明図、
第5図は本発明の実施例における酸素濃度検出素子用讃
体電解質の製法説明図及び第6図は酸素濃度と起電力と
の関係を示すグラフでめる。 符号の説明
FIG. 1 is a plan view of an oxygen concentration detection element according to an embodiment of the present invention, FIG. 2 is a side cross-sectional view of FIG. 1, and FIG. Figure 4 (a) (
bl is an explanatory diagram showing the action of a conventional oxygen concentration detection element,
FIG. 5 is a diagram illustrating the manufacturing method of a nutrient electrolyte for an oxygen concentration detection element in an embodiment of the present invention, and FIG. 6 is a graph showing the relationship between oxygen concentration and electromotive force. Explanation of symbols

Claims (1)

【特許請求の範囲】[Claims] 1. 酸素イオン導電性固体電解質セラミツクの両側を
対向する電極で挾持した酸素濃度検出素子において、一
方の電極を前記酸素イオン導電性固体電解質セラミツク
と同材質のセラミツクで被覆密封してなる酸素濃度検出
素子。
1. An oxygen concentration detection element comprising an oxygen ion conductive solid electrolyte ceramic sandwiched between opposite electrodes, one electrode of which is covered and sealed with ceramic of the same material as the oxygen ion conductivity solid electrolyte ceramic.
JP59177689A 1984-08-27 1984-08-27 Oxygen concentration detecting element Pending JPS6154443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177689A JPS6154443A (en) 1984-08-27 1984-08-27 Oxygen concentration detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177689A JPS6154443A (en) 1984-08-27 1984-08-27 Oxygen concentration detecting element

Publications (1)

Publication Number Publication Date
JPS6154443A true JPS6154443A (en) 1986-03-18

Family

ID=16035382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177689A Pending JPS6154443A (en) 1984-08-27 1984-08-27 Oxygen concentration detecting element

Country Status (1)

Country Link
JP (1) JPS6154443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214244A (en) * 1986-03-12 1987-09-21 Nissin Kogyo Kk Negative pressure source device for negative pressure booster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214244A (en) * 1986-03-12 1987-09-21 Nissin Kogyo Kk Negative pressure source device for negative pressure booster

Similar Documents

Publication Publication Date Title
JPH051901B2 (en)
JPS61108953A (en) Electrical connecting terminal of sensor element using ceramics
JPH0437944B2 (en)
JPH05119015A (en) Carbon dioxide gas detection element
JPH106324A (en) Preparation of ceramic structure
JPS6154443A (en) Oxygen concentration detecting element
EP0271917B1 (en) Air/fuel ratio sensor
JPH0287032A (en) Thermistor for high temperature
JPS6311847A (en) Air/fuel ratio detecting element
JPH0765977B2 (en) Method for producing an inert, catalytic or gas-sensitive ceramic layer for gas sensors
JP2514664B2 (en) Oxygen sensor
JPS6154444A (en) Element for detecting oxygen concentration
JPS625165A (en) Thick film type gas sensitive element and making thereof
JPS63200055A (en) Oxygen sensor element and its manufacture
KR20040099332A (en) Insulation material and gas sensor
JPS628135B2 (en)
JPS60171450A (en) Safe detection apparatus for combustion machinery
JP2004170230A (en) Co2 sensor and its manufacturing method
JPH0110590Y2 (en)
JPS62211525A (en) Temperature sensor
JPH0390851A (en) Oxygen sensor with heater and production thereof
JPS6044273B2 (en) Zirconia sintered body for oxygen sensor
JPS6034062B2 (en) Air fuel ratio detection device
JPS63290952A (en) Oxygen concentration detector
JP2812524B2 (en) Oxygen sensor