JPS6154412A - Detecting device - Google Patents

Detecting device

Info

Publication number
JPS6154412A
JPS6154412A JP17646784A JP17646784A JPS6154412A JP S6154412 A JPS6154412 A JP S6154412A JP 17646784 A JP17646784 A JP 17646784A JP 17646784 A JP17646784 A JP 17646784A JP S6154412 A JPS6154412 A JP S6154412A
Authority
JP
Japan
Prior art keywords
scanning lines
sides
thermistor
thermistors
changeover switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17646784A
Other languages
Japanese (ja)
Inventor
Ryoichi Imai
良一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17646784A priority Critical patent/JPS6154412A/en
Publication of JPS6154412A publication Critical patent/JPS6154412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To simplify the device, package various sensors to high density, and to eliminate malfunction due to temperature by providing a switching means which wires plural scanning lines to sensors in a matrix, connects unselected scanning lines to a member with a constant potential, and connects one of two selected scanning lines to a power source and the other to a current detecting means. CONSTITUTION:Thermistors R11-Rnn which vary in resistance value with temperature are arrayed in a matrix, and both-terminal sides of the respective thermistors are connected to longitudinal and lateral scanning lines X1-Xn and Y1-Yn. Changeover switches KX1-KXn connect the scanning lines X1-Xn to sides a1-an or sides b1-bn selectively. The scanning lines are connected to the DC constant voltage source E when connected to the sides a1-an and grounded when connected to the sides b1-bn. Further, changeover switches KY1-KYn connect the scanning lines Y1-Yn to sides c1-cn or to sides d1-dn selectively, and the scanning lines are connected to a current detecting circuit 2 when connected to the sides c1-cn and grounded when connected to the sides d1-dn. Further, a relay control part 1 controls the changeover switches KX1-KXn and KY1-KYn to scan the respective thermistors.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、物理量を検出する検出装置に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a detection device that detects a physical quantity.

〔従来技術〕[Prior art]

従来、この種の装置では、第1図に示す様にセンサ1−
1〜1−nから直接検出器3に走査線2−1〜2−nを
接続していたが、センサが多数になってくると配線数は
膨大な本数になってしまう、そこで第2図に示す様にセ
ンサR′11〜′E:nnにマトリクス的に走査線X’
1−Kn。
Conventionally, in this type of device, a sensor 1-
The scanning lines 2-1 to 2-n were connected directly from 1 to 1-n to the detector 3, but as the number of sensors increases, the number of wires becomes enormous. As shown in FIG.
1-Kn.

Y’ l〜Y’ nを配線する回路が考えられたが第2
図の回路では、例えばサーミスタR′22を検出する場
合、センサR′22を流れる電流IAの他に他のセンサ
から流れ込む電流、例えばセンサR′21゜R1’1l
lR′12を流れる電流I8等も同時に検出器3によっ
て検出される為に誤動作が大きく正確な検出が行われな
いという問題があり、この問題を解決すべく考えられた
のが第3図の回路で各サーミスタにダイオードfを挿入
し他のセンサから電流が流れ込まない様にして、誤動作
を少なくしたが1反面、センサと同数のダイオード等の
整流器が必要であり、コストも高くなり、又、半導体の
ダイオードを使用した場合には、温度により特性が変わ
るために温度センサ等には使用することが出来なかった
A circuit that wires Y' l to Y' n was considered, but the second
In the circuit shown in the figure, when detecting the thermistor R'22, for example, in addition to the current IA flowing through the sensor R'22, there is also a current flowing from another sensor, for example, the sensor R'21°R1'1l.
Since the current I8 etc. flowing through lR'12 is also detected by the detector 3 at the same time, there is a problem that malfunctions are large and accurate detection cannot be performed.The circuit shown in Fig. 3 was devised to solve this problem. A diode f was inserted in each thermistor to prevent current from flowing from other sensors to reduce malfunctions, but on the other hand, it required the same number of rectifiers as diodes as sensors, which increased the cost. When a diode was used, its characteristics changed depending on the temperature, so it could not be used for a temperature sensor or the like.

又、ダイオードを挿入するスペースがないJl’l’l
 逍のものには実現することが出来ないという欠点があ
った。
Also, there is no space to insert a diode.
The problem with this was that it could not be realized.

〔目的〕〔the purpose〕

本発明は、上述従来例の欠点を除去すると同時に低コス
トで超小型化の可能な検出装置を提供することを目的と
している。
An object of the present invention is to provide a detection device that eliminates the drawbacks of the above-mentioned conventional example and can be made ultra-small at low cost.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第4図は本発明の一実施例の全体構成図である。第4図
に於いて、R11〜Rnnは温度により抵抗値が変化す
るサーミスタでマトリクス状に配列されており、各サー
ミスタの両端が縦横の走査線X1〜xn及びY1〜yn
に接続されている。
FIG. 4 is an overall configuration diagram of an embodiment of the present invention. In FIG. 4, R11 to Rnn are thermistors whose resistance value changes depending on the temperature, and are arranged in a matrix, and both ends of each thermistor are connected to vertical and horizontal scanning lines X1 to xn and Y1 to yn.
It is connected to the.

KXI 〜KXn 、KY 1〜KY Hは切換スイッ
チであり、切換スイッチKXI〜KXnによって走査線
x1〜xnをa1〜afi側に接続するか、bl〜bn
側に接続するかの切換が行われ、a1〜an側に接続す
ると、直流定電圧i;j Eに接続することになり、b
1〜bn側に接続すると接地することになる。
KXI to KXn, KY 1 to KY H are changeover switches, and the changeover switches KXI to KXn connect the scanning lines x1 to xn to the a1 to afi sides, or connect the scanning lines
When connected to a1 to an side, it is connected to constant DC voltage i;j E, and b
If connected to the 1 to bn side, it will be grounded.

又、切換スイッチKYI〜KYnによって走査線Y1〜
Ynをlc l〜・cn側に接続するか、d1〜dn側
に接続するかの切換が行われ、・c−1〜・cLn側に
接続すると電流検出回路2に接続することになり、d1
〜dn側に接続するとグノル 1“ 6 こ 、と メ
こ 4r 6 。
In addition, the scanning lines Y1 to Y1 are selected by the changeover switches KYI to KYn.
Switching is performed to connect Yn to the lc l~・cn side or to the d1~dn side, and if it is connected to the c−1~・cLn side, it will be connected to the current detection circuit 2, and d1
~ When connected to the dn side, Gnoll 1" 6 ko, and Meko 4r 6.

又、lはリレー制御部であり、該リレー制御部1によっ
て、前記切換スイッチKXI〜K X n 、 K Y
 1〜K Y nの切換が行われ各サーミスタの走査が
行われる。
Further, l is a relay control unit, and the relay control unit 1 controls the changeover switches KXI to KXn, KY
1 to K Y n is performed and each thermistor is scanned.

最初走査線x1〜Xn、Yl〜ynは前記切換スイッチ
K X 1 ” K X n、 K Y 1〜K Y 
Hによってb1〜bn、dl〜dn側に接続、すなわち
接地されている。そして、サーミスタR11を測定する
場合、走査線Xiを直流定電圧at(Eに走査線Y1を
電流検出回路2に接続するためにリレー制御部lによっ
て、切換スイッチKX1.KYtがa 1 r Ci側
に切り換えられる。次にサーミスタR12の測定が行わ
れるが、この時リレー制御部1によって切換スイッチK
YIはdl側に切り換えられ、走査線Ylは再び接地さ
れると同時に切換スイッチKY2はと2側に切り換えら
れ走査線Y2は電流検出回路2に接続される。この様に
してサーミスタR11からRlnまでの測定が終了する
とリレー制御部1によって切換スイッチKXI、KYn
がbl、dn側に切り換えられ、走査線Xl。
The first scanning lines x1 to Xn and Yl to yn are connected to the changeover switches KX1''KXn, KY1 to KY
Connected to the b1-bn and dl-dn sides by H, that is, grounded. When measuring the thermistor R11, in order to connect the scanning line Xi to the DC constant voltage at (E) and the scanning line Y1 to the current detection circuit 2, the relay control unit l sets the changeover switch KX1.KYt to the a 1 r Ci side. Next, the thermistor R12 is measured, but at this time the relay control section 1 switches the changeover switch K.
YI is switched to the dl side, the scanning line Yl is grounded again, and at the same time, the changeover switch KY2 is switched to the and2 side, and the scanning line Y2 is connected to the current detection circuit 2. When the measurement of thermistors R11 to Rln is completed in this way, the relay control unit 1 controls the changeover switches KXI and KYn.
is switched to the bl and dn sides, and the scanning line Xl.

Ynは再び接地されると同時に切換スイッチKX2 、
KY lがa 2 + ’e l側に切り換えられ、走
査線x2が直流定電圧にtEに走査線Y1が電流検出回
路2に接続され、サーミスタR21の測定が行われ、サ
ーミスタR11〜R1nと同様にサーミスタR21−R
n2の測定が行われる。上記の様にしてサーミスタR1
1〜Rnnまでの4111定が行われる。
At the same time as Yn is grounded again, selector switch KX2,
KY l is switched to the a 2 + 'e l side, the scanning line x2 is set to DC constant voltage at tE, the scanning line Y1 is connected to the current detection circuit 2, and the thermistor R21 is measured, similar to thermistors R11 to R1n. Thermistor R21-R
A measurement of n2 is made. Thermistor R1 as above
4111 determinations from 1 to Rnn are performed.

又、切換スイン−F−KXI 〜KXI 、 KY l
 〜KYnの切換動作はリレー;ljJ御部工部1っテ
行われるかこれは周知のリレー回路4行えるのであえて
説明しない。
Also, switching switch-F-KXI ~ KXI, KY l
The switching operation of ~KYn is carried out by a relay; this can be done by a well-known relay circuit, so it will not be explained here.

メ、2は電流検出回路であり、内部抵抗RLとアンプA
によって構成されており、サーミスタの抵抗値に応じた
電圧を出力端子Bに出力す     ゛る。オペレータ
は該出力端子Bに出力された電圧値の処理を行う装置を
接続すればよい。
2 is a current detection circuit, which includes an internal resistance RL and an amplifier A.
It outputs a voltage to output terminal B according to the resistance value of the thermistor. The operator only has to connect a device that processes the voltage value output to the output terminal B.

今、サーミスタR22を測定する場合を考えてみるとリ
レー制御部lによって切換スイッチに、X 2がa2側
、切換スイッチKY2が・c2側にJti続され、走査
線X2が直流定電圧源Eに、走査線Y2が電流検出回路
2に接続される。
Now, if we consider the case of measuring thermistor R22, the relay control unit 1 connects X2 to the a2 side, the changeover switch KY2 to the c2 side, and the scanning line X2 to the DC constant voltage source E. , scanning line Y2 is connected to the current detection circuit 2.

この時の装置の回路図を示したものが第5図であり、第
5図に於いて並列に並んでいるサーミスタR21,R2
3〜R2nの合成抵抗をRx。
Figure 5 shows the circuit diagram of the device at this time, and the thermistors R21 and R2 are arranged in parallel in Figure 5.
Rx is the combined resistance of 3 to R2n.

サーミスタ)l 12 、 二〜二の合成抵抗をRYと
すると、第5図は第6図の等価回路図で表わすことがで
きる。第6図に於いてサーミスタR22を流れる電流を
iE、電流検出回路2に流れ込む電流をiLとすると、
電流検出回路2の内部抵抗RLを合成抵抗RYに比べ非
常に小さい値に設定するとつまりRy>>RLとなる様
RLを設定すれば1E−i=iLが成り立ち、サーミス
タR22には直流定電圧源Eが印加される為に、他のサ
ーミスタによって与えられる影響が殆どなく、サーミス
タR22の抵抗値に応じた電圧が出力端子Bに出力され
る。
If the thermistor) l 12 and the combined resistance of 2 or 2 are RY, then FIG. 5 can be represented by the equivalent circuit diagram of FIG. 6. In FIG. 6, if the current flowing through the thermistor R22 is iE, and the current flowing into the current detection circuit 2 is iL, then
If the internal resistance RL of the current detection circuit 2 is set to a very small value compared to the combined resistance RY, that is, if RL is set so that Ry>>RL, 1E-i=iL holds true, and the thermistor R22 is connected to a DC constant voltage source. Since E is applied, there is almost no influence from other thermistors, and a voltage corresponding to the resistance value of thermistor R22 is output to the output terminal B.

前記の場合、リレー制御部lが自動的に切換スイッチK
XI 〜KXn、KY1〜KYIの切換を行い全てのサ
ーミスタを検出していくがオペレータが任意に各サーミ
スタを測定する様にリレー制御部lをキー人力によって
セットすることも可能である。
In the above case, the relay control unit l automatically switches the changeover switch K.
All the thermistors are detected by switching between XI to KXn and KY1 to KYI, but it is also possible for the operator to manually set the relay control unit 1 to measure each thermistor as desired.

又、前記実施例ではサーミスタを用いた回路で説明した
が、その他にも多くの応用が考えられる。
Further, in the above embodiment, a circuit using a thermistor was explained, but many other applications are possible.

第7図は、圧力分布センサに応用した図であり、4は圧
力によって抵抗値が変化する導電性ゴムで、該導電性ゴ
ム4の表面に走査線x1〜Xn、Yl〜ynをマトリク
ス的に配線して圧力分布センサを実現している。
FIG. 7 is a diagram applied to a pressure distribution sensor, where 4 is a conductive rubber whose resistance value changes depending on pressure, and scanning lines x1 to Xn and Yl to yn are arranged in a matrix on the surface of the conductive rubber 4. A pressure distribution sensor is realized by wiring.

第8図は、2次元イメージセンサに応用した図であり、
5は光によって抵抗値が変化する、CdS等の光電導体
で、該光電導体5の表面に透明電極である走査線X1〜
Xn、Y1〜Ynをマトリクス的に配線して2次元イメ
ージセンサを実現している。尚、2次元イメージセンサ
の実現により1例えば、電子オーバーヘッド装置、マイ
コン・パソコン等の画像入力装置、ビデオカメラなどの
画像入力を行う装置への応用が可能である。
FIG. 8 is a diagram applied to a two-dimensional image sensor,
5 is a photoconductor such as CdS whose resistance value changes depending on light, and scanning lines X1 to X1, which are transparent electrodes, are formed on the surface of the photoconductor 5.
A two-dimensional image sensor is realized by wiring Xn and Y1 to Yn in a matrix. Note that by realizing a two-dimensional image sensor, it can be applied to, for example, electronic overhead devices, image input devices such as microcomputers and personal computers, and devices that perform image input such as video cameras.

第9図は、温度分布センサに応用した図で6は温度によ
って抵抗値が変化するサーミスタで、該サーミスタの表
面に走査線x1〜Xn。
FIG. 9 is a diagram applied to a temperature distribution sensor, and 6 is a thermistor whose resistance value changes depending on the temperature, and scanning lines x1 to Xn are formed on the surface of the thermistor.

Y1〜ynをマトリクス的に配線して温度分布センサを
実現している。
A temperature distribution sensor is realized by wiring Y1 to yn in a matrix.

尚、第7図、第8図、第9図に示した各種センサは、低
価格で実現出来、又、センサの走力ゝ 査線の数を多くすることにより細く走査することが出来
る。又、センサの大型化、小型化も筒単に行うことが出
来る。
The various sensors shown in FIGS. 7, 8, and 9 can be realized at low cost, and can scan finely by increasing the number of scanning lines. Furthermore, the sensor can be easily made larger or smaller.

第1O図は、マイクロフィルムリーグのスクリーンの光
量ムラ測定装置治具に応用した図で、8はマイクロリー
グ本体、7はフォトセンサである。現在、工場でのマイ
クロフィルムリーグの調整及び検査においてスクリーン
上の光量測定は1点1個のセンサを逐次測定しているが
、第1O図で示す様に走査線x1〜Xn。
FIG. 1O is a diagram applied to a jig for measuring the light intensity unevenness of a screen of a micro film league, in which 8 is the main body of the micro league, and 7 is a photosensor. Currently, in the adjustment and inspection of microfilm leagues at factories, the amount of light on the screen is measured one by one by one sensor at a time, and as shown in FIG. 1O, scanning lines x1 to Xn.

Y1〜Ynをマトリクス的に配線し、第1図で示した出
力端子Bにマイコン等を接続して検査することにより、
簡単に光量ムラの測定を行うことが出来る。
By wiring Y1 to Yn in a matrix and connecting a microcomputer etc. to the output terminal B shown in Fig. 1,
Light intensity unevenness can be easily measured.

〔効果〕〔effect〕

以上説明した様に本発明に依れば、装置の簡素化、及び
各桂センサの高密度化が可能であり、温度による誤動作
もなくなった。
As explained above, according to the present invention, it is possible to simplify the device, increase the density of each Katsura sensor, and eliminate malfunctions due to temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来の検出装置を示した図で
あり。 第4図は本発明の一実施例の全体構成図、第5図はR2
2を測定する時の回路図。 第6図は第5図の等価回路図。 第7図は圧力分布センサの構成図、 第8図は2次元イメージセンサの構成図。 第9図は温度分布センサの構成図、 第10図はマイクロフィルムルーダのスクリーンの光■
ムラ測定装置治具の構成図である。 1はリレー制御部、2は電流検出回路、3は検出器、4
は導電性ゴム、5はCdS等の光電導体、6はサーミス
タ、7はフォトセンサ、8はマイクロリーグ本体、1−
1〜l−nはサーミスタ、R′ll”’R′n n 、
 R11〜Rn nはサーミスタ、2−1〜2− n 
、 K 1〜X’n。 Y’ 1〜Y’ n 、 X 1〜X n 、 Y 1
〜Y nは走査線。 ×1〜xn+yt〜・ynは透明電極である走査線、f
はダイオード、KXI 〜KXn 、KY 1〜KYn
は切換スイッチ、al〜an、bl〜b n 、 c 
1〜c n 、 d 1〜d nは切換端子。 Eは直流定電源、Aはアンプ、Bは出力端子、RLは電
流検出回路2の内部抵抗、RxはR21゜R23〜R2
nの合成抵抗、RyはR12,R32〜Rn2の合成抵
抗、iEはR22を流れる電流。 iLは電流検出回路2に流れ込む電流である。
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing conventional detection devices. FIG. 4 is an overall configuration diagram of an embodiment of the present invention, and FIG. 5 is an R2
Circuit diagram when measuring 2. FIG. 6 is an equivalent circuit diagram of FIG. 5. Figure 7 is a configuration diagram of a pressure distribution sensor, and Figure 8 is a configuration diagram of a two-dimensional image sensor. Figure 9 is a configuration diagram of the temperature distribution sensor, Figure 10 is the light from the microfilm router screen.
FIG. 2 is a configuration diagram of an unevenness measuring device jig. 1 is a relay control section, 2 is a current detection circuit, 3 is a detector, 4
5 is a conductive rubber, 5 is a photoconductor such as CdS, 6 is a thermistor, 7 is a photosensor, 8 is a microleague main body, 1-
1 to l-n are thermistors, R'll"'R'n n,
R11~Rn n is thermistor, 2-1~2-n
, K1~X'n. Y'1~Y'n, X1~Xn, Y1
~Y n is a scanning line. ×1~xn+yt~・yn is a scanning line which is a transparent electrode, f
are diodes, KXI ~ KXn, KY 1 ~ KYn
is a changeover switch, al~an, bl~bn, c
1 to c n and d 1 to d n are switching terminals. E is a DC constant power supply, A is an amplifier, B is an output terminal, RL is an internal resistance of the current detection circuit 2, Rx is R21°R23~R2
Ry is the combined resistance of R12, R32 to Rn2, and iE is the current flowing through R22. iL is a current flowing into the current detection circuit 2.

Claims (1)

【特許請求の範囲】[Claims] 物理量を検出する検出装置に於いて、センサを有し、前
記センサに複数の走査線をマトリクス的に配線し、2つ
の走査線の選択によって前記センサを走査するにあたり
、前記走査線の選択されていない走査線を一定電位の部
材に接続し、前記走査線の選択された2つの走査線の一
方を電源に接続し、もう一方を電流検知手段に接続する
切換手段を有することを特徴とする検出装置。
A detection device for detecting a physical quantity has a sensor, a plurality of scanning lines are wired to the sensor in a matrix, and when scanning the sensor by selecting two scanning lines, the selected one of the scanning lines is Detection characterized in that it has a switching means for connecting a scanning line which is not in use to a member having a constant potential, connecting one of the two selected scanning lines of the scanning line to a power supply, and connecting the other to a current detection means. Device.
JP17646784A 1984-08-24 1984-08-24 Detecting device Pending JPS6154412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17646784A JPS6154412A (en) 1984-08-24 1984-08-24 Detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17646784A JPS6154412A (en) 1984-08-24 1984-08-24 Detecting device

Publications (1)

Publication Number Publication Date
JPS6154412A true JPS6154412A (en) 1986-03-18

Family

ID=16014187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17646784A Pending JPS6154412A (en) 1984-08-24 1984-08-24 Detecting device

Country Status (1)

Country Link
JP (1) JPS6154412A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206423A (en) * 1986-03-07 1987-09-10 Yokohama Rubber Co Ltd:The Tactile sense detection by distribution type tactile sensor and circuit therefor
JPH0283423A (en) * 1988-09-20 1990-03-23 Nec Corp Temperature monitor apparatus to be carried on artificial satellite
JP2009524798A (en) * 2006-01-27 2009-07-02 国立大学法人東京工業大学 Temperature sensor
JP2014106070A (en) * 2012-11-27 2014-06-09 Nissha Printing Co Ltd Pressed state detection method for pressure sensitive sheet, and pressure sensitive sheet
CN105675024A (en) * 2016-01-04 2016-06-15 东南大学 Data reading method and device for resistance sensor array
GB2555481A (en) * 2016-11-01 2018-05-02 Evonetix Ltd Resistance measurement and current control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206423A (en) * 1986-03-07 1987-09-10 Yokohama Rubber Co Ltd:The Tactile sense detection by distribution type tactile sensor and circuit therefor
JPH0283423A (en) * 1988-09-20 1990-03-23 Nec Corp Temperature monitor apparatus to be carried on artificial satellite
JP2009524798A (en) * 2006-01-27 2009-07-02 国立大学法人東京工業大学 Temperature sensor
JP2014106070A (en) * 2012-11-27 2014-06-09 Nissha Printing Co Ltd Pressed state detection method for pressure sensitive sheet, and pressure sensitive sheet
CN105675024A (en) * 2016-01-04 2016-06-15 东南大学 Data reading method and device for resistance sensor array
GB2555481A (en) * 2016-11-01 2018-05-02 Evonetix Ltd Resistance measurement and current control
GB2555481B (en) * 2016-11-01 2019-07-17 Evonetix Ltd Resistance measurement
US11366024B2 (en) 2016-11-01 2022-06-21 Evonetix Ltd Resistance measurement and current control

Similar Documents

Publication Publication Date Title
US10620738B2 (en) Touch display panel, driving method and touch display device
CN101887335B (en) Capacitive touch panel device
JP3496947B2 (en) Optical touch input device
CN102654812B (en) Capacitance voltage conversion circuit
CN103903578B (en) The display device of joint defect can be detected
US20100085322A1 (en) Coordinate input device and display device with the same
US20090159343A1 (en) Touch panel
CN105607133A (en) System for interfacing an LC sensor, related method and computer program product
JPS6154412A (en) Detecting device
TW201227694A (en) Flat panel display device and operating voltage adjusting method thereof
CN108107309A (en) Integrated circuit test system
CN211087189U (en) Circuit and device configured to be coupled to touch screen resistive sensor
IT9022470A1 (en) REFERENCE VOLTAGE GENERATOR WITH PROGRAMMABLE THERMAL Drift
JP3351080B2 (en) Analog touch switch
WO2022241631A1 (en) Detection circuit, display panel, and detection method
CN108182012B (en) Display panel, pressure detection method and display device
KR102035997B1 (en) Method for Testing of Touch Electrode of Touch Screen Panel
JP6727072B2 (en) Resistive touch panel control circuit, touch input device
CN205786795U (en) Electrostatic testing apparatus and television set
ITMI20111540A1 (en) METHOD FOR DETERMINING MULTIPLE TOUCHES ON A RESISTIVE-TOUCH SCREEN.
CN100397321C (en) Map display device and map display method
US20020036275A1 (en) Position detection device and position detection method
TW200506805A (en) A substrate and a display device incorporating the same
JPH0375570A (en) Measuring method of resistance of semiconductor element
JP2019139293A (en) Comptroller of touch panel, and touch type input device using the same, electronic apparatus