JPS6154396B2 - - Google Patents

Info

Publication number
JPS6154396B2
JPS6154396B2 JP59229282A JP22928284A JPS6154396B2 JP S6154396 B2 JPS6154396 B2 JP S6154396B2 JP 59229282 A JP59229282 A JP 59229282A JP 22928284 A JP22928284 A JP 22928284A JP S6154396 B2 JPS6154396 B2 JP S6154396B2
Authority
JP
Japan
Prior art keywords
electric field
cultivation
mushrooms
mushroom
culture medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59229282A
Other languages
Japanese (ja)
Other versions
JPS61108374A (en
Inventor
Osamu Suzuki
Takehiro Nomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP59229282A priority Critical patent/JPS61108374A/en
Publication of JPS61108374A publication Critical patent/JPS61108374A/en
Publication of JPS6154396B2 publication Critical patent/JPS6154396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mushroom Cultivation (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明はキノコの栽培方法に係わり、キノコ
の種菌を接種した培養基に電気的な処理を与える
ことによりキノコの成長を促進させ、収穫までの
期間を短縮せんとするものである。 〔従来の技術〕 一般にキノコの栽培は、キノコの栽培法に合つ
た大きさに切断した原木、或いは各種培養基を混
合殺菌した人工培養基にキノコの種菌を接種し、
栽培用の床又は施設中に置き、キノコの菌を繁殖
させ、発生してくるキノコを成長後収穫する方法
が用いられている。 この方法によれば、キノコの成長は、キノコの
種類によつて異なるが、通常は菌の接種より収穫
までの期間が、例えば、シイタケの場合には約半
年、エノキタケの場合には約1ケ月半〜2ケ月、
マンネンタケの場合は約3ケ月を要しており、こ
の間、栽培育成に可なりの労力や費用を必要とす
るものである。 一方、キノコの栽培に際して、キノコの発生数
を増加させて収穫量の向上をはかるための試みは
種々報告されている。 例えば、シアタケの榾木に磁力線を照射して栽
培することにより、シイタケの発生数の増加した
ことが報告されている。 また、シイタケの榾木(2年榾木、および3年
榾木)に雷インパルスを与えて栽培することによ
り、同様に子実体の発生数が増加し、収穫の向上
したことが発表されている。 〔発明が解決しようとする問題点〕 従来のキノコの一般的栽培法は、キノコの種菌
を原木或いは人工培養基に接種後、菌が活着し全
体に繁殖するまでの時間、キノコの菌が全体に繁
殖後キノコの発生が始まるまでの時間、発生した
キノコが収穫できる程度の大きさになるまでの時
間等が長い時間を要するため、雑菌の害による収
穫量の低下、あるいは広く、かつ大きな施設及び
多量の器具を必要とし、収穫までの経済的な負担
が大きい等の問題点を有し、栽培時間を短くし、
増収を図る栽培法の開発が要望されている。 また、シイタケ栽培において、榾木に磁力線を
照射することや、雷インパルスによる処理を施す
ことは、シイタケ菌に対して何等かの物理的な刺
激が加わり、これによつて子実体の発生数が増す
ものと考えられるが、前記の報告いずれにおいて
もシイタケの成長促進、つまり、シイタケの短期
間の育成効果に関する報告はない。 また、前記磁力線照射による磁力線の強さは、
2万〜6万ガウスとされており、雷インパルスの
場合も、200KV以上という強力な人工雷の試験に
よつて達成されたものであり、いずれも実験的な
域を出るものではない。 これに加えて、これらの方法は、強力なエネル
ギー発生装置を必要とするため、設備費や用役費
を考えた場合、必ずしも経済的に引き合うものと
は言えず、また、装置取り扱いのための危険性も
あつて綜合的見地からは実用向きとは言い難い。 〔問題点を解決するための手段〕 この発明は、上述の如き問題点を解消したキノ
コの有利な栽培法について鋭意研究試験の結果、
比較的低いエネルギー消費量による商用周波数範
囲にある電場内に、キノコの種菌を接種した培養
基を置いて電場処理することにより、キノコの成
長を著しく促進せしめ、キノコの収穫までの栽培
期間を短縮し、以て増収をはかる栽培方法を完成
したもので、具体的にはキノコ菌を接種した培養
基を、交流又は直流の電圧下におけるグローコロ
ナ放電現象の出現する以前の電界内に存在させて
電場処理を行い、以後常法により栽培することを
特徴とするものである。 この発明におけるキノコ菌を接種した培養基と
は、原木、或いはオガ屑、米糠等を混合して作つ
た人工培養基などに、キノコの種菌の接種したも
のを意味し、また、原木、或いは人工培養基の調
整、種菌の接種、キノコの栽培等の方法は各種キ
ノコに適した常法により行うものである。 また、かかるキノコ菌を接種した培養基(以下
これを単に培養基と称する。)を存在させるため
の電界とは、二つの導体間にかける電圧を高くし
ていつたとき、電界が一様でない場合に生ずる放
電現象のうち、グローコロナ放電現象の生ずる以
前の状態、好ましくは、グローコロナ放電現象の
出現する臨界点以下で、かつその近傍となるよう
なものである。 かゝる電場処理方法の1例について、図面を引
用して具体的に説明する。 第1図は、この発明の電場処理装置の基本を示
す説明図であり、交流、直流のいずれの場合も、
高圧電源1より取り出した一方の極を作用電極2
とし、他方の極を接地電極3とし、これら電極と
は別に接地された金属板4、又は土壌の上に置か
れた電場処理を受ける対象物、即ち培養基5の近
傍に前記の作用電極2を設置し、ついで高圧電源
に通電して作用電極2と接地電極3との間に発生
するグローコロナ現象の出現する以前の電界によ
り電場処理を行なうものである。 作用電極2は、例えば銅、ステンレス、鉄、ア
ルミニウム、銀等よりなる導電性の良い金属の棒
状体又は線状体を用い、その形状は、例えば先端
が尖鋭なもの、先端が球状のもの、先端が線状の
もの等いかなる形状でもよい。また、被処理物に
対する作用電極2の方向は、被処理物に対して直
角、斜め、平行等いずれの方向でも良く、被処理
物の形状および使用する電極の形状に応じて変化
するものである。更に、電極の数は1ケ或いは2
ケ以上設置してもよい。 電場処理は、既述のとおり作用電極2と接地電
極3の間に発生するグローコロナ放電現象の出現
する以前の電界により行うもので、グローコロナ
放電を発生させないため、電圧のみを必要とし、
電流は必要としない。 交流での電場処理は、1KV以上の電圧、特に3
〜5KVの電圧で行われる。1KV以下の電圧では効
果が少なく、5KV以上の電圧では電場処理に悪影
響はあたえないが、経済的に不利となる。 作用電極2と培養基5との距離は、グローコロ
ナ放電現象が発生しない最低の距離とするが、電
圧が1KVでは約3cm、3〜5KVの電圧では5〜10
cmが好ましい。また、両者間の距離を10cm以上に
すると、電圧を5KV以上にする必要があり、電場
処理に悪影響はないが、経済的に不利となる。 電場処理の時間は少なくとも約30分以上を必要
とし、好ましくは60〜90分行なうのが良い。所要
時間が30分以下の電場処理は効果が少なく、90分
以上の処理は電場処理に悪影響はないが、経済的
に不利となる。 直流での電場処理は、電圧が5KV以上、好まし
くは10〜20KVの電圧で行われる。5KV以下の電
圧では効果が少なく、20KV以上の電圧では電場
処理に悪影響はないが、経済的に不利となる。 作用電極2と培養基5との距離、電場処理時間
は交流の場合と同一条件で行うことができ、また
電極に正、負のいずれの極を用いても電場処理の
効果は同一である。 〔作 用〕 この発明の電場処理はキノコの種菌を接種した
直後の原木、或いは人工培養基に対して行うもの
で、キノコ裁培にかける全時間を短縮することが
でき、そのため雑菌による被害を少なくする事が
できるので最も効果的である。このような培養基
に対して電場処理を行うと、菌の活着が早く、増
殖が良好になるため、電場処理をしない場合に比
較し、菌が活着して全体に繁殖するまでの時間
(一般に完全に菌まわりがしたと云う)を1/2〜1/
3に、更にキノコの発生が始まるまでの時間を1/2
〜1/3に、キノコが発生して収穫できるまでの時
間を1/1.5〜1/3に短縮する事ができると共に、収
穫量を1.1〜1.2倍にできる。 なお、キノコの菌が活着し繁殖した榾木、或い
は人工培養基に電場処理を行うと、それ以降の時
間を同様に短縮する事ができると共に、1.1〜1.2
倍の増収となることが実験の結果判明した。 また、発生直後のキノコに電場処理を行うと、
キノコが収穫できる大きさになるまでの時間を1/
1.5〜1/3に短縮できると共に1.1〜1.2倍の増収と
なることが判明した。 この発明における前記の作用は、雷インパルス
の如き高電圧下における培養基の作用に比べてキ
ノコ菌の成長促進が著しく良好であり、また収穫
量も優れたものである。 〔実施例〕 以下に実施例、及び比較例を挙げてこの発明の
キノコの栽培方法を具体的に説明する。 実施例1および比較例1 〔実施例 1〕 エノキダケの栽培に使用するオガ屑7容、米糠
3容からなる人工培養基を水分約60%に調整し、
これを容量800mlの栽培瓶10本に1瓶当たり約480
gを詰め、約60分高圧(1Kg/cm2)殺菌後、無菌
的にエノキダケの種菌を接種した。ついで、交流
電圧約5KV、先端の尖つた電極を栽培瓶の口部に
対して直角方向に置き、作用電極と培養基の表面
との距離を約5cmとし、約60分間の電場処理を行
つた。 このエノキダケを、常法にしたがつて室温23〜
24℃の培養室にて栽培瓶全体に菌糸が繁殖するま
で置き、その後菌カキ、および13〜14℃における
芽だしを行い、次いで抑制を4〜6℃で行い、更
にビン口へ紙巻を行つた後、生育室で子実体の生
育を行い収穫するという方法で裁培した。 〔比較例 1〕 実施例1と同様に調整した人工培養基を容量
800mlの栽培瓶10本に1瓶当たり約480g詰め、約
60分高圧(1Kg/m2)殺菌後、無菌的にエノキダ
ケの種菌を接種したものを、上記実施例と同様の
方法により栽培し、その栽培時間、収穫量を調べ
た。 その結果を第1表に示す。
[Industrial Application Field] This invention relates to a method for cultivating mushrooms, and aims to accelerate the growth of mushrooms and shorten the period until harvest by applying electrical treatment to a culture medium inoculated with mushroom inoculum. It is. [Prior art] Generally, mushroom cultivation involves inoculating mushroom inoculum into logs cut to a size suitable for the mushroom cultivation method, or into an artificial culture medium sterilized by mixing various culture mediums.
A method is used in which mushrooms are placed on a cultivation bed or in a facility, mushroom bacteria are propagated, and the mushrooms that emerge are harvested after they grow. According to this method, the growth of mushrooms varies depending on the type of mushroom, but the period from inoculation to harvest is usually about half a year for shiitake and about one month for enokitake. Half to two months,
In the case of Cinnamon mushrooms, it takes about three months to cultivate them, and during this period, a considerable amount of labor and expense is required for cultivation and growth. On the other hand, when cultivating mushrooms, various attempts have been reported to increase the number of mushrooms that emerge and improve the yield. For example, it has been reported that by cultivating shiitake mushrooms by irradiating them with magnetic lines of force, the number of shiitake mushrooms has increased. It has also been announced that by cultivating Shiitake mushrooms (2-year-old trees and 3-year-old trees) by applying lightning impulses, the number of fruiting bodies produced increased and yields improved. . [Problem to be solved by the invention] The conventional general cultivation method for mushrooms is that after inoculating the mushroom inoculum into logs or artificial culture media, the time required for the fungi to take hold and propagate throughout the entire area is such that the mushroom inoculum grows throughout the entire area. It takes a long time for mushrooms to begin to appear after breeding, and for the mushrooms to grow to a size that can be harvested. There are problems such as requiring a large amount of equipment and a heavy economic burden until harvest, and shortening the cultivation time.
There is a need for the development of cultivation methods that increase yields. In addition, in shiitake cultivation, irradiating the shiitake tree with magnetic lines of force or treating it with lightning impulses adds some physical stimulation to the shiitake fungus, which reduces the number of fruiting bodies. However, in none of the above reports is there any report regarding the growth promotion of shiitake mushrooms, that is, the short-term growth effect of shiitake mushrooms. In addition, the strength of the magnetic field lines due to the magnetic field line irradiation is
It is said to be between 20,000 and 60,000 Gauss, and in the case of lightning impulses, this was achieved by testing powerful artificial lightning of over 200KV, so it is still nothing more than an experiment. In addition, these methods require powerful energy generation equipment, which is not always economically viable when considering equipment and utility costs, and the equipment handling It is also dangerous, and from a comprehensive standpoint, it is difficult to say that it is suitable for practical use. [Means for Solving the Problems] This invention is based on the results of extensive research and testing on an advantageous cultivation method for mushrooms that solves the above-mentioned problems.
By placing a culture medium inoculated with mushroom inoculum in an electric field in the commercial frequency range with relatively low energy consumption and treating it with an electric field, mushroom growth can be significantly accelerated and the cultivation period until mushroom harvest can be shortened. , a cultivation method has been completed to increase yield.Specifically, the culture medium inoculated with mushroom fungi is treated with an electric field by placing it in an electric field before the glow corona discharge phenomenon occurs under an AC or DC voltage. It is characterized in that it is cultivated by conventional methods. In this invention, the culture medium inoculated with mushroom fungi means an artificial culture medium made by mixing raw wood, sawdust, rice bran, etc., inoculated with a mushroom inoculum. Methods such as adjustment, inoculation of inoculum, and cultivation of mushrooms are carried out by conventional methods suitable for various types of mushrooms. Furthermore, the electric field required to maintain the presence of a culture medium inoculated with mushroom fungi (hereinafter simply referred to as a culture medium) is the electric field that occurs when the electric field is uneven when the voltage applied between two conductors is increased. Of the discharge phenomena, the condition is a state before the glow corona discharge phenomenon occurs, preferably a state below and near the critical point at which the glow corona discharge phenomenon occurs. An example of such an electric field processing method will be specifically explained with reference to the drawings. FIG. 1 is an explanatory diagram showing the basics of the electric field processing device of the present invention.
One pole taken out from the high voltage power supply 1 is the working electrode 2.
The other electrode is a ground electrode 3, and the above-mentioned working electrode 2 is placed near a metal plate 4 grounded separately from these electrodes, or an object to be subjected to electric field treatment, that is, a culture medium 5 placed on soil. The high-voltage power supply is then energized to perform electric field treatment using the electric field generated between the working electrode 2 and the ground electrode 3 before the glow corona phenomenon occurs. The working electrode 2 is made of a highly conductive metal rod or wire made of copper, stainless steel, iron, aluminum, silver, etc., and its shape may be, for example, one with a sharp tip, one with a spherical tip, or one with a spherical tip. It may have any shape such as a linear tip. Further, the direction of the working electrode 2 relative to the object to be processed may be any direction such as perpendicular, diagonal, or parallel to the object to be processed, and changes depending on the shape of the object to be processed and the shape of the electrode used. . Furthermore, the number of electrodes is 1 or 2.
You may install more than one. As mentioned above, the electric field treatment is performed using an electric field generated between the working electrode 2 and the ground electrode 3 before the glow corona discharge phenomenon occurs, and in order to prevent glow corona discharge from occurring, only a voltage is required.
No current is required. Electric field treatment with alternating current requires a voltage of 1KV or more, especially 3
Done at a voltage of ~5KV. Voltages below 1KV have little effect, and voltages above 5KV do not adversely affect electric field processing, but are economically disadvantageous. The distance between the working electrode 2 and the culture medium 5 is set to the minimum distance at which no glow corona discharge phenomenon occurs.
cm is preferred. Furthermore, if the distance between the two is 10 cm or more, the voltage needs to be 5 KV or more, which does not adversely affect electric field processing, but is economically disadvantageous. The electric field treatment requires at least about 30 minutes or more, preferably 60 to 90 minutes. Electric field treatment that takes less than 30 minutes has little effect, and treatment that takes more than 90 minutes does not have a negative effect on electric field treatment, but is economically disadvantageous. The electric field treatment with direct current is carried out at a voltage of 5 KV or more, preferably 10-20 KV. Voltages below 5KV have little effect, and voltages above 20KV have no adverse effect on electric field processing, but are economically disadvantageous. The distance between the working electrode 2 and the culture medium 5 and the electric field treatment time can be performed under the same conditions as in the case of alternating current, and the effect of the electric field treatment is the same regardless of whether the electrode is positive or negative. [Function] The electric field treatment of this invention is performed on logs or artificial culture media immediately after inoculation with mushroom inoculum, and the total time required for mushroom cultivation can be shortened, thereby reducing damage caused by various bacteria. It is the most effective because it can be done. When such a culture medium is treated with an electric field, the bacteria adhere to it quickly and propagate well, so compared to when no electric field treatment is applied, the time it takes for the bacteria to take root and propagate throughout the medium (in general, it takes less time to fully propagate) 1/2 to 1/2
3, further reduce the time until mushrooms start to grow by 1/2
The time it takes for mushrooms to appear and be harvested can be shortened by 1/1.5 to 1/3, and the amount of harvest can be increased by 1.1 to 1.2 times. In addition, if you apply electric field treatment to the mushrooms or artificial culture medium on which mushroom fungi have taken root and propagated, the subsequent time can be similarly shortened, and
As a result of the experiment, it was found that the revenue was doubled. In addition, when mushrooms are treated with an electric field immediately after emergence,
The time it takes for mushrooms to reach harvestable size is 1/
It has been found that the time can be reduced by 1.5 to 1/3 and the sales can be increased by 1.1 to 1.2 times. The above-mentioned action of the present invention promotes the growth of mushroom fungi significantly better than the action of a culture medium under high voltage such as lightning impulse, and also provides an excellent yield. [Example] The method for cultivating mushrooms of the present invention will be specifically explained below with reference to Examples and Comparative Examples. Example 1 and Comparative Example 1 [Example 1] An artificial culture medium consisting of 7 volumes of sawdust and 3 volumes of rice bran used for cultivating enoki mushrooms was adjusted to have a moisture content of approximately 60%,
This is divided into 10 cultivation bottles with a capacity of 800ml, and each bottle costs approximately 480 yen.
After sterilizing at high pressure (1 kg/cm 2 ) for about 60 minutes, the inoculum of enoki mushroom was aseptically inoculated. Next, an electric field treatment was performed for about 60 minutes with an AC voltage of about 5 KV, a sharp electrode placed perpendicular to the mouth of the culture bottle, and a distance of about 5 cm between the working electrode and the surface of the culture medium. Cook these enoki mushrooms in the usual way at room temperature 23~23~
Place the cultivation bottle in a culture room at 24°C until mycelia propagate throughout the bottle, then germinate and sprout at 13-14°C, then suppress at 4-6°C, and wrap the bottle opening with paper. After growing, fruiting bodies were grown in a growth chamber and harvested. [Comparative Example 1] The artificial culture medium prepared in the same manner as in Example 1 was
Approximately 480g per bottle packed into 10 800ml cultivation bottles, approx.
After 60 minutes of high-pressure sterilization (1 Kg/m 2 ), the enoki mushroom inoculum was aseptically inoculated and cultivated in the same manner as in the above example, and the cultivation time and yield were examined. The results are shown in Table 1.

〔実施例 2〕[Example 2]

エノキダケの栽培に使用するオガ屑7容、米糠
3容からなる人工培養基を水分約60%に調整し、
容量800mlの栽培瓶10本に、1瓶当たり約480gを
詰め、約60分高圧(1Kg/cm2)殺菌後、無菌的に
エノキダケの種菌を接種した。ついで、直流電圧
約3KV、先端が丸い形の電極を直角方向に置き、
作用電極と人工培養基の表面との距離約5cm、処
理時間90分間で電場処理を行い、エノキダケを実
施例1と同様の方法により栽培し、その栽培時
間、収穫量を調べた。 〔比較例 2〕 比較例2として、実施例2と同様に調整した人
工培養基を、容量800mlの栽培瓶10本に、1瓶当
たり約480g詰め、約60分高圧(1Kg/cm2)殺菌
後、無菌的にキノコの種菌を接種したものを実施
例1と同様の方法により栽培し、その栽培時間、
収穫量を調べた。 その結果を第2表に示す。
The artificial culture medium used for cultivating enoki mushrooms, consisting of 7 volumes of sawdust and 3 volumes of rice bran, was adjusted to have a moisture content of approximately 60%.
Ten cultivation bottles each having a capacity of 800 ml were filled with about 480 g per bottle, and after being sterilized under high pressure (1 Kg/cm 2 ) for about 60 minutes, the enoki mushroom inoculum was aseptically inoculated. Next, place an electrode with a rounded tip at a DC voltage of about 3KV in a right angle direction.
Electric field treatment was performed at a distance of about 5 cm between the working electrode and the surface of the artificial culture medium for a treatment time of 90 minutes, and enoki mushrooms were cultivated in the same manner as in Example 1, and the cultivation time and yield were examined. [Comparative Example 2] As Comparative Example 2, the artificial culture medium prepared in the same manner as in Example 2 was packed into 10 cultivation bottles with a capacity of 800 ml, at about 480 g per bottle, and sterilized at high pressure (1 Kg/cm 2 ) for about 60 minutes. , The mushroom inoculum inoculated aseptically was cultivated in the same manner as in Example 1, and the cultivation time was
We investigated the yield. The results are shown in Table 2.

〔実施例 3〕[Example 3]

直径約20cm、長さ約15cmに切断した楢の原木10
本をそれぞれ高圧(1Kg/cm2)殺菌を行い、マン
ネンタケの種菌を原木の切口へ無菌的に接種し、
交流電圧5KV、先端が球状になつている作用電極
を切口に対し直角方向に置き、作用電極と原木の
切口との距離を10cmとし、90分間電場処理を行な
つたのち、これを栽培床に移し、湿度80%以上、
温度25〜35℃で培養する従来の方法により栽培
し、その栽培時間、収穫量を調べた。 〔比較例 3〕 実施例3と同一の原木10本をそれぞれ高圧(1
Kg/cm2)殺菌し、マンネンタケの種菌を原木の切
口に接種後、これを栽培床に移し、実施例3と同
様に従来の方法により栽培し、その栽培時間、収
穫量を調べた。 その結果を第3表に示す。
10 oak logs cut to approximately 20cm in diameter and 15cm in length
Each book was sterilized under high pressure (1Kg/cm 2 ), and the inoculum of the stone mushroom was aseptically inoculated into the cut end of the log.
With an AC voltage of 5KV, a working electrode with a spherical tip was placed perpendicular to the cut, the distance between the working electrode and the cut of the log was 10 cm, and after performing electric field treatment for 90 minutes, this was placed on the cultivation bed. Transfer to a humidity of 80% or more,
It was cultivated using the conventional method of culturing at a temperature of 25 to 35°C, and the cultivation time and yield were investigated. [Comparative Example 3] The same 10 logs as in Example 3 were each subjected to high pressure (1
After sterilizing (Kg/cm 2 ) and inoculating the cut end of the log with the mushroom inoculum, it was transferred to a cultivation bed and cultivated using the conventional method in the same manner as in Example 3, and the cultivation time and yield were examined. The results are shown in Table 3.

〔実施例 4〕[Example 4]

直径約20cm、長さ約15cmに切断した楢の原木10
本をそれぞれ高圧(1Kg/cm2)殺菌を行い、マン
ネンタケの種菌を原木の切口に接種後、直流電圧
3KV、先端が線状の作用電極を切口に平行に置
き、作用電極と原木の切口との距離8cm、電極数
は1ケ/原木1本、90分間の電場処理を行い、つ
いでこれを栽培床に移し、実施例3と同様に従来
の方法により栽培し、その栽培時間および収穫量
を調べた。 〔比較例 4〕 実施例4と同一の原木10本を、それぞれ高圧
(1Kg/cm2)殺菌を行い、マンネンタケの種菌を
原木の切口に接種後、これを栽培床に移し、実施
例3と同様に従来の方法により栽培し、その栽培
時間および収穫量を調べた。 その結果を第4表に示す。
10 oak logs cut to approximately 20cm in diameter and 15cm in length
Each book was sterilized under high pressure (1Kg/cm 2 ), and after inoculating the cut end of the wood with the mushroom inoculum, the book was sterilized using a DC voltage.
A 3KV working electrode with a linear tip was placed parallel to the cut, the distance between the working electrode and the cut of the log was 8 cm, the number of electrodes was 1 per log, electric field treatment was performed for 90 minutes, and then this was placed on the cultivation bed. The plants were then cultivated using the conventional method as in Example 3, and the cultivation time and yield were examined. [Comparative Example 4] The same 10 logs as in Example 4 were sterilized under high pressure (1 Kg/cm 2 ), and after inoculating the cut ends of the logs with the inoculum of Bamboo shoots, they were transferred to a cultivation bed, and the same as in Example 3 was carried out. Similarly, they were cultivated using the conventional method, and the cultivation time and yield were examined. The results are shown in Table 4.

〔発明の効果〕〔Effect of the invention〕

この発明は、キノコの種菌を接種した培養基を
予め電場処理することにより、収穫まで長時間を
要すると共に、栽培に際して雑菌の汚染により収
穫量が低下するなど経済的に不利であつた従来の
キノコの栽培を、その栽培時間を1/1.5〜1/3に短
縮すると共に、収穫量を従前の方法に比較して
1.1〜1.2倍に増加することができ、かつ1年にお
ける栽培サイクルを多くすることにより増収をも
はかることができるので経済的にも大きな効果を
示す画期的なキノコ栽培方法である。 また、グローコロナ現象の出現する以前の電界
内に培養基を存在させて電場処理を行うので、電
場処理装置も小型化でき、かつ設備費用もきわめ
て廉価なものであると共に、その取り扱いも非常
に容易且つ安全なものである。従つてこれらの利
益を考えた場合、キノコの製造原価は大幅に安く
なり、その得られるメリツトは図り知れないもの
がある。
This invention enables the cultivation of mushrooms by pre-treating the culture medium inoculated with mushroom inoculum in an electric field, which is economically disadvantageous in that it takes a long time to harvest and reduces the yield due to bacterial contamination during cultivation. The cultivation time has been shortened to 1/1.5 to 1/3, and the yield has been improved compared to the previous method.
This is an innovative mushroom cultivation method that has great economical effects, as it can increase mushroom production by 1.1 to 1.2 times and increase yield by increasing the number of cultivation cycles per year. In addition, since the electric field treatment is performed by placing the culture medium in the electric field before the glow corona phenomenon appears, the electric field treatment equipment can be made smaller, the equipment cost is extremely low, and it is extremely easy to handle. Moreover, it is safe. Therefore, when considering these benefits, the manufacturing cost of mushrooms will be significantly lower, and the benefits obtained are immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の栽培方法に使用する電場処
理の基本を示した説明図である。 1……高圧電源、2……作用電極、3……接地
電極、4……金属板、5……対象物。
The drawing is an explanatory diagram showing the basics of electric field treatment used in the cultivation method of the present invention. 1... High voltage power supply, 2... Working electrode, 3... Ground electrode, 4... Metal plate, 5... Target object.

Claims (1)

【特許請求の範囲】[Claims] 1 キノコ菌を接種した培養基を、交流又は直流
の電圧下におけるグローコロナ放電現象の出現す
る以前の電界内に存在させて電場処理を行い、以
後常法により栽培することを特徴とするキノコの
栽培方法。
1. Cultivation of mushrooms, characterized in that a culture medium inoculated with mushroom fungi is treated with an electric field by being placed in an electric field under alternating current or direct current voltage before the appearance of glow corona discharge phenomenon, and thereafter cultivated by conventional methods. Method.
JP59229282A 1984-10-31 1984-10-31 Cultivation of mushroom Granted JPS61108374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229282A JPS61108374A (en) 1984-10-31 1984-10-31 Cultivation of mushroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229282A JPS61108374A (en) 1984-10-31 1984-10-31 Cultivation of mushroom

Publications (2)

Publication Number Publication Date
JPS61108374A JPS61108374A (en) 1986-05-27
JPS6154396B2 true JPS6154396B2 (en) 1986-11-21

Family

ID=16889672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229282A Granted JPS61108374A (en) 1984-10-31 1984-10-31 Cultivation of mushroom

Country Status (1)

Country Link
JP (1) JPS61108374A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057897U (en) * 1991-07-18 1993-02-02 文化シヤツター株式会社 Panel fall prevention device for panel shutter
US5888791A (en) * 1996-01-31 1999-03-30 Ipr Institute For Pharmaceutical Research Ag Method of producing bacteriorhodopsin and carotenoids by electrostatic treatment of Halobacterium halobium
JP4704837B2 (en) * 2005-07-25 2011-06-22 関東防災工業株式会社 Continuous activation processing device for cultivation medium for straw cultivation and cultivation method for straw
JP5309087B2 (en) * 2010-06-17 2013-10-09 株式会社グリーンテクノ Apparatus for cultivation of straw and straw cultivation method

Also Published As

Publication number Publication date
JPS61108374A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
Ercolani et al. The growth of Pseudomonas phaseolicola and related plant pathogens in vivo
Lazar et al. The physical environment in relation to high frequency callus and plantlet development in anther cultures of wheat (Triticum aestivum L.) cv. Chris
CN109576209B (en) Ginseng cambium stem cell separation culture method
ES8407515A1 (en) Process for the in vitro production of vesicular-arbuscular endomycorrhizal fungi.
JPS6154396B2 (en)
Howard The influence of 4 (indolyl-3) butyric acid and basal temperature on the rooting of apple rootstock hardwood cuttings
Barkai-Golan Species of Penicillium causing decay of stored fruits and vegetables in Israel
CN102498945B (en) Method for improving yield of flammulina velutipes
Takaki et al. High-voltage methods for mushroom fruit-body developments
Kihara et al. Production of polyploid wheat by nitrous oxide
CN2561194Y (en) High-efficiency seed optimizing processor
CN211152670U (en) Electric field treatment device capable of improving crop seed yield and quality
Zare et al. Increasing the production yield of white oyster mushrooms with pulsed electric fields
FARZANA et al. Effect of water stress on rhizosphere mycoflora and root infection of soybean
JPH01179629A (en) Method for treating fungi-culturing medium for growth acceleration
CN114467932B (en) Preparation and method for improving ring spot resistance of apple fruits
CN115161255B (en) Method for inducing generation of apple scab conidium and application thereof
RU2364073C1 (en) Method of cabbage storage
Idrees et al. The Effect of the Electric Current Intensity and its Exposure Duration on the Germination Ratio and some Morphological Qualities of the Albizia Seedlings Albizia lebbek L. Benth
Maslienko et al. Primary screening of bacterial antagonist strains to the sunflower dry rot pathogen Rhizopus oryzae
CN113348965B (en) Proliferation method of Cordyceps sinensis for infecting hepialus larva
CN114287474B (en) Fresh-keeping method for prolonging shelf life of hypsizygus marmoreus by high-voltage electrostatic activation photodynamic force
SU1701240A1 (en) Method for processing grapevine into feed product
JP6589002B2 (en) Method for producing Cordyceps fruit body
JPH04234916A (en) Culture of mushroom