JPS6154237A - Manufacture of uranium-adsorbable composite fiber-shaped material - Google Patents

Manufacture of uranium-adsorbable composite fiber-shaped material

Info

Publication number
JPS6154237A
JPS6154237A JP17504984A JP17504984A JPS6154237A JP S6154237 A JPS6154237 A JP S6154237A JP 17504984 A JP17504984 A JP 17504984A JP 17504984 A JP17504984 A JP 17504984A JP S6154237 A JPS6154237 A JP S6154237A
Authority
JP
Japan
Prior art keywords
uranium
fine particles
adsorbing
fiber
fibrous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17504984A
Other languages
Japanese (ja)
Other versions
JPH0518626B2 (en
Inventor
Ikuo Hagiwara
郁夫 萩原
Tadami Kamaishi
釜石 忠美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17504984A priority Critical patent/JPS6154237A/en
Publication of JPS6154237A publication Critical patent/JPS6154237A/en
Publication of JPH0518626B2 publication Critical patent/JPH0518626B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To increase the durability of the titled composite fiber-shaped material remarkably by mixing closely the fine particles of uranium-adsorbable organic high molecular substance with inorganic fine powder beforehand, in case of manufacturing the uranium-adsorbable composite fiber-shaped material having the pulverized fibril-like structure by complexing the above-mentioned fine particles of organic high molecular substance and the inorganic fine powder into the fiber-shaped material. CONSTITUTION:The uranium-adsorbable composite fiber-shaped material is manufactured by complexing both the fine particles of uranium-adsorbable and water-insoluble organic high molecular substance and inorganic fine powder to the inside or the neighborhood of the surface of fiber-formable high molecular substance having the pulverized fibril-like structure. In this case, the uranium- adsorbable fine particles and the inorganic fine powder are closely mixed beforehand, by using a mixer and a ball mill or the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ウラン吸着性有機高分子物質微粒子と無機微
粉末とを繊維状物の中に複合してなる微細フィブリル状
構造を有する繊維状物の製造方法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention provides a fibrous material having a fine fibrillar structure, which is a composite of uranium-adsorbing organic polymeric material fine particles and inorganic fine powder in a fibrous material. Concerning methods of manufacturing things.

〈従来の技術〉 従来よシチタン酸あるいは活性炭とチタン酸との複合物
など無機系吸着剤が提案され、よく研究されている。
<Prior Art> Inorganic adsorbents such as cititanic acid or a composite of activated carbon and titanic acid have been proposed and extensively studied.

最近、β−ジケトン、ジチオカルバメート、アミドキシ
ム、ホスフィンやホスホンなどの基が特異な配置で結合
した高分子化合物が合成され、これらのウラン選択吸着
性能は無機系吸着剤に比べ優れていることがわかった。
Recently, polymer compounds in which groups such as β-diketones, dithiocarbamates, amidoximes, phosphines, and phosphones are bonded in unique configurations have been synthesized, and their uranium selective adsorption performance has been found to be superior to that of inorganic adsorbents. Ta.

特開昭57−10332には、繊維状吸着材が提案され
ている。これは、シアン基を有する樹脂を繊維状とした
後、化学処理によりウラン吸着性基を導入する方法であ
る。
A fibrous adsorbent is proposed in JP-A-57-10332. This is a method in which a cyan group-containing resin is made into fibers and then uranium-adsorbing groups are introduced through chemical treatment.

微細フィブリル化繊維状物中に無機填料を複合すること
は、特公昭51−30605に提案されている。この場
合、無機填料は微細パルプ状物の叩解性の向上やパルプ
不透明性の改善を目的として添加されたものであシ、特
殊な物質の吸着とは関係がない。また、特開昭55−9
9345は微細フィブリル中に触媒となる無機微粉末を
複合し。
Compounding an inorganic filler into a finely fibrillated fibrous material has been proposed in Japanese Patent Publication No. 51-30605. In this case, the inorganic filler is added for the purpose of improving the beatability of the fine pulp-like material and improving the opacity of the pulp, and has nothing to do with the adsorption of special substances. Also, JP-A-55-9
9345 is a composite of inorganic fine powder that serves as a catalyst in fine fibrils.

微粒子状触媒としての性能を発現させる方法を提案して
いる。特開昭53−104586には、ウラン吸着性を
有する無機微粒子を繊維形成性高分子物質に複合してウ
ラン採取用吸着材を得る方法が提案されている。上述の
提案は、いずれの場合も繊維形成性高分子物質中に常識
的には熱や溶剤に安定な無機微粒子を複合している。繊
維形成性高分子物質中にウラン吸着性樹脂のような有機
高分子化合物の微粒子を複合することができ、かつ優れ
た性能を示す複合繊維状物となることは従来知られてい
なかった。
We are proposing a method to develop the performance of a particulate catalyst. JP-A-53-104586 proposes a method for obtaining an adsorbent for collecting uranium by compounding inorganic fine particles having uranium adsorption properties with a fiber-forming polymeric substance. In each of the above proposals, inorganic fine particles, which are generally stable to heat and solvents, are compounded in a fiber-forming polymeric substance. It has not been previously known that fine particles of an organic polymer compound such as a uranium-adsorbing resin can be composited into a fiber-forming polymer material and that a composite fibrous material exhibiting excellent performance can be obtained.

〈発明が解決しようとする問題点〉 ウラン吸着性有機高分子化合物は、°取シ扱い性の点か
ら1通常は球状、顆粒状あるいはチップ状などに成形し
て用いられるが9粒状やチップ状などに成形されたウラ
ン吸着性樹脂には問題がある。
<Problems to be Solved by the Invention> Uranium-adsorbing organic polymer compounds are generally used in the form of spheres, granules, or chips for ease of handling; There are problems with uranium-adsorbing resins molded into

まず、微粉末状樹脂に比べ、吸着に関与する有効な表面
積が大幅に低下し、その結果吸着速度が減少する。また
、樹脂は一般に脆く、海水と接触させると粒子どうしの
接触によって表層部が摩砕され微粒子化し、吸着性樹脂
の一部が流出する。一方、微粉末状樹脂は、比表面積が
大きく吸着速度的には有利であるが、流出による損失や
取り扱い性の悪さから使用できない。
First, compared to finely powdered resins, the effective surface area involved in adsorption is significantly reduced, resulting in a reduced adsorption rate. Furthermore, resins are generally brittle, and when brought into contact with seawater, the surface layer is ground into fine particles due to contact between particles, and a portion of the adsorbent resin flows out. On the other hand, fine powder resin has a large specific surface area and is advantageous in terms of adsorption rate, but cannot be used because of loss due to spillage and poor handling.

繊維状吸着材は従来の吸着剤て比べ画期的なウラン吸着
量と吸着速度を示すものとして注目されるが、この繊維
状吸着材にも大きな問題点がある。
Although fibrous adsorbents are attracting attention as they exhibit revolutionary uranium adsorption amounts and adsorption speeds compared to conventional adsorbents, these fibrous adsorbents also have major problems.

まず、繊維はその表層が化学的に変性されて、内部とは
異なる脆い吸着性の化合物となっているが。
First, the surface layer of the fiber has been chemically modified to become a brittle adsorbent compound that is different from the inner layer.

その結果、繊維の耐摩耗性および強度が大幅に低下する
。また、繊維自体も化学変性を受けやすいため、最初の
吸着時は良い結果が得られてもウラン回収時の薬品てよ
る繊維の劣化が徐々に起シ。
As a result, the abrasion resistance and strength of the fibers are significantly reduced. In addition, the fibers themselves are susceptible to chemical modification, so even if good results are obtained during the initial adsorption, the fibers gradually deteriorate due to the chemicals used during uranium recovery.

遂には繊維の形態を保持できないことになる。Eventually, the fiber shape cannot be maintained.

本発明者らは、先に特願昭58−1<5713において
、ウラン吸着性の有機高分子物質微粒子あるいは、ウラ
ン吸着性の有機高分子物質微粒子と無機微粉末とを繊維
形成性高分子物質の微細フィブリル中に複合することに
より、高いウラン吸着速度と耐久性をもち、取シ扱い性
の優れた繊維状吸着材が得られることを提案した。本発
明者らはより高いウラン吸着速度を有する繊維状吸着材
を得るべく鋭意検討した結果、ウラン吸着性の有機高分
子物質微粒子と無機微粉末とを予め密接混合し、ウラン
吸着性有機高分子物質微粒子の表面が無機微粉末により
覆われた状態で微細フィブリル中に複合することにより
、従来にない高いウラン吸着速度を有する繊維状吸着材
が得られるとと゛を見い出し9本発明に到達した。
The present inventors previously disclosed in Japanese Patent Application No. 58-1<5713 that uranium-adsorbing organic polymeric fine particles or uranium-adsorbing organic polymeric fine particles and inorganic fine powder are combined into fiber-forming polymeric particles. We proposed that a fibrous adsorbent with high uranium adsorption rate, durability, and excellent handling properties could be obtained by combining uranium into fine fibrils. As a result of intensive studies to obtain a fibrous adsorbent having a higher uranium adsorption rate, the inventors of the present invention have found that by closely mixing uranium-adsorbing organic polymer material fine particles and inorganic fine powder in advance, the uranium-adsorbing organic polymer material The present invention was achieved by discovering that a fibrous adsorbent having an unprecedentedly high uranium adsorption rate can be obtained by compounding fine material particles into fine fibrils with their surfaces covered with inorganic fine powder.

、〈問題点を解決するだめの手段〉 本発明のウラン吸着性複合繊維状物の製造方法は、ウラ
ン吸着性かつ非水溶性の有機高分子物質機・粒子と無機
微粉末が、微細フィンIJ )し状構造を有する繊維形
成性高分子物質の内部あるいは表面近傍に複合されたウ
ラン吸着性複合繊維状物を製造するに際し、該ウラン吸
着性微粒子と該無機微粉末とを予め密接混合することを
特徴とし、また。
, <Means to Solve the Problems> In the method for producing a uranium-adsorbing composite fibrous material of the present invention, uranium-adsorbing and water-insoluble organic polymer particles and inorganic fine powder are combined into fine fin IJs. ) When producing a uranium-adsorbing composite fibrous material composited inside or near the surface of a fiber-forming polymeric substance having a ribbon-like structure, the uranium-adsorbing fine particles and the inorganic fine powder are intimately mixed in advance. Also features:

非水溶性かつウラン吸着基導入処理だよシララン吸着性
を付与できる有機高分子物質微粒子と無機微粉末が、微
細フィブリル状構造を有する繊維形成性高分子物質の内
部あるいは表面近傍に複合された後、ウラン吸着基導入
処理により該複合繊維状物中の有機高分子物質微粒子に
ウラン吸着性を付与するウラン吸着性複合繊維状物を製
造するに際し、該有機高分子物質微粒子と該無機微粉末
とを予め密接混合することを特徴とするものである。
This is a treatment for introducing water-insoluble uranium adsorbing groups.After organic polymeric fine particles and inorganic fine powders capable of imparting silane adsorption properties are combined inside or near the surface of a fiber-forming polymeric substance with a fine fibrillar structure. When producing a uranium-adsorbing composite fibrous material that imparts uranium adsorption properties to the organic polymeric material fine particles in the composite fibrous material by a uranium-adsorbing group introduction treatment, the organic polymeric material fine particles and the inorganic fine powder are combined with each other. It is characterized by intimately mixing them in advance.

以下1本発明を更に具体的に説明する。The present invention will be explained in more detail below.

本発明に使用されるウラン吸着性有機高分子物質微粒子
としては、海水中に擬千面六配位構造のウラニルイオン
として存在しているウランと強い親和性があシ高い平衡
定数を有する基、あるいはウラニルイオンを収容できる
適度の環孔径を有した高い平衡定数の化合物が非水溶性
の熱可塑性樹脂あるいは熱硬化性樹脂だ化学結合されて
いるものが挙げられる。ウラニルイオンを選択的に配位
する基としてはアミドキシム基、ジチオカルバメート基
、ホスホン基などがあり、これらの基を有する有機高分
子物質を一般にアミドキシム型樹脂。
The uranium-adsorbing organic polymer fine particles used in the present invention include a group having a strong affinity for uranium, which exists in seawater as a uranyl ion with a quasi-thousand hexacoordination structure, and a high equilibrium constant; Another example is one in which a compound with a high equilibrium constant and a ring pore size suitable for accommodating uranyl ions is chemically bonded to a water-insoluble thermoplastic resin or thermosetting resin. Groups that selectively coordinate uranyl ions include amidoxime groups, dithiocarbamate groups, and phosphonic groups, and organic polymeric substances containing these groups are generally referred to as amidoxime-type resins.

ジチオカルバメート樹脂およびホスホン型樹脂という。They are called dithiocarbamate resins and phosphonic type resins.

また、ウラニルイオンを選択的に配位する化合物として
は、大環状ヘキサケトン、大環状ヘキサカルボン酸、リ
ン酸、サリチル酸、ヒドロキサム酸などが挙げられるが
、これらの化合物は水不溶性の樹脂に固定化されて用い
られる。
Compounds that selectively coordinate uranyl ions include macrocyclic hexaketones, macrocyclic hexacarboxylic acids, phosphoric acid, salicylic acid, and hydroxamic acid, but these compounds are immobilized on water-insoluble resins. It is used as

非水溶性の樹脂としては、線状の高分子物質あるいは三
次元化した高分子物質が用いられる。好ましいものとし
ては、ビニル共重合体やポリアミドなどであυ、具体的
には、ポリスチレン、ス°チレンーアクリロニトリル共
重合体、スチレン−ジビニルベンゼン共重合体、スチレ
ン−アクリロニトリル−ジビニルベンゼン共i合体、ス
チレン−アクリロニトリル−テトラエチレングリコール
ジメタアクリレート共重合体、アクリロニトリル−ジビ
ニルベンゼン−テトラエチレングリコールジメタアクリ
レート共重合体、ポリエチレンイミ゛ンー多価カルボン
酸縮合物などで、さらにこれらを改質した樹脂を挙げる
ことができる。最も好ましいウラン吸着性有機高分子物
質微粒子としては。
As the water-insoluble resin, a linear polymer substance or a three-dimensional polymer substance is used. Preferred examples include vinyl copolymers and polyamides, specifically polystyrene, styrene-acrylonitrile copolymers, styrene-divinylbenzene copolymers, styrene-acrylonitrile-divinylbenzene copolymers, Resins modified with styrene-acrylonitrile-tetraethylene glycol dimethacrylate copolymer, acrylonitrile-divinylbenzene-tetraethylene glycol dimethacrylate copolymer, polyethyleneimine-polyvalent carboxylic acid condensate, etc. can be mentioned. The most preferred uranium adsorbing organic polymer substance fine particles are:

アクリロニトリル−ジビニルベンゼン−テトラエチレン
グリコールジメタアクリレート共重合体にヒドロキシル
アミン処理によジアミドキシム基が導入されたアミドキ
シム型樹脂などが挙げられる。
Examples include amidoxime type resins in which diamidoxime groups are introduced into acrylonitrile-divinylbenzene-tetraethylene glycol dimethacrylate copolymer by hydroxylamine treatment.

ウラン吸着性有機高分子物質微粒子の粒子径は平均10
0μm以下で最大粒子径300μm以下、好ましくは平
均50μm以下で最大粒子径100μm以下、さらに好
ましくは、平均20μm以下で最大粒子径50μm以下
である。また、ウラン吸着性有機高分子物質微粒子は、
一般にその粒子径にも依存するが、繊維形成性高分子物
質に対し0.1〜5倍重量複合できる。
The average particle size of the uranium-adsorbing organic polymer material particles is 10
The average particle size is 0 μm or less and the maximum particle size is 300 μm or less, preferably the average particle size is 50 μm or less and the maximum particle size is 100 μm or less, and more preferably the average particle size is 20 μm or less and the maximum particle size is 50 μm or less. In addition, uranium-adsorbing organic polymer material fine particles are
Although it generally depends on the particle size, it can be compounded by 0.1 to 5 times the weight of the fiber-forming polymeric substance.

ウラン吸着性有機高分子物質有機高分子物質微粒子と密
接混合する無機微粉末としては、具体的には、シリカ、
アルミナ、タルク、カオリン、クレー、酸化チタン、カ
ーボン、酸化鉄などを挙げることができる。一般的には
、吸油量の大きい親水性の無機微粉末が好ましい。撥水
性または疎水性の無機微粉末は一般に好ましくない。無
機微粉末の1次粒子径は平均10μm以下好ましくは3
μm以下であシ、ウラン吸着性有機高分子物質微粒子の
平均粒径よシも小さいものが好ましい。
Specifically, the inorganic fine powder to be intimately mixed with the uranium-adsorbing organic polymer substance organic polymer substance fine particles includes silica,
Examples include alumina, talc, kaolin, clay, titanium oxide, carbon, and iron oxide. Generally, a hydrophilic inorganic fine powder with a large oil absorption is preferred. Water-repellent or hydrophobic inorganic fine powders are generally not preferred. The average primary particle diameter of the inorganic fine powder is 10 μm or less, preferably 3 μm or less.
It is preferable that the average particle size of the uranium-adsorbing organic polymer substance fine particles is smaller than μm.

無機微粉末は、ウラル 着性有機高分子物質微粒子に対
し0,1〜5倍重量、好ましくは0.5〜2倍重量添加
するのが良い。
The inorganic fine powder is preferably added in an amount of 0.1 to 5 times, preferably 0.5 to 2 times, the weight of the fine particles of the ural-adhesive organic polymer substance.

本発明においてはウラン吸着性有機高分子物質微粒子と
無機微粉末とを予め密接混合する必要がある。
In the present invention, it is necessary to intimately mix the uranium-adsorbing organic polymeric substance fine particles and the inorganic fine powder in advance.

ここで言う密接混合とは、その結果、ウラン吸着性有機
高分子物質微粒子の表面に無機微粉末゛が付着し、いわ
ゆる粒子の表面を粉末でまぶした状態になることを言う
。粒子表面が粉末でまぶされる割合は、少なくとも全粒
子表面の30チが覆われている必要があ)、好ましくは
50チ以上、更に好ましくは80%以上である。
The term "intimate mixing" as used herein means that as a result, inorganic fine powder is attached to the surface of the uranium-adsorbing organic polymer material fine particles, resulting in a state in which the surface of the particles is covered with powder. The ratio at which the particle surface is dusted with powder is such that at least 30 inches of the entire particle surface must be covered), preferably 50 inches or more, and more preferably 80% or more.

このような状態を得るための密接混合の手段としては一
般に用いられている混合器、ボールミル。
Mixers and ball mills are commonly used as a means of intimate mixing to achieve this state.

粉砕機あるいは振とう器があり、空気中あるいは溶媒中
で用いられる。
There are grinders or shakers, which are used in air or in a solvent.

密接混合によ)得られたウラン吸着性複合繊維状物の内
部形態は、ウラン吸着性微粒子の周囲に無機微粉末がほ
ぼ完全に配置しウラン吸着性微粒子を覆っている。これ
てより、ウラン吸着性微粒子は、その表面を有効に海水
と接触できるようKなり、ウラン吸着性微粒子と無機微
粉末は、繊維状物の内部でそれぞれ独立的に存在してお
)、ウラン吸着性微粒子の大部分の表面は、マトリック
スポリマにより覆われている。したがって、ウラン吸着
性微粒子は、密接混合の場合と比べその表面を有効に海
水と接触できない。
The internal form of the uranium-adsorbing composite fibrous material obtained (by intimate mixing) is such that the inorganic fine powder is almost completely arranged around the uranium-adsorbing fine particles, covering the uranium-adsorbing fine particles. As a result, the surface of the uranium-adsorbing fine particles can be effectively contacted with seawater, and the uranium-adsorbing fine particles and the inorganic fine powder exist independently inside the fibrous material. Most surfaces of the adsorptive fine particles are covered with a matrix polymer. Therefore, the surface of the uranium-adsorbing fine particles cannot come into contact with seawater as effectively as in the case of intimate mixing.

繊維形成性高分子物質としては、有機溶剤に溶解しうる
線状の高分子物質が用いられる。好ましいものとしては
、ビニル共重合体やセルロース誘導体などである。具体
的には、ポリエチレン、ポリプロピレン、ポリブテン−
1,ポリ−4−メチルベンテンー1.ポリアクリロニト
リル、スチレン−アクリロニトリル共重合体、塩化ビニ
ール。
As the fiber-forming polymeric substance, a linear polymeric substance that can be dissolved in an organic solvent is used. Preferred examples include vinyl copolymers and cellulose derivatives. Specifically, polyethylene, polypropylene, polybutene
1, Poly-4-methylbentene-1. Polyacrylonitrile, styrene-acrylonitrile copolymer, vinyl chloride.

セルロースアセテート、部分エステル化まliミニ−チ
ルポリビニルアルコールなどで、さらにこれらを改質し
たポリマを挙げることができる。特に好ましいポリマと
しては、結晶性ポリオレフィンやアクリロニトリル(共
)重合体およびセルロース誘導体が挙げられる。
Examples include polymers further modified with cellulose acetate, partially esterified polyvinyl alcohol, and the like. Particularly preferred polymers include crystalline polyolefins, acrylonitrile (co)polymers, and cellulose derivatives.

また、これらのマトリックスとなるポリマのほかに繊維
形成性は不十分であるが親水性を付与する目的でエチレ
ン−酢酸ビニル共重合体、エチレン−アクリル酸共重合
体金属塩などが添加されてもよい。
In addition to these matrix polymers, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer metal salt, etc. may be added for the purpose of imparting hydrophilicity, although the fiber-forming properties are insufficient. good.

紡糸原液中に水を添加して分散体ポリマ溶液エマルジョ
ンとする場合には、水相に水溶性ポリ・マを溶解してお
き、形成される繊維状物に親水性を付与することができ
る。水溶性ポリマとしては。
When water is added to the spinning dope to form a dispersion polymer solution emulsion, a water-soluble polymer can be dissolved in the aqueous phase to impart hydrophilicity to the fibrous material formed. As a water-soluble polymer.

例えば、ポリビニルアルコール、ポリアクリル酸。For example, polyvinyl alcohol, polyacrylic acid.

ポリアクリルアミド、変性デンプン、カルボキシメチル
セルロースが用いられる。
Polyacrylamide, modified starch, and carboxymethyl cellulose are used.

本発明に使用される有機溶剤は、繊維形成性高分子物質
を溶解させ、がっ、ウラン吸着性樹脂微粒子および無機
微粉末に対し実質的に不活性でなければならない。これ
らの条件に適した溶剤として、具体的には、ペンタン、
ヘキサン、シクロヘキf 7 、 ベンゼン等の炭化水
素類、塩化スチレン。
The organic solvent used in the present invention must dissolve the fiber-forming polymeric substance and be substantially inert to the uranium-adsorbing resin particles and inorganic fine particles. Solvents suitable for these conditions include pentane,
Hydrocarbons such as hexane, cyclohex f7, benzene, and styrene chloride.

りo O* 、I+/ム、 !2!]塩化炭素、トリク
ロルエチレン等(D 八C1)jン化炭化水素類、メチ
ルアルコール。
Rio O*, I+/mu, ! 2! ] Carbon chloride, trichloroethylene, etc. (D 8C1) ionized hydrocarbons, methyl alcohol.

エチルアルコール、インプロピルアルコール等ノアルコ
ール類、アセトニトリル等のニトリル類。
Alcohols such as ethyl alcohol and inpropyl alcohol, and nitriles such as acetonitrile.

アセトン、エチルメチルケトン等のケトン類、エチルエ
ーテル、テトラヒドロフラン等のエーテル類、酢酸メチ
ル、酢酸エチル等のエステル類およびこれらの混合物な
どが挙げられる。これらの溶剤は、用いる繊維形成性高
分子物質の特性により適宜使用される。
Examples include ketones such as acetone and ethyl methyl ketone, ethers such as ethyl ether and tetrahydrofuran, esters such as methyl acetate and ethyl acetate, and mixtures thereof. These solvents are appropriately used depending on the characteristics of the fiber-forming polymer substance used.

ウラン吸着性微粒子や無機微粉末を紡糸原液中で均一に
分散したシ、親水性付与の目的で界面活性剤を添加する
のが好ましい。界面活性剤は、R油性あるいは親水性の
アニオン、カチオン、両性および非イオン系のものかあ
シ、高分子量のものあるいは低分子量のものが適宜使用
される。界面活性剤の作用によυ系内圧存在する微粒子
は均一に分散させられる。その方が凝集しているものよ
υその性能をよシ充分に発揮しうるようになシ。
When uranium-adsorbing fine particles or inorganic fine powder are uniformly dispersed in the spinning dope, it is preferable to add a surfactant for the purpose of imparting hydrophilicity. As the surfactant, oily or hydrophilic anionic, cationic, amphoteric and nonionic surfactants, high molecular weight surfactants, and low molecular weight surfactants are appropriately used. Due to the action of the surfactant, the fine particles that exist under the internal pressure of the υ system are uniformly dispersed. It's more cohesive, so it can fully demonstrate its performance.

かつ、複合繊維状物からの脱落も起こシ難くなってくる
Moreover, it becomes difficult to fall off from the composite fibrous material.

上記の繊維形成性高分子物質、ウラン吸着性有機高分子
物質微粒子、無機微粉末、界面活性剤および溶剤を用い
て本発明のウラン吸着性有機高分子物質微粒子を内部て
複合した微細フィブリル化繊維状物の製造は次のような
方法によって行われる。即ち、密接混合されたウラン吸
着性有機高分子物質と無機微粉末、繊維形成性高分子物
質、界面活性剤および繊維形成性高分子物質を常温・常
圧下では溶解しがたいが、昇温・昇圧下では溶解しうる
比較的低沸点の溶剤から成る混合物を密閉下で加熱、攪
拌し繊維形成性高分子物質を溶解させ、ウラン吸着性有
機高分子物質微粒子と無機微粉末が均一に分散した分散
液とする6さらに、該分散液を高温高圧下にノズルを通
して実質的に大気圧の低圧域中に急激に吐出させるいわ
ゆるフラッシュ紡糸法が用いられる。また、この分散体
ポリマ溶液系に水溶液を添加し瞬時に水中油型あるいは
油中水型エマルジョンを形成し、これをただちに同様に
高温高圧下にノズルから低圧域中に吐出するエマルジョ
ンフラッシュ紡糸法も用いることができる。いずれの場
合にも、低圧域における溶剤の瞬間的な蒸発によって繊
維形成性高分子物質が固化し、微細フィブリル化繊維状
物が形成さ些る。さらに、繊維形成性高分子物質を常圧
下に溶解しうる溶剤を用いウラン吸着性有機高分子物質
微粒子と無機微粉末が均一に分散したポリマ溶液を調製
したのち、これをノズルから急激に沈でん剤中へ吐出す
る湿式紡糸法を用いることもできる。この方法において
は溶剤がポリマの非溶剤中に急速て溶解して除去され、
同時に非溶剤がポリマ溶液中に混入溶解され繊維形成へ
と導くのである。溶剤は、いずれの方法においても、繊
維形成時に望まれる構造を与えるのに重要な役割を果た
している。
Fine fibrillated fibers are composited with the uranium-adsorbing organic polymeric material fine particles of the present invention using the above-mentioned fiber-forming polymeric material, uranium-adsorbing organic polymeric material fine particles, inorganic fine powder, surfactant, and solvent. The product is manufactured by the following method. In other words, it is difficult to dissolve the uranium-adsorbing organic polymer material, inorganic fine powder, fiber-forming polymer material, surfactant, and fiber-forming polymer material intimately mixed together at room temperature and pressure, but when heated or A mixture consisting of a relatively low-boiling point solvent that can be dissolved under increased pressure was heated and stirred under closed conditions to dissolve the fiber-forming polymeric material, and the uranium-adsorbing organic polymeric material particles and inorganic fine particles were uniformly dispersed. Further, a so-called flash spinning method is used in which the dispersion is rapidly discharged into a low pressure region of substantially atmospheric pressure through a nozzle under high temperature and high pressure. There is also an emulsion flash spinning method in which an aqueous solution is added to this dispersion polymer solution system to instantaneously form an oil-in-water or water-in-oil emulsion, and this is immediately similarly discharged from a nozzle into a low-pressure region under high temperature and high pressure. Can be used. In either case, instantaneous evaporation of the solvent in the low pressure region solidifies the fiber-forming polymeric material and forms fine fibrillated fibers. Furthermore, after preparing a polymer solution in which uranium-adsorbing organic polymer particles and inorganic fine particles are uniformly dispersed using a solvent that can dissolve the fiber-forming polymer substance under normal pressure, this is rapidly poured into a precipitating agent through a nozzle. A wet spinning method can also be used. In this method, the solvent is rapidly dissolved in the non-solvent of the polymer and removed.
At the same time, the non-solvent is mixed and dissolved into the polymer solution, leading to fiber formation. The solvent plays an important role in both methods in providing the desired structure during fiber formation.

本発明の方法においては更に次のようにしてウラン吸着
性複合繊維状物を製造することができる。
In the method of the present invention, a uranium-adsorbing composite fibrous material can be further produced in the following manner.

即ち、まず上述のウラン吸着性微粒子とまったく同一の
複合方法により、ウラン吸着基導入処理によりララン吸
着性を付与できる有機高分子物質微粒子を繊維形成性高
分子物質だ複合し有機高分子物質微粒子複合繊維状物を
製造する。さらに、該有機高分子物質単独での場合とま
ったく同様のウラン吸着基導入方法を用いて該複合繊維
状物を処理することにより、該複合繊維状物中ρ有機高
分子物質微粒子にウラン吸着性を付与し、ウラン吸着性
複合繊維状物を製造することができる。
That is, first, by using exactly the same method of compositing as for the uranium-adsorbing fine particles described above, organic polymeric substance fine particles capable of imparting lalan adsorption properties through uranium-adsorbing group introduction treatment are combined with fiber-forming polymeric substances to form an organic polymeric substance fine particle composite. Manufacture fibrous materials. Furthermore, by treating the composite fibrous material using the same method of introducing uranium adsorption groups as in the case of using the organic polymer material alone, the fine particles of the ρ organic polymer material in the composite fibrous material have uranium adsorption properties. can be applied to produce a uranium-adsorbing composite fibrous material.

〈実施例〉 以下に本発明の詳細な説明するが、これら・の例は何ら
本発明の技術内容を限定解釈させるものではない。
<Examples> The present invention will be described in detail below, but these examples are not intended to limit the technical content of the present invention.

実施例1 アミドキシム樹脂(平均粒径18μm、架橋剤としてト
リエチレングリコールジメタクリレートを10mo1%
とジビニルベンゼンを0.3mo1%使用し、アクリロ
ニトリルと共重合させたのち、ヒドロキシルアミンを用
いて二) IJル基をアミドキシム化して得られた樹脂
)100重量部とシリカ(徳山曹達■製トクシールGU
−N)50重量部を微粉砕機(ContraPlex 
65C,ALPINE社製)により密接混合とする。こ
の密接混合物とマトリックスポリマとしてポリエチレン
(Hl−Zex 2100J、三片石油化学■製)10
0重量部、さら【界面活性剤としてTPP1002A4
塩(ドデシルアミノプロピオン酸A/塩、二環化成■#
)75重量部をヘキサン1300重量部とともにオート
クレーブに仕込み、攪拌しつつ150〜160°Cに加
熱、15分間保持した後、スラリー状物を150“0で
オートクレーブ底部のノズル(1−φ)を通じ常圧下に
フラッシュするととてよジアミドキシム樹脂およびシリ
カを複合した連続繊維状物を製造した走査型電子顕微鏡
(SIHM)観察の結果、アミドキシム樹脂微粒子の表
面にシリカが存在していた。
Example 1 Amidoxime resin (average particle size 18 μm, 10 mo1% triethylene glycol dimethacrylate as a crosslinking agent)
After copolymerizing with acrylonitrile using 0.3 mo1% of divinylbenzene and divinylbenzene, 100 parts by weight of the resin obtained by converting the IJ group into amidoxime and silica (Tokusil GU manufactured by Tokuyama Soda)
-N) 50 parts by weight in a pulverizer (ContraPlex
65C, manufactured by ALPINE) to intimately mix. This intimate mixture and polyethylene as a matrix polymer (Hl-Zex 2100J, manufactured by Mikata Petrochemical Co., Ltd.) 10
0 parts by weight, further [TPP1002A4 as a surfactant]
Salt (dodecylaminopropionic acid A/salt, bicyclization ■#
) was charged into an autoclave together with 1300 parts by weight of hexane, heated to 150-160°C with stirring, and held for 15 minutes. When flashed under pressure, a continuous fibrous composite of diamidoxime resin and silica was produced.As a result of scanning electron microscopy (SIHM) observation, silica was present on the surface of the amidoxime resin fine particles.

ウラン吸着試験:上記の繊維状吸着材50mgを天然海
水5ノ(ウラン含有量12μg)中に24時間攪拌しな
がら浸漬した後、1規定塩酸水溶液でウランを脱着し、
吸光光度法により定量したところ、3−5μg150m
g・24hrのウランが採取された。
Uranium adsorption test: After immersing 50 mg of the above fibrous adsorbent in natural seawater (uranium content 12 μg) for 24 hours with stirring, uranium was desorbed with a 1N aqueous hydrochloric acid solution.
As determined by spectrophotometry, 3-5μg150m
g・24hr of uranium was extracted.

実施例2 アミドキシム樹脂(平均粒径18μm、架橋剤としてト
リエチレングリコールジメタクリレート10mo1%と
ジビニルベンゼン2 mo1%を使用しアクリロニトリ
ルと共重合させたのち、ヒドロキシルアミンを用いてニ
トリル基をアミドキシム化して得られた樹脂)100重
量部とシリカ100重量部を微粉砕機【よシ密接混合す
る。この密接混合物とポリエチレン100重量部、さら
に界面活性剤としてT P P 1002 A4塩 1
0重量部をヘキサン1300重量部とともにオートクレ
ーブに仕込み、実施例1と同様に紡糸し、連続繊維状物
を製造した。SEM観察の結果、アミドキシム樹脂微粒
子の表面にシリカが存在していた。
Example 2 Amidoxime resin (average particle size 18 μm, copolymerized with acrylonitrile using 10 mo 1% of triethylene glycol dimethacrylate and 2 mo 1% of divinylbenzene as crosslinking agents, and then converted into amidoxime of the nitrile group using hydroxylamine) 100 parts by weight of the resin) and 100 parts by weight of silica are intimately mixed in a pulverizer. This intimate mixture, 100 parts by weight of polyethylene, and 1 part of T P P 1002 A4 salt as a surfactant.
0 parts by weight were charged into an autoclave together with 1300 parts by weight of hexane, and spun in the same manner as in Example 1 to produce a continuous fibrous material. As a result of SEM observation, silica was present on the surface of the amidoxime resin fine particles.

この吸着材を用いて、実施例1と同様に51の天然海水
を用いて吸着試験を行なったところ、39μg / 5
0 m g・24hrのウランが採取された。
Using this adsorbent, an adsorption test was conducted using 51 natural seawater in the same manner as in Example 1, and the result was 39μg/5.
0 mg/24hr of uranium was collected.

実施例6 アクリロニトリル(100mo1%)、)リエチレング
リコールジメタクリレート(10mo1%)、ジビニル
ベンゼン(2mo1% )を界面活性剤を用いて水中て
分散してエマルジョン重合を行い、平均粒径10μmの
共重合体を製造した。この共重合体100重量部とシリ
カ100重量部を微粉砕機により密接混合する。この密
接混合物とポリエチレン100重量部、界面活性剤とし
てT P P  1002Aj塩10重量部をヘキサン
1300重量部とともだオートクレーブに仕込み、実施
例1と同様に紡糸し、連続繊維状物を製造した。
Example 6 Acrylonitrile (100 mo1%), lyethylene glycol dimethacrylate (10 mo1%), and divinylbenzene (2 mo1%) were dispersed in water using a surfactant and emulsion polymerization was performed to produce a copolymer with an average particle size of 10 μm. was manufactured. 100 parts by weight of this copolymer and 100 parts by weight of silica are intimately mixed using a pulverizer. This intimate mixture, 100 parts by weight of polyethylene, 10 parts by weight of T P P 1002Aj salt as a surfactant, and 1300 parts by weight of hexane were placed in an autoclave and spun in the same manner as in Example 1 to produce a continuous fibrous material.

この連続繊維状物をヒドロキシルアミン処理し。This continuous fibrous material was treated with hydroxylamine.

アミドキシム基を導入し、ウラン吸着性有機高分子物質
微粒子複合繊維状物を製造した。S E li!観察の
結果、アミドキシム樹脂微粒子の表面にシリカが存在し
ていた。
Amidoxime groups were introduced to produce a uranium-adsorbing organic polymer fine particle composite fibrous material. S E li! As a result of observation, silica was present on the surface of the amidoxime resin fine particles.

この吸着材を用いて、実施例1と同様K 5 tの天然
海水を用いて吸着試験を行なったところ。
Using this adsorbent, an adsorption test was conducted using K 5 t natural seawater as in Example 1.

6.2μg / 50 m g・24hrのウランが採
取された。
6.2μg/50mg/24hr of uranium was collected.

比較実施例1 アミドキシム樹脂とシリカの密接混合を行わず別々にオ
ートクレーブに添加した以外は実施例1と同様にして繊
維状物を製造し、ウラン吸着試験を行ったところ、2.
3μg150mg−24hrのウランが採取されたにす
ぎなかった。SEM観察の結果、アミドキシム樹脂微粒
子とシリカは独立的に存在し、アミドキシム樹脂微粒子
の表面にはまったくシリカが認められなかった。
Comparative Example 1 A fibrous material was produced in the same manner as in Example 1 except that the amidoxime resin and silica were not intimately mixed and were added to the autoclave separately, and a uranium adsorption test was conducted.2.
Only 3μg of uranium (150mg-24hr) was collected. As a result of SEM observation, the amidoxime resin fine particles and silica existed independently, and no silica was observed on the surface of the amidoxime resin fine particles.

〈発明の効果〉 以上説明したとおり1本発明のウラン吸着性複合繊維状
物は、ウラン吸着性微粒子を繊維中て分散性良く複合し
ているために、繊維の切断や引き裂きに際しても微粒子
の脱落が少なく、実質的に流出しない。また、複合され
たウラン吸着性微粒子は、微細シリカと密接混合され、
その表面がシリカに覆われた状態で紡糸されるため、マ
トリックスとなる繊維形成性高分子物質と接触する部分
が減少し、ウラン吸着に関与する表面が多くなる。
<Effects of the Invention> As explained above, the uranium-adsorbing composite fibrous material of the present invention has uranium-adsorbing fine particles mixed in the fibers with good dispersion, so even when the fibers are cut or torn, the fine particles do not fall off. There is little leakage, and there is virtually no leakage. In addition, the composite uranium-adsorbing fine particles are closely mixed with fine silica,
Since the fiber is spun with its surface covered with silica, the area that comes into contact with the fiber-forming polymeric material that becomes the matrix decreases, and the surface that participates in uranium adsorption increases.

さらて、ウラン吸着性微粒子は外部と微細な空隙により
連結してくるために、海水の交換あるいは拡散が速く、
未複合の粉末並のウラン吸着速度を示す。微細フィブリ
ル状繊維は高分子量で繊維形成性の重合体から成るため
、衝撃や摩耗に対して著しい耐久性があり含有している
ウラン吸着性微粒子を完全に保護している。
Furthermore, since the uranium-adsorbing fine particles are connected to the outside through fine voids, the exchange or diffusion of seawater is rapid.
Shows uranium adsorption speed comparable to that of uncomposite powder. Since the fine fibrillar fibers are made of a high molecular weight, fiber-forming polymer, they have remarkable durability against impact and abrasion, and completely protect the uranium-adsorbing fine particles they contain.

Claims (2)

【特許請求の範囲】[Claims] (1)ウラン吸着性かつ非水溶性の有機高分子物質微粒
子と無機微粉末が、微細フィブリル状構造を有する繊維
形成性高分子物質の内部あるいは表面近傍に複合された
ウラン吸着性複合繊維状物を製造するに際し、該ウラン
吸着性微粒子と該無機微粉末とを予め密接混合すること
を特徴とするウラン吸着性複合繊維状物の製造方法。
(1) A uranium-adsorbing composite fibrous material in which fine particles of a uranium-adsorbing, water-insoluble organic polymer material and fine inorganic powder are combined inside or near the surface of a fiber-forming polymer material with a fine fibrillar structure. 1. A method for producing a uranium-adsorbing composite fibrous material, which comprises closely mixing the uranium-adsorbing fine particles and the inorganic fine powder in advance.
(2)非水溶性かつウラン吸着基導入処理によりウラン
吸着性を付与できる有機高分子物質微粒子と無機微粉末
が、微細フィブリル状構造を有する繊維形成性高分子物
質の内部あるいは表面近傍に複合された後、ウラン吸着
基導入処理により該複合繊維状物中の有機高分子物質微
粒子にウラン吸着性を付与するウラン吸着性複合繊維状
物を製造するに際し、該有機高分子物質微粒子と該無機
微粉末とを予め密接混合することを特徴とするウラン吸
着性複合繊維状物の製造方法。
(2) Organic polymeric fine particles and inorganic fine powders, which are water-insoluble and can impart uranium adsorption properties through treatment to introduce uranium adsorbing groups, are combined inside or near the surface of a fiber-forming polymeric substance having a fine fibrillar structure. After that, when manufacturing a uranium-adsorbing composite fibrous material that imparts uranium adsorption properties to the organic polymeric material fine particles in the composite fibrous material by a uranium adsorption group introduction treatment, the organic polymeric material fine particles and the inorganic fine particles are combined. A method for producing a uranium-adsorbing composite fibrous material, the method comprising closely mixing the uranium-adsorbing composite fibrous material with a powder.
JP17504984A 1984-08-24 1984-08-24 Manufacture of uranium-adsorbable composite fiber-shaped material Granted JPS6154237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17504984A JPS6154237A (en) 1984-08-24 1984-08-24 Manufacture of uranium-adsorbable composite fiber-shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17504984A JPS6154237A (en) 1984-08-24 1984-08-24 Manufacture of uranium-adsorbable composite fiber-shaped material

Publications (2)

Publication Number Publication Date
JPS6154237A true JPS6154237A (en) 1986-03-18
JPH0518626B2 JPH0518626B2 (en) 1993-03-12

Family

ID=15989333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17504984A Granted JPS6154237A (en) 1984-08-24 1984-08-24 Manufacture of uranium-adsorbable composite fiber-shaped material

Country Status (1)

Country Link
JP (1) JPS6154237A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36811E (en) * 1991-02-07 2000-08-08 Minnesota Mining And Manufacturing Co. Solid phase extraction medium
JP2002273479A (en) * 2001-03-21 2002-09-24 Yoshiji Sakamoto Cleaning equipment utilizing portion of water area (1) in cleaning equipment for water area (1) to be installed within water area (1)
JPWO2003022425A1 (en) * 2001-09-10 2004-12-24 クラレケミカル株式会社 Composite granular material and method for producing the same
JP2008019150A (en) * 2006-07-14 2008-01-31 Hirosaki Univ Uranium recovery method
JP2022511183A (en) * 2019-11-11 2022-01-31 江▲蘇▼大学 A method for preparing amidoxime-functionalized hollow porous polymer microbeads using CO2 as an emulsion template.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36811E (en) * 1991-02-07 2000-08-08 Minnesota Mining And Manufacturing Co. Solid phase extraction medium
JP2002273479A (en) * 2001-03-21 2002-09-24 Yoshiji Sakamoto Cleaning equipment utilizing portion of water area (1) in cleaning equipment for water area (1) to be installed within water area (1)
JPWO2003022425A1 (en) * 2001-09-10 2004-12-24 クラレケミカル株式会社 Composite granular material and method for producing the same
JP2008019150A (en) * 2006-07-14 2008-01-31 Hirosaki Univ Uranium recovery method
JP2022511183A (en) * 2019-11-11 2022-01-31 江▲蘇▼大学 A method for preparing amidoxime-functionalized hollow porous polymer microbeads using CO2 as an emulsion template.

Also Published As

Publication number Publication date
JPH0518626B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JP2716879B2 (en) Composite polytetrafluoroethylene articles with controlled porosity and control methods therefor
DE69228764T2 (en) GRANULAR COMPOSITION
US4414111A (en) Shaped composite adsorbent and a process for preparing the same
US20100189625A1 (en) Granulated product of carbon nanotube, and method for production thereof
CN110327900B (en) Nanofiber hollow ball sponge material and preparation method thereof
KR19990087589A (en) Cesium ion adsorbent, its manufacturing method and method of use
JP2000510760A (en) Particle-filled membranes as oxidant scavengers
CN101495223A (en) Preparation of composite nano/microcapsules comprising nanoparticles
GB2053256A (en) Process for preparing a solid golf ball
US3914354A (en) Process for producing fine fibrous structures
EP1175520A1 (en) Method for producing highly adsorbent cellulosic forms
Wang et al. Phosphate removal using surface enriched hematite and tetra-n-butylammonium bromide incorporated polyacrylonitrile composite nanofibers
JPS6154237A (en) Manufacture of uranium-adsorbable composite fiber-shaped material
WO2005019337A1 (en) Method for preparing cyclodextrin-polyolefin blends and products made therefrom
JPS6164326A (en) Preparation of composite particle
CN109097906A (en) Antibacterial acoustical cotton for automobile
JP2008542517A (en) Method for producing carbon particles coated with dispersant
JP4136220B2 (en) Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin
JPS59142845A (en) Uranium-adsorbable composite fibrous material and its manufacture
JPH0513168B2 (en)
JP2018012090A (en) Adsorbent
JP3348043B2 (en) Catechin-containing polypropylene fiber and method for producing the same
JPS5822564B2 (en) Gosei Pulp
JPS6055032A (en) Ion-exchangeable composite fiber material
Li et al. Kaolinite-armoured polyurea microcapsules fabricated on Pickering emulsion: controllable encapsulation and release performance of a lipophilic compound