JP4136220B2 - Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin - Google Patents

Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin Download PDF

Info

Publication number
JP4136220B2
JP4136220B2 JP25254999A JP25254999A JP4136220B2 JP 4136220 B2 JP4136220 B2 JP 4136220B2 JP 25254999 A JP25254999 A JP 25254999A JP 25254999 A JP25254999 A JP 25254999A JP 4136220 B2 JP4136220 B2 JP 4136220B2
Authority
JP
Japan
Prior art keywords
tannin
insoluble
gel
insoluble tannin
hydrophobic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25254999A
Other languages
Japanese (ja)
Other versions
JP2000308825A (en
Inventor
義夫 中野
康雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP25254999A priority Critical patent/JP4136220B2/en
Publication of JP2000308825A publication Critical patent/JP2000308825A/en
Application granted granted Critical
Publication of JP4136220B2 publication Critical patent/JP4136220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はウラン、トリウム、超ウラン元素等のアクチニド元素、又はカドミウム、鉛、クロム、水銀及び鉄を含む重金属元素、或いはコバルト、セシウム、ストロンチウム等の金属元素を吸着し得る不溶性タンニンの製造方法に関する。また本発明はこのタンニンを用いた六価クロムの吸着方法に関するものである。
【0002】
【従来の技術】
核燃料を取扱う工程において排出される廃液中には、ウラン、トリウム等の核燃料元素が含まれている。従来、この核燃料元素を吸着するための吸着剤の製造方法として、本出願人は、アルカリ水溶液に縮合型タンニン粉末を溶解し、この溶液にアルデヒド水溶液を混合してゲル状組成物を生成し、このゲル状組成物を室温下で熟成、又は加熱して安定化する不溶性タンニンの製造方法を提案した(特開平5−66291)。
また本出願人は、アンモニア水に加水分解型タンニン粉末を溶解し、この溶液にアルデヒド水溶液を混合して沈殿物を生成し、この沈殿物を加熱し、この加熱した沈殿物を硝酸のような鉱酸に浸漬した後、濾過する加水分解型不溶性タンニンの製造方法を提案した(特開平5−177135)。
上記2つの方法で得られる不溶性タンニンは、金属元素の吸着能力を有し、かつ廃液処理装置のカラムにおける通液性が極めて良好な特長がある。この吸着剤である不溶性タンニンはその含水率を制御すると、ゲルの網目構造が変化して、吸着させる金属元素のイオンの大きさに応じた適切な網目構造及びその分子空間を確保でき、金属元素の吸着容量及び吸着速度を変えることができる可能性がある。特に特開平5−177135号公報に示される不溶性タンニンは、鉱酸と接触することにより、タンニン表面が硬くなりカラムに入れたときにつぶれにくく金属元素の吸着率がより向上する利点があり、またゲルを酸性に保持することにより、不溶性タンニンにカビが発生するのを防止する効果も有する。
【0003】
【発明が解決しようとする課題】
しかし、上記2つの方法で製造された不溶性タンニンは、その含水率の制御し得る範囲が実用上約70%から約85%までに限られていた。
また上記2つの方法において、ゲル状組成物を室温下で熟成、又は加熱して安定化することにより得られた不溶性タンニンは、カラム等に充填して使用するときにミキサー等の機械的手段で粒子状に解砕し、篩い分けにより所望の大きさの粒子を得ているが、粒子の粒径及び形状が一定でなく、微粒子の不溶性タンニンを必要とするときには特別に微細化しなければならなかった。
【0004】
本発明の目的は、上記従来の吸着剤に比較してゲルの網目構造とその分子空間をより広く変化させて金属の吸着容量と吸着速度を変えることができる不溶性タンニンを製造する方法を提供することにある。
本発明の別の目的は、吸着剤として使用するに際して解砕する必要がなく、所望の粒径及び所望の含水率の不溶性タンニンを製造し得る方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、(a) アルカリ水溶液に縮合型タンニン粉末を溶解する工程と、(b) 工程(a)で得られた水溶液にアルデヒド水溶液を添加混合する工程と、(c) ポリエーテル型非イオン性界面活性剤を含む疎水性溶媒を加熱温度下で撹拌させながら前記工程(b)で得られた水溶液を添加して液滴の形態で前記疎水性溶媒中に分散させる工程と、(d) 前記液滴から水分を蒸発させて球状でかつゲル状不溶性タンニンを形成する工程とを含む不溶性タンニンの製造方法である。
なお、本明細書において「不溶性タンニン」とは、水、酸又はアルカリのいずれに対しても溶解しないタンニンをいう。
【0006】
工程(a)及び工程(b)を経てタンニンの予備架橋が行われ、粘性の高い溶液が生成される。工程(c)で疎水性溶媒を撹拌させると、溶媒の液面は円錐状になり気体と液体との界面積が増大する。ここで疎水性溶媒中に分散している粘性の高い溶液は球状の液滴となってこの界面に沿って流動し、工程(d)で液滴から水分が蒸発することにより、液滴が粒子化して様々な網目構造とその分子空間からなるゲル状不溶性タンニンが形成される。疎水性溶媒の疎水性の程度や粘度、撹拌速度等の疎水性溶媒の流動条件等に応じてゲル状不溶性タンニンの粒径及び形状が制御される。また疎水性溶媒の温度、液滴からの水分蒸発時間等に応じてゲル状不溶性タンニンの網目構造及び分子空間を変えることにより不溶性タンニンの含水率が制御される。
得られた不溶性タンニンをウラン、トリウム、超ウラン元素、又はカドミウム、鉛、クロム、水銀、鉄、コバルト、セシウム、ストロンチウム等の金属元素を含有した溶液に接触させると、ゲル状不溶性タンニンは金属元素を極めて効率良く吸着する。これはゲルを構成するタンニンのもっているポリフェノール性水酸基が官能基となって、金属元素と水素イオン交換反応により吸着するためである。またゲルにすることによりその分子鎖の自由度が増大し、分子鎖の官能基が金属元素と配位し易い立体構造になるため、ゲル状不溶性タンニンは極めて優れた金属元素の吸着性能を示す。
【0007】
請求項4に係る発明は、請求項1記載の方法によって不溶性タンニンを製造する工程、及び該工程で得られた含水率が70〜90%の球状のゲル状不溶性タンニンを六価クロムを含有する水溶液に添加して六価クロムを不溶性タンニンに吸着する工程とからなる六価クロムの吸着方法である。
含水率を70〜90%に調整したゲル状不溶性タンニンは六価クロムを効率よく吸着することができる。
【0008】
【発明の実施の形態】
本発明の製造方法は、前述した工程(a)及び工程(b)からなるタンニンの予備架橋工程と、前述した工程(c)及び工程(d)からなる粘性の高い溶液の粒子化・構造形成工程からなる。
【0009】
(1) タンニンの予備架橋工程
図1に示すように、この(1)タンニンの予備架橋工程では、先ず縮合型タンニン粉末をpH8〜10の室温のアルカリ水溶液に溶解する。pH8未満ではタンニン粉末が溶解しにくく、pH10を超えると部分的に架橋した粘性の高い溶液が不安定でゲルになりにくくなるからである。タンニン粉末の混合割合はアルカリ水溶液に対してはタンニン粉末を1〜40重量%の範囲で混合することが好ましく、35重量%がより好ましい。1重量%未満ではタンニン粉末が架橋しにくく、40重量%を超えると粘度が高くなり取扱いにくくなる。
本発明に用いられるタンニン粉末は縮合型タンニンである。例示すれば、ケブラコタンニン、ワットルタンニン、マングローブタンニン、スプルースタンニン、ガンビールタンニン、アカカテキン、カシワ樹皮タンニン等が挙げられる。この縮合型タンニン粉末を溶解するアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物の水溶液、アンモニア水が挙げられる。
次いで、タンニン粉末が溶解した水溶液にアルデヒド水溶液を添加混合する。アルデヒド水溶液としては、例えばホルムアルデヒド水溶液、アセトアルデヒド水溶液、グルタールアルデヒド水溶液等が挙げられる。
【0010】
最初にアルカリ水溶液に縮合型タンニン粉末を溶解し、その後にアルデヒド水溶液と混合することにより、縮合型タンニンは沈殿物とならずに、タンニンが部分的に架橋した粘性の高い溶液となる。従来の特開平5−66291号公報に示された方法では、架橋反応が遅延して母液全体がヒドロゲル化するのに対して、本発明ではアルカリ金属イオンもしくはアンモニウムイオンの存在、母液のpH値及び温度、部分架橋時間等によって、前記架橋反応の程度を幅広く制御することができ、アルデヒド水溶液との反応時間に相応して架橋反応が進行し、それぞれの条件に相応した溶液粘度を得ることができる。
【0011】
(2) 粘性の高い溶液の粒子化・構造形成工程
次に、ポリエーテル型非イオン性界面活性剤を含む疎水性溶媒を用意する。この疎水性溶媒は上記アルデヒド水溶液を添加混合した水溶液と混和性のない溶媒であれば特に限定されない。本発明に好ましいポリエーテル型非イオン性界面活性剤としては、アルキルフェノール系非イオン性界面活性剤であるノニフェノール系(商品名:ノニポール)(C919)、オクチルフェノール系(C817)、ドデシルフェノール系(C1225)等が挙げられる。また本発明に好ましい疎水性溶媒としては、デカリン、ポリブテン、ヘキサン、トルエン等が挙げられる。ポリエーテル型非イオン性界面活性剤は疎水性溶媒100重量%に対して5〜10重量%添加する。この界面活性剤の添加量が5重量%未満ではタンニン水溶液の液滴の安定性に乏しく、10重量%を超えると吸着剤としてのゲル状不溶性タンニンの性能に不都合が生じる。更にポリエーテル型非イオン性界面活性剤を含む疎水性溶媒を室温〜100℃、好ましくは50〜90℃に加熱する。室温未満では次に述べる液滴が蒸発しにくい。また100℃を超えると沸騰が起こりゲルの構造形成が困難になる。上記温度に加熱した疎水性溶媒を撹拌しながら、アルデヒド水溶液を添加混合することにより予備架橋させた粘性の高い溶液を疎水性溶媒に添加する。撹拌により、この水溶液を疎水性溶媒中に懸濁させ分散させる。
【0012】
疎水性溶媒の疎水性の程度や粘度、撹拌速度等の疎水性溶媒の流動条件、疎水性溶媒の温度等に応じてゲル状不溶性タンニンの粒径、形状及び網目構造が制御される。具体的には疎水性溶媒の疎水性の程度が高い程、ゲル状不溶性タンニンの粒径は小さくなり、反対に疎水性の程度が低くなり親水性を兼ね備えると、ゲル状不溶性タンニンの粒径は大きくなる。また疎水性溶媒の粘度が高い程、ゲル状不溶性タンニンの粒径は小さくなり、反対に粘度が低くなる程、ゲル状不溶性タンニンの粒径は大きくなる。更に撹拌速度が高い程、ゲル状不溶性タンニンの粒径は小さくなり、反対に撹拌速度が遅い程、ゲル状不溶性タンニンの粒径は大きくなる。本発明の方法によれば、約0.01mm〜5mmの範囲の粒径を有するゲル状不溶性タンニンを作製することができる。
また疎水性溶媒の温度、液滴からの水分蒸発時間等に応じてゲル状不溶性タンニンの網目構造及びその分子空間が変化し、不溶性タンニンの含水率が制御される。具体的には温度が高く、水分蒸発時間が長い程、ゲル状不溶性タンニンの含水率は低く、温度が低く、水分蒸発時間が短い程、ゲル状不溶性タンニンの含水率は高くなる。本発明の方法によれば、様々な網目構造と分子空間を有する約5〜90%の範囲の含水率を有するゲル状不溶性タンニンを作製することができる。
【0013】
(3) 後処理
疎水性溶媒中で粒子化したゲル状不溶性タンニンは、疎水性溶媒から取出した後、アセトン等の水溶性有機溶剤で洗浄して界面活性剤及び疎水性溶媒をゲル状不溶性タンニンから除去する。次いで蒸留水でゲル状不溶性タンニンを洗浄することにより、残留する水溶性有機溶剤を除去し、様々な網目構造と分子空間を有するゲル状不溶性タンニンが得られる。
【0014】
【実施例】
次に本発明の実施例を比較例とともに図面に基づいて説明する。
<実施例1〜10>
縮合型タンニンであるワットルタンニンの粉末23gをpH8.7の25℃のNaOH水溶液65mlに添加して溶解させた。タンニンの粉末を加えるに従って溶液のpHは徐々に低下するため、NaOH水溶液を随時添加して溶液のpHがアルカリ側になるように保持した。次いでホルムアルデヒドの37重量%水溶液6mlを添加した。この溶液を3つに分割し、3つの水溶液をそれぞれ5分間、30分間及び60分間放置した。時間が長くなるに従って、タンニンが部分的に架橋して溶液の粘度が上昇し、図1(1)に示すように、粘性の高い溶液10が得られた。
【0015】
一方、容積20リットルの反応器11にポリエーテル型非イオン性界面活性剤(商品名:ノニポール)を含む疎水性溶媒12であるデカリン(沸点189℃)を貯えた。上記粘度の異なる3種類の粘性の高い溶液10を注入器13にそれぞれ採取し、この溶液10を50℃、60℃、70℃及び80℃にそれぞれ加熱した4種類の疎水性溶媒12中に添加し、2000rpmの速度で表1に示す時間だけ撹拌し溶液10を懸濁し分散させた。これにより溶液の液滴から水分が蒸発し、液滴が球状に粒子化して特定な網目構造と分子空間からなるゲル状不溶性タンニン14が形成された。
このゲル状で粒子状の不溶性タンニン14を反応器11から取出した後、アセトンに続いて蒸留水で洗浄した。洗浄後の粒子形態及びその平均粒径を透過型電子顕微鏡により調べた。その結果を図2(a)及び(b)に示す。またアセトンで洗浄した直後及び蒸留水で洗浄した直後の粒子の含水率を測定した。その結果を表1に示す。
【0016】
<比較例1>
実施例1と同じ縮合型タンニンであるワットルタンニンの粉末に実施例1と同様にしてNaOH水溶液を添加して溶解させた。次いで実施例1と同様にこの溶液にホルムアルデヒド水溶液を添加した後、この溶液を80℃で一昼夜加熱した。これによりゲル化が進行し、安定化したゲル状組成物が得られた。このゲル状組成物を蒸留水で洗浄した後、ミキサーで解砕し、篩い分けにより粒径の揃ったゲル状不溶性タンニンを得た。このゲル状不溶性タンニンの粒子形態及びその平均粒径を透過型電子顕微鏡により調べた。その結果を図3(a)及び(b)に示す。また蒸留水で洗浄した直後の粒子の含水率を測定した。その結果を表1に示す。
【0017】
<比較例2>
比較例1で得られた、篩い分けにより粒径の揃ったゲル状不溶性タンニンを0.1Nの希硝酸に入れ、30分間撹拌した。この硝酸液を濾紙(東洋濾紙No.2)で濾過し、濾別したこのゲル状不溶性タンニンを蒸留水で洗浄した後、直ちに粒子の含水率を測定した。その結果を表1に示す。
【0018】
【表1】

Figure 0004136220
【0019】
図2(a)及び(b)に示すように、実施例9のゲル状不溶性タンニンはほぼ球形であって、その表面には数10μmの網目構造の細孔が観察された。一方、比較例1で得られたゲル状不溶性タンニンは、図3(a)及び(b)に示すように、表面の凹凸の激しい塊の破砕物であって、その表面には大きな細孔は見られなかった。
実施例1〜10のアセトンで洗浄した直後の粒子の含水率は、66.1〜1.79%であり、これらの粒子を更に蒸留水で洗浄すると、粒子の含水率は77.6〜40.1%に増大し、膨潤した。これに対して、比較例1及び比較例2の蒸留水で洗浄した直後の粒子の含水率は、約66〜77%の範囲にばらつき、平均値は72%であった。このことから、実施例では比較例に見られない低い含水率のゲル状不溶性タンニンが得られることが確認された。また実施例ではアセトン中では粒子は収縮し、粒子は蒸留水と接触すると膨潤することが判った。
【0020】
<六価クロムの吸着試験例>
(a) 疎水性溶媒であるデカリンの温度を80℃(実施例8〜10)にして、含水率が約40〜59%のゲル状不溶性タンニンを用意した。また同じく70℃(実施例5〜7)にして、含水率が約49〜60%のゲル状不溶性タンニンを用意した。更に60℃(実施例2〜4)にして、含水率が約58〜71%のゲル状不溶性タンニンを用意した。比較のため、比較例1及び比較例2の含水率が約68〜86%のゲル状不溶性タンニンを用意した。上記から、デカリンの温度が高い程、含水率は低く、デカリンの温度が低い程、含水率が高いことが判る。
【0021】
実施例1〜10及び比較例1、2のゲル状不溶性タンニンをそれぞれ0.2g採取して、六価クロム(CrO3)濃度が1000ppmの溶液40mlに各別に添加し平衡に達した後、ゲル状不溶性タンニンを容器から取出し、残液のクロムの濃度を測定し、各不溶性タンニンに吸着したクロムの吸着容量を求めた。その結果を図4に示す。
図4から明らかなように、含水率が高くなる程、六価クロム吸着容量が高くなることが判った。特に比較例2の硝酸処理した含水率が72%の不溶性タンニンでは、ゲル状不溶性タンニン1g当り192〜287mgの六価クロムの吸着容量を得たのに対して、実施例1の含水率が77.6%の不溶性タンニンでは、比較例2の約1.9〜2.8倍に相当する540mgの六価クロムの吸着容量を得た。また同じ高い含水率であっても、比較例1に比べて実施例1〜10のゲル状不溶性タンニンの機械的強度は高かった。
【0022】
(b) 疎水性溶媒であるデカリンの温度を60℃にして、含水率が約70%のゲル状不溶性タンニンを用意した(実施例11)。また同じく50℃にして、含水率が約83%のゲル状不溶性タンニンを用意した(実施例12)。
実施例11と12のゲル状不溶性タンニンをそれぞれ0.2g採取して、六価クロム(CrO3)濃度が1000ppmの溶液80mlに各別に添加し、六価クロムの不溶性タンニンへの吸着速度を調べた。その結果を図5に示す。
【0023】
図5から明らかなように、両実施例11及び12とも、添加した後、60時間程度で吸着容量は飽和状態に達するが、含水率が約83%と高い実施例12の不溶性タンニンの方が、約70%の実施例11の不溶性タンニンよりも吸着速度が高く、比較的短時間で高い吸着容量が得られた。
【0024】
【発明の効果】
以上述べたように、本発明の製造方法によれば、ゲル状不溶性タンニンの含水率を制御することができ、かつゲルの網目構造とその分子空間を変化させることができる。これにより吸着させる金属元素のイオンの大きさに応じた適切な網目構造とその分子空間を確保することができ、従来の吸着剤に比較して金属の吸着容量が極めて高い不溶性タンニンが得られ、また吸着剤として使用するに際して解砕する必要がなく、所望の粒径及び形状が得られる優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の製造方法を示す工程図。
【図2】(a) 実施例9のゲル状不溶性タンニンの50倍の顕微鏡写真図。
(b) 実施例9のゲル状不溶性タンニンの1000倍の顕微鏡写真図。
【図3】(a) 比較例1のゲル状不溶性タンニンの50倍の顕微鏡写真図。
(b) 比較例1のゲル状不溶性タンニンの1000倍の顕微鏡写真図。
【図4】実施例及び比較例の含水率に応じたゲル状不溶性タンニンのクロム吸着容量を示す図。
【図5】実施例11と実施例12の含水率に応じたゲル状不溶性タンニンのクロム吸着速度を示す図。
【符号の説明】
10 粘性の高い溶液
11 反応器
12 疎水性溶媒
13 注入器
14 ゲル状不溶性タンニン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing insoluble tannin capable of adsorbing actinide elements such as uranium, thorium and transuranium elements, heavy metal elements including cadmium, lead, chromium, mercury and iron, or metal elements such as cobalt, cesium and strontium. . The present invention also relates to a method for adsorbing hexavalent chromium using this tannin.
[0002]
[Prior art]
The waste liquid discharged in the process of handling nuclear fuel contains nuclear fuel elements such as uranium and thorium. Conventionally, as a method for producing an adsorbent for adsorbing this nuclear fuel element, the present applicant dissolved a condensed tannin powder in an alkaline aqueous solution, mixed an aldehyde aqueous solution with this solution to produce a gel composition, A method for producing insoluble tannin has been proposed in which this gel composition is aged at room temperature or stabilized by heating (JP-A-5-66291).
The present applicant also dissolves hydrolyzable tannin powder in aqueous ammonia, mixes this solution with an aldehyde aqueous solution to form a precipitate, heats the precipitate, and converts the heated precipitate into nitric acid. A method for producing hydrolyzable insoluble tannin that has been immersed in a mineral acid and then filtered is proposed (Japanese Patent Laid-Open No. 5-177135).
The insoluble tannin obtained by the above two methods has the ability to adsorb metal elements and has extremely good liquid permeability in the column of the waste liquid treatment apparatus. When the moisture content of the insoluble tannin, which is the adsorbent, is controlled, the network structure of the gel changes, and an appropriate network structure corresponding to the size of ions of the metal element to be adsorbed and its molecular space can be secured. There is a possibility that the adsorption capacity and the adsorption speed of the resin can be changed. In particular, the insoluble tannin disclosed in JP-A-5-177135 has an advantage that the tannin surface is hardened by being brought into contact with a mineral acid and is hard to be crushed when placed in a column, and the adsorption rate of the metal element is further improved. By keeping the gel acidic, it also has the effect of preventing mold from forming on the insoluble tannin.
[0003]
[Problems to be solved by the invention]
However, the insoluble tannin produced by the above two methods has practically limited the range in which the water content can be controlled from about 70% to about 85%.
Further, in the above two methods, the insoluble tannin obtained by aging or stabilizing the gel composition at room temperature is charged by mechanical means such as a mixer when used in a column or the like. Particles of the desired size are obtained by crushing into particles and sieving, but the particle size and shape of the particles are not constant and must be specially refined when insoluble tannin is required It was.
[0004]
An object of the present invention is to provide a method for producing insoluble tannin that can change the adsorption capacity and adsorption rate of metal by changing the gel network structure and its molecular space more widely than the above conventional adsorbents. There is.
Another object of the present invention is to provide a method capable of producing an insoluble tannin having a desired particle size and a desired water content without the need for crushing when used as an adsorbent.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 includes: (a) a step of dissolving condensed tannin powder in an alkaline aqueous solution; (b) a step of adding and mixing an aldehyde aqueous solution to the aqueous solution obtained in step (a); Adding the aqueous solution obtained in the step (b) while stirring a hydrophobic solvent containing an ether type nonionic surfactant at a heating temperature, and dispersing the aqueous solution obtained in the form of droplets in the hydrophobic solvent; And (d) evaporating water from the droplets to form spherical and gel-like insoluble tannins.
In the present specification, “insoluble tannin” refers to tannin that does not dissolve in water, acid, or alkali.
[0006]
The tannin is pre-crosslinked through the steps (a) and (b) to produce a highly viscous solution. When the hydrophobic solvent is stirred in step (c), the liquid level of the solvent becomes conical and the interface area between the gas and the liquid increases. Here, the highly viscous solution dispersed in the hydrophobic solvent becomes spherical droplets and flows along this interface, and moisture is evaporated from the droplets in step (d). As a result, gel-like insoluble tannin composed of various network structures and their molecular spaces is formed. The particle size and shape of the gel-like insoluble tannin are controlled according to the flow conditions of the hydrophobic solvent such as the degree of hydrophobicity, the viscosity, and the stirring speed of the hydrophobic solvent. Further, the water content of insoluble tannin is controlled by changing the network structure and molecular space of the gel-like insoluble tannin according to the temperature of the hydrophobic solvent, the time for evaporating water from the droplets, and the like.
When the obtained insoluble tannin is brought into contact with a solution containing a metal element such as uranium, thorium, transuranium element, or cadmium, lead, chromium, mercury, iron, cobalt, cesium, strontium, etc., the gel-like insoluble tannin is a metal element. Is adsorbed extremely efficiently. This is because the polyphenolic hydroxyl group possessed by the tannin constituting the gel becomes a functional group and is adsorbed by a hydrogen ion exchange reaction with the metal element. In addition, gels increase the degree of freedom of the molecular chain and form a three-dimensional structure in which the functional group of the molecular chain is easily coordinated with the metal element. Therefore, the gel-like insoluble tannin exhibits extremely excellent metal element adsorption performance. .
[0007]
The invention according to claim 4 includes a step of producing insoluble tannin by the method of claim 1 , and a spherical gel-like insoluble tannin having a water content of 70 to 90% obtained in this step, containing hexavalent chromium. A method for adsorbing hexavalent chromium comprising a step of adding hexavalent chromium to insoluble tannin by adding to an aqueous solution.
Gel-like insoluble tannins having a water content adjusted to 70-90% can adsorb hexavalent chromium efficiently.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention comprises a tannin pre-crosslinking step comprising the steps (a) and (b) described above, and a granulation / structure formation of a highly viscous solution comprising the steps (c) and (d) described above. It consists of a process.
[0009]
(1) Tannin Pre-Crosslinking Step As shown in FIG. 1, in this (1) tannin pre-crosslinking step, the condensed tannin powder is first dissolved in a room temperature alkaline aqueous solution of pH 8-10. If the pH is less than 8, the tannin powder is difficult to dissolve, and if the pH is more than 10, the partially crosslinked highly viscous solution is unstable and hardly becomes a gel. The mixing ratio of the tannin powder is preferably 1 to 40% by weight and more preferably 35% by weight with respect to the alkaline aqueous solution. If it is less than 1% by weight, the tannin powder is difficult to crosslink, and if it exceeds 40% by weight, the viscosity becomes high and handling becomes difficult.
The tannin powder used in the present invention is condensed tannin. Examples include quebraco tannin, wattle tannin, mangrove tannin, sprue tannin, gambir tannin, red catechin, oak bark tannin and the like. Examples of the alkaline aqueous solution for dissolving the condensed tannin powder include aqueous solutions of alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, and aqueous ammonia.
Next, an aldehyde aqueous solution is added to and mixed with the aqueous solution in which the tannin powder is dissolved. Examples of the aldehyde aqueous solution include formaldehyde aqueous solution, acetaldehyde aqueous solution, and glutaraldehyde aqueous solution.
[0010]
First, the condensed tannin powder is dissolved in an alkaline aqueous solution, and then mixed with an aldehyde aqueous solution, whereby the condensed tannin does not become a precipitate but becomes a highly viscous solution in which tannin is partially crosslinked. In the conventional method disclosed in Japanese Patent Application Laid-Open No. 5-66291, the cross-linking reaction is delayed and the entire mother liquor is hydrogelated. In the present invention, the presence of alkali metal ions or ammonium ions, the pH value of the mother liquor, and The degree of the cross-linking reaction can be widely controlled by temperature, partial cross-linking time, etc., and the cross-linking reaction proceeds according to the reaction time with the aldehyde aqueous solution, and a solution viscosity corresponding to each condition can be obtained. .
[0011]
(2) Particle formation / structure formation process of highly viscous solution Next, a hydrophobic solvent containing a polyether type nonionic surfactant is prepared. The hydrophobic solvent is not particularly limited as long as it is not miscible with the aqueous solution to which the aldehyde aqueous solution is added and mixed. Preferred polyether type nonionic surfactants for the present invention are noniphenol type (trade name: Nonipol) (C 9 H 19 ) and octylphenol type (C 8 H 17 ), which are alkylphenol nonionic surfactants. , Dodecylphenol (C 12 H 25 ) and the like. In addition, preferred hydrophobic solvents for the present invention include decalin, polybutene, hexane, toluene and the like. The polyether type nonionic surfactant is added in an amount of 5 to 10% by weight based on 100% by weight of the hydrophobic solvent. If the added amount of the surfactant is less than 5% by weight, the stability of the tannin aqueous solution droplets is poor, and if it exceeds 10% by weight, the performance of the gel-like insoluble tannin as an adsorbent is inconvenient. Further, a hydrophobic solvent containing a polyether type nonionic surfactant is heated to room temperature to 100 ° C, preferably 50 to 90 ° C. Below room temperature, the droplets described below are difficult to evaporate. If it exceeds 100 ° C., boiling occurs and it becomes difficult to form a gel structure. While stirring the hydrophobic solvent heated to the above temperature, a highly viscous solution preliminarily crosslinked by adding and mixing an aqueous aldehyde solution is added to the hydrophobic solvent. This aqueous solution is suspended and dispersed in a hydrophobic solvent by stirring.
[0012]
The particle size, shape, and network structure of the gel-like insoluble tannin are controlled according to the hydrophobicity of the hydrophobic solvent, the viscosity, the flow conditions of the hydrophobic solvent such as the stirring speed, the temperature of the hydrophobic solvent, and the like. Specifically, the higher the degree of hydrophobicity of the hydrophobic solvent, the smaller the particle size of the gel-like insoluble tannin, and conversely, when the degree of hydrophobicity is low and has hydrophilicity, the particle size of the gel-like insoluble tannin is growing. Further, the higher the viscosity of the hydrophobic solvent, the smaller the particle size of the gel-insoluble tannin, and conversely, the lower the viscosity, the larger the particle size of the gel-insoluble tannin. Furthermore, the higher the stirring speed, the smaller the particle size of the gel-insoluble tannin, and the lower the stirring speed, the larger the particle size of the gel-insoluble tannin. According to the method of the present invention, a gel-like insoluble tannin having a particle size in the range of about 0.01 mm to 5 mm can be produced.
Further, the network structure of the gel-like insoluble tannin and the molecular space thereof are changed according to the temperature of the hydrophobic solvent, the time for evaporating water from the droplets, etc., and the water content of the insoluble tannin is controlled. Specifically, the higher the temperature and the longer the water evaporation time, the lower the water content of the gel-insoluble tannin, and the lower the temperature and the shorter the water evaporation time, the higher the water content of the gel-insoluble tannin. According to the method of the present invention, a gel-like insoluble tannin having a water content in a range of about 5 to 90% having various network structures and molecular spaces can be produced.
[0013]
(3) The gel-like insoluble tannin formed into a particle in the post-treatment hydrophobic solvent is taken out from the hydrophobic solvent and washed with a water-soluble organic solvent such as acetone to remove the surfactant and the hydrophobic solvent from the gel-like insoluble tannin. Remove from. Next, by washing the gel-like insoluble tannin with distilled water, the remaining water-soluble organic solvent is removed, and gel-like insoluble tannin having various network structures and molecular spaces is obtained.
[0014]
【Example】
Next, examples of the present invention will be described based on the drawings together with comparative examples.
<Examples 1 to 10>
23 g of powder of wattle tannin, which is condensed tannin, was added to 65 ml of a 25 ° C. aqueous NaOH solution at pH 8.7 and dissolved. Since the pH of the solution gradually decreased as tannin powder was added, an aqueous NaOH solution was added as needed to maintain the pH of the solution at the alkali side. Then 6 ml of a 37% by weight aqueous solution of formaldehyde was added. This solution was divided into three, and the three aqueous solutions were allowed to stand for 5 minutes, 30 minutes and 60 minutes, respectively. As the time increased, the tannin partially cross-linked to increase the viscosity of the solution, and as shown in FIG. 1 (1), a highly viscous solution 10 was obtained.
[0015]
On the other hand, decalin (boiling point 189 ° C.), which is a hydrophobic solvent 12 containing a polyether type nonionic surfactant (trade name: Nonipol), was stored in a reactor 11 having a volume of 20 liters. Three kinds of high-viscosity solutions 10 having different viscosities are collected in an injector 13 and added to four kinds of hydrophobic solvents 12 heated to 50 ° C., 60 ° C., 70 ° C. and 80 ° C., respectively. The solution 10 was suspended and dispersed by stirring at a speed of 2000 rpm for the time shown in Table 1. As a result, water was evaporated from the liquid droplets of the solution, and the liquid droplets were spheroidized to form a gel-like insoluble tannin 14 having a specific network structure and molecular space.
The gel-like and particulate insoluble tannin 14 was taken out of the reactor 11 and then washed with acetone and distilled water. The particle morphology after washing and the average particle size thereof were examined with a transmission electron microscope. The results are shown in FIGS. 2 (a) and 2 (b). The water content of the particles immediately after washing with acetone and immediately after washing with distilled water was measured. The results are shown in Table 1.
[0016]
<Comparative Example 1>
In the same manner as in Example 1, an aqueous NaOH solution was added to a powder of Watru tannin, which is the same condensed tannin as in Example 1, and dissolved. Next, an aqueous formaldehyde solution was added to this solution in the same manner as in Example 1, and then this solution was heated at 80 ° C. overnight. As a result, gelation proceeded and a stabilized gel-like composition was obtained. This gel composition was washed with distilled water and then crushed with a mixer, and a gel-like insoluble tannin having a uniform particle size was obtained by sieving. The particle form of the gel-like insoluble tannin and the average particle size thereof were examined with a transmission electron microscope. The results are shown in FIGS. 3 (a) and 3 (b). Further, the water content of the particles immediately after washing with distilled water was measured. The results are shown in Table 1.
[0017]
<Comparative example 2>
The gel-like insoluble tannin having a uniform particle size obtained by sieving obtained in Comparative Example 1 was placed in 0.1N dilute nitric acid and stirred for 30 minutes. The nitric acid solution was filtered with a filter paper (Toyo Filter Paper No. 2), and the gel-like insoluble tannin separated by filtration was washed with distilled water, and the water content of the particles was immediately measured. The results are shown in Table 1.
[0018]
[Table 1]
Figure 0004136220
[0019]
As shown in FIGS. 2 (a) and 2 (b), the gel-like insoluble tannin of Example 9 was almost spherical, and pores having a network structure of several tens of μm were observed on the surface thereof. On the other hand, the gel-like insoluble tannin obtained in Comparative Example 1 is a crushed material of a massive lump as shown in FIGS. 3 (a) and 3 (b), and the surface has large pores. I couldn't see it.
The water content of the particles immediately after washing with acetone in Examples 1 to 10 is 66.1 to 1.79%. When these particles are further washed with distilled water, the water content of the particles is 77.6 to 40. Increased to 1% and swollen. On the other hand, the moisture content of the particles immediately after washing with distilled water of Comparative Example 1 and Comparative Example 2 varied in the range of about 66 to 77%, and the average value was 72%. From this, it was confirmed that gel-insoluble tannin having a low water content not found in the comparative example was obtained in the examples. In the examples, it was found that the particles shrink in acetone and the particles swell when contacted with distilled water.
[0020]
<Example of adsorption test of hexavalent chromium>
(a) The temperature of decalin which is a hydrophobic solvent was set to 80 ° C. (Examples 8 to 10), and gel-like insoluble tannin having a water content of about 40 to 59% was prepared. Similarly, a gel-like insoluble tannin having a water content of about 49 to 60% was prepared at 70 ° C. (Examples 5 to 7). Furthermore, it was 60 degreeC (Examples 2-4), and the gelatinous insoluble tannin whose water content is about 58-71% was prepared. For comparison, gel-insoluble tannin having a water content of about 68 to 86% in Comparative Examples 1 and 2 was prepared. From the above, it can be seen that the higher the decalin temperature, the lower the moisture content, and the lower the decalin temperature, the higher the moisture content.
[0021]
0.2 g of the gel-like insoluble tannins of Examples 1 to 10 and Comparative Examples 1 and 2 were sampled and added to 40 ml of a solution having a hexavalent chromium (CrO 3 ) concentration of 1000 ppm to reach equilibrium, and then the gel was reached. The insoluble tannin was taken out from the container, the concentration of chromium in the residual liquid was measured, and the adsorption capacity of chromium adsorbed on each insoluble tannin was determined. The result is shown in FIG.
As apparent from FIG. 4, it was found that the higher the water content, the higher the hexavalent chromium adsorption capacity. In particular, the insoluble tannin having a water content of 72% treated with nitric acid in Comparative Example 2 obtained an adsorption capacity of 192 to 287 mg of hexavalent chromium per 1 g of gel-like insoluble tannin, whereas the water content of Example 1 was 77. With .6% insoluble tannin, an adsorption capacity of 540 mg of hexavalent chromium corresponding to about 1.9 to 2.8 times that of Comparative Example 2 was obtained. Moreover, even if it was the same high water content, compared with the comparative example 1, the mechanical strength of the gel-like insoluble tannin of Examples 1-10 was high.
[0022]
(b) The temperature of decalin, which is a hydrophobic solvent, was set to 60 ° C., and gel-like insoluble tannin having a water content of about 70% was prepared (Example 11). Similarly, a gel-like insoluble tannin having a water content of about 83% was prepared at 50 ° C. (Example 12).
0.2 g of the gel-like insoluble tannin of each of Examples 11 and 12 was sampled and added separately to 80 ml of a solution having a hexavalent chromium (CrO 3 ) concentration of 1000 ppm, and the adsorption rate of hexavalent chromium to the insoluble tannin was examined. It was. The result is shown in FIG.
[0023]
As is apparent from FIG. 5, both of Examples 11 and 12 reach the saturated adsorption capacity after about 60 hours after the addition, but the insoluble tannin of Example 12 having a high water content of about 83% is more preferable. About 70% of the insoluble tannin of Example 11 was higher in adsorption rate, and a high adsorption capacity was obtained in a relatively short time.
[0024]
【The invention's effect】
As described above, according to the production method of the present invention, the water content of the gel-like insoluble tannin can be controlled, and the gel network structure and its molecular space can be changed. As a result, an appropriate network structure corresponding to the size of the ions of the metal element to be adsorbed and its molecular space can be secured, and insoluble tannins with extremely high metal adsorption capacity compared to conventional adsorbents can be obtained, Further, there is no need to crush when used as an adsorbent, and an excellent effect of obtaining a desired particle size and shape is obtained.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a production method of the present invention.
2A is a 50 × micrograph of the gel-like insoluble tannin of Example 9. FIG.
(B) 1000-times micrograph of the gel-like insoluble tannin of Example 9.
FIG. 3 (a) is a 50 × micrograph of the gel-like insoluble tannin of Comparative Example 1.
(B) 1000 times as many photomicrographs of the gel-like insoluble tannin of Comparative Example 1.
FIG. 4 is a graph showing the chromium adsorption capacity of gel-like insoluble tannin according to the moisture content of Examples and Comparative Examples.
5 is a graph showing the chromium adsorption rate of gel-like insoluble tannin according to the water content of Example 11 and Example 12. FIG.
[Explanation of symbols]
10 Highly viscous solution 11 Reactor 12 Hydrophobic solvent 13 Injector 14 Gel-like insoluble tannin

Claims (4)

(a) アルカリ水溶液に縮合型タンニン粉末を溶解する工程と、
(b) 工程(a)で得られた水溶液にアルデヒド水溶液を添加混合する工程と、
(c) ポリエーテル型非イオン性界面活性剤を含む疎水性溶媒を加熱温度下で撹拌させながら前記工程(b)で得られた水溶液を添加して液滴の形態で前記疎水性溶媒中に分散させる工程と、
(d) 前記液滴から水分を蒸発させて球状でかつゲル状不溶性タンニンを形成する工程と
を含む不溶性タンニンの製造方法。
(a) dissolving the condensed tannin powder in an alkaline aqueous solution;
(b) adding and mixing an aqueous aldehyde solution to the aqueous solution obtained in step (a);
(c) While stirring the hydrophobic solvent containing the polyether type nonionic surfactant at a heating temperature, the aqueous solution obtained in the step (b) is added to the hydrophobic solvent in the form of droplets. A step of dispersing;
(d) A method for producing insoluble tannins, comprising the step of evaporating water from the droplets to form spherical and gel-like insoluble tannins.
疎水性溶媒の流動条件である前記疎水性溶媒の疎水性、粘度又は攪拌速度の少なくとも1つを調整することにより、不溶性タンニンの粒径を0.01mm〜5mmの範囲内の所定の値に制御する請求項1記載の不溶性タンニンの製造方法。By adjusting at least one of the hydrophobicity, viscosity or stirring speed of the hydrophobic solvent, which is the flow condition of the hydrophobic solvent, the particle size of the insoluble tannin is controlled to a predetermined value within a range of 0.01 mm to 5 mm. The method for producing insoluble tannin according to claim 1. 疎水性溶媒の温度又は液滴からの水分蒸発時間の少なくとも1つを調整して不溶性タンニンの網目構造及び分子空間を変えることにより、不溶性タンニンの含水率を5〜90%の範囲内の所定の値に制御する請求項1記載の不溶性タンニンの製造方法。By adjusting at least one of the temperature of the hydrophobic solvent or the time of water evaporation from the droplets to change the network structure and molecular space of the insoluble tannin, the water content of the insoluble tannin is within a predetermined range of 5 to 90%. The method for producing insoluble tannin according to claim 1, which is controlled to a value. 請求項1記載の方法によって不溶性タンニンを製造する工程、及び該工程で得られた含水率が70〜90%の球状のゲル状不溶性タンニンを六価クロムを含有する水溶液に添加して前記六価クロムを前記不溶性タンニンに吸着する工程とからなる六価クロムの吸着方法。 A process for producing insoluble tannin by the method according to claim 1 , and a spherical gel-like insoluble tannin having a water content of 70 to 90% obtained in the process is added to an aqueous solution containing hexavalent chromium to form the hexavalent A method for adsorbing hexavalent chromium comprising a step of adsorbing chromium to the insoluble tannin.
JP25254999A 1999-02-26 1999-09-07 Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin Expired - Fee Related JP4136220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25254999A JP4136220B2 (en) 1999-02-26 1999-09-07 Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-50555 1999-02-26
JP5055599 1999-02-26
JP25254999A JP4136220B2 (en) 1999-02-26 1999-09-07 Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin

Publications (2)

Publication Number Publication Date
JP2000308825A JP2000308825A (en) 2000-11-07
JP4136220B2 true JP4136220B2 (en) 2008-08-20

Family

ID=26391037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25254999A Expired - Fee Related JP4136220B2 (en) 1999-02-26 1999-09-07 Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin

Country Status (1)

Country Link
JP (1) JP4136220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07344U (en) * 1993-04-09 1995-01-06 充博 風間 A health appliance that can be used for both body correction, manipulative treatment, and exercise

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015885A (en) * 2005-07-07 2007-01-25 Haruhiko Yamaguchi Spherical activated carbon and method for producing the same
JP2013184149A (en) * 2012-03-09 2013-09-19 Central Research Institute Of Electric Power Industry Contaminant adsorption sheet
JP2016047505A (en) * 2014-08-28 2016-04-07 元基 井上 Noble metal adsorbent using polyphenol derived from grape seeds as raw material
CN112427024A (en) * 2020-09-29 2021-03-02 核工业北京化工冶金研究院 Process for adsorbing uranium by using tannic acid precipitate
CN115215829B (en) * 2022-08-12 2023-07-25 西南科技大学 Preparation method of green plant tannin type nuclide detersive surfactant
CN115850624A (en) * 2022-12-09 2023-03-28 西南科技大学 Preparation method of tannin resin for adsorption and separation of nuclide and heavy metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07344U (en) * 1993-04-09 1995-01-06 充博 風間 A health appliance that can be used for both body correction, manipulative treatment, and exercise

Also Published As

Publication number Publication date
JP2000308825A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
Mahdavinia et al. Facile and green rout to prepare magnetic and chitosan-crosslinked κ-carrageenan bionanocomposites for removal of methylene blue
CN101910060B (en) Carbon microparticle produced from raw material lignin, and process for production thereof
US3725291A (en) Sorbent and method of manufacturing same
JP5590594B2 (en) Chelating polymer compound-containing metal adsorbent
US4612247A (en) Magnetic cellulose-derivative structures
WO2015137170A1 (en) Method for producing porous cellulose particles, and porous cellulose particles
Córdova et al. Chemical modification of sodium alginate with thiosemicarbazide for the removal of Pb (II) and Cd (II) from aqueous solutions
KR102351290B1 (en) Chitosan-Gelatin Hydrogels for heavy metal adsorption and chitosan-gelatin hydrogels manufactured by the same method
CN107376673B (en) Loaded with TiO2PES ultrafiltration membrane of nanotube and preparation method and application thereof
WO2011034327A2 (en) Absorbent containing chitosan for treating water and method for manufacturing same
JP4136220B2 (en) Method for producing insoluble tannin and method for adsorption of hexavalent chromium using this tannin
CN109261138A (en) It is a kind of for heavy metal ion adsorbed ultrabranching polyamide modified sodium alginate microballoon and preparation method thereof
CN108514870B (en) Hydrotalcite-poly (m-phenylenediamine) composite material and preparation method and application thereof
CN108435143B (en) High-hydrophilicity adsorbent, preparation and application of adsorbent in adsorbing rubidium ions or lithium ions
CN107051393B (en) Magnesium silicate-hydrothermal carbon composite material and preparation method and application thereof
US20030060520A1 (en) Method for removing organic liquids from aqueous solutions and mixtures
CN113368838A (en) Biomass nano-cellulose porous material with surface loaded with nano-transition metal oxide and preparation method thereof
JP2020203287A (en) Scavenger for removing radioactive material and method for manufacturing the same
Song et al. Preparation and application of green chitosan/ploy (vinyl alcohol) porous microspheres for the removal of hexavalent chromium
Wu et al. Construction of porous chitosan–xylan–TiO2 hybrid with highly efficient sorption capability on heavy metals
CN114522672A (en) Biomass functional material for antibiotic adsorption and preparation method thereof
Tripathi et al. Self‐assembled biogenic melanin modulated surface chemistry of biopolymers‐colloidal silica composite porous matrix for the recovery of uranium
CN110639481A (en) Method for preparing polypyrrole and mesoporous molecular sieve composite material
CN110898793B (en) Method for removing heavy metals in water body by using boron-doped mesoporous carbon
CN110479219B (en) Porous microsphere foam adsorption material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees