JP2016047505A - Noble metal adsorbent using polyphenol derived from grape seeds as raw material - Google Patents

Noble metal adsorbent using polyphenol derived from grape seeds as raw material Download PDF

Info

Publication number
JP2016047505A
JP2016047505A JP2014173559A JP2014173559A JP2016047505A JP 2016047505 A JP2016047505 A JP 2016047505A JP 2014173559 A JP2014173559 A JP 2014173559A JP 2014173559 A JP2014173559 A JP 2014173559A JP 2016047505 A JP2016047505 A JP 2016047505A
Authority
JP
Japan
Prior art keywords
noble metal
metal adsorbent
oligomer
polyphenol
glutaraldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014173559A
Other languages
Japanese (ja)
Inventor
元基 井上
Motoki Inoue
元基 井上
山崎 章弘
Akihiro Yamazaki
章弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014173559A priority Critical patent/JP2016047505A/en
Publication of JP2016047505A publication Critical patent/JP2016047505A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel noble metal adsorbent that achieves recovery of noble metal at a low cost and with a low environmental load.SOLUTION: The noble metal adsorbent including an insoluble gel produced by adding a crosslinking agent to polyphenol derived from grape seeds is provided. The polyphenol includes a proanthocyanidin oligomer. It is preferable that the average degree of polymerization of the oligomer is adjusted to 3 to 4. Glutaraldehyde can be used as a crosslinking agent and the glutaraldehyde is preferably added in an approximately equimolar amount based on the proanthocyanidin oligomer.SELECTED DRAWING: Figure 1

Description

本発明は、貴金属吸着剤に関し、より詳細には、ブドウ種子由来のポリフェノールを原料とする貴金属吸着剤に関する。   The present invention relates to a noble metal adsorbent, and more particularly to a noble metal adsorbent made from grape seed-derived polyphenols.

資源の乏しい我が国においては、メッキ廃液や都市鉱山と呼ばれる電子機器の廃棄物から金などの貴金属を高効率で回収する必要に迫られており、そのための回収技術が種々検討されている。一般的な貴金属の回収方法として、溶媒抽出法およびイオン交換樹脂法を挙げることができるが、溶媒抽出法は、工程が煩雑なことに加え大量に発生する廃液の処理が問題となり、イオン交換樹脂法は、石油由来の合成樹脂を使用するため高コスト・高環境負荷な方法である。   In Japan, where resources are scarce, there is an urgent need to efficiently recover precious metals such as gold from plating waste liquids and wastes of electronic equipment called urban mines, and various recovery techniques are being studied. Examples of common noble metal recovery methods include solvent extraction methods and ion exchange resin methods. However, solvent extraction methods are complicated in addition to the problem of processing waste liquids generated in large quantities. The method uses a synthetic resin derived from petroleum and is a high cost and high environmental load method.

この点につき、特許文献1は、貴金属を低コスト・低環境負荷で回収するための施策として、天然生物資源である柿渋由来のタンニンを含む含水ゲル組成物を吸着剤として使用した貴金属の吸着回収法を開示する。特許文献1の吸着剤は、安価な柿渋を原料とするため製造コストを低く抑えることができ、また、天然有機物であるため、貴金属を単離する際の燃焼灰化工程において環境が汚染されない。ここで、柿タンニンは、4種類のカテキン(エピカテキン、カテキンガレート、エピガロカテキン、ガロカテキンガレート)が縮合してなる重合度の高いプロアントシアニジンポリマーであり、その分子量は13,000〜15,000に達することが知られている。   In this regard, Patent Document 1 discloses, as a measure for recovering precious metal at low cost and low environmental load, adsorption recovery of precious metal using a hydrous gel composition containing tannin derived from astringent astringent, which is a natural biological resource, as an adsorbent. Disclose the law. Since the adsorbent of Patent Document 1 is made from inexpensive strawberries, the production cost can be kept low, and since it is a natural organic substance, the environment is not polluted in the combustion ashing process when isolating precious metals. Here, tannin is a proanthocyanidin polymer with a high degree of polymerization formed by condensation of four types of catechins (epicatechin, catechin gallate, epigallocatechin, gallocatechin gallate), and its molecular weight reaches 13,000-15,000. It has been known.

一方、ワインの製造過程で大量に排出される植物性廃棄物について、その有効な活用方法が模索されている。この点につき、近年、ブドウ種子に含まれるポリフェノールの強い抗酸化力に着目して、ブドウ種子を健康食品の材料として再生利用することが広く行われている。   On the other hand, an effective utilization method is being sought for plant waste discharged in a large amount in the wine production process. In this regard, in recent years, focusing on the strong antioxidant power of polyphenols contained in grape seeds, it has been widely used to recycle grape seeds as a health food material.

特開平2−15128号公報Japanese Patent Laid-Open No. 2-15128

本発明は、上記従来技術に鑑みてなされたものであり、本発明は、貴金属を低コスト・低環境負荷で回収することを可能にする新規な貴金属吸着剤を提供することを目的とする。   This invention is made | formed in view of the said prior art, and this invention aims at providing the noble metal adsorption agent which makes it possible to collect | recover noble metals at low cost and low environmental load.

本発明者は、貴金属を低コスト・低環境負荷で回収することを可能にする新規な貴金属吸着剤について鋭意検討する中で、ワインの製造過程で大量に排出されるブドウ種子に着目した。そして、ブドウ種子由来のポリフェノールに架橋剤を添加してなる不溶性ゲルが貴金属に対して非常に高い吸着能を発現することを見出し、本発明に至ったのである。   The inventor of the present invention paid attention to grape seeds discharged in large quantities in the wine production process, while intensively studying a novel noble metal adsorbent that makes it possible to recover the noble metal at low cost and low environmental load. And it discovered that the insoluble gel formed by adding a crosslinking agent to the polyphenol derived from a grape seed expresses very high adsorption ability with respect to a noble metal, and came to this invention.

すなわち、本発明によれば、ブドウ種子由来のポリフェノールに架橋剤を加えてなる不溶性ゲルを含む貴金属吸着剤が提供される。本発明においては、前記ポリフェノールはプロアントシアニジンオリゴマーを含み、当該オリゴマーの平均重合度を3〜4とすることが好ましい。   That is, according to the present invention, there is provided a noble metal adsorbent including an insoluble gel obtained by adding a crosslinking agent to grape seed-derived polyphenol. In the present invention, the polyphenol preferably contains a proanthocyanidin oligomer, and the average degree of polymerization of the oligomer is preferably 3-4.

また、本発明においては、前記架橋剤としてグルタルアルデヒドを用いることができ、前記プロアントシアニジンオリゴマーに対して略等モルの前記グルタルアルデヒドを加えることが好ましい。   In the present invention, glutaraldehyde can be used as the crosslinking agent, and it is preferable to add approximately equimolar amount of the glutaraldehyde to the proanthocyanidin oligomer.

上述したように、本発明によれば、貴金属を低コスト・低環境負荷で回収することを可能にする新規な貴金属吸着剤が提供される。   As described above, according to the present invention, a novel noble metal adsorbent that makes it possible to recover a noble metal at low cost and low environmental load is provided.

本実施形態の貴金属吸着剤の製造方法を示す図。The figure which shows the manufacturing method of the noble metal adsorbent of this embodiment. 本実施例の貴金属吸着剤の含水率を示すグラフ。The graph which shows the moisture content of the noble metal adsorbent of a present Example. 本実施例の貴金属吸着剤の吸着能を示すグラフ。The graph which shows the adsorption capacity of the noble metal adsorbent of a present Example. 本実施例の貴金属吸着剤による金の吸着率の経時的変化を示すグラフ。The graph which shows the time-dependent change of the gold | metal adsorption rate by the noble metal adsorption agent of a present Example.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.

以下、本発明の実施形態の貴金属吸着剤の製造方法を図1に基づいて説明する。   Hereinafter, a method for producing a noble metal adsorbent according to an embodiment of the present invention will be described with reference to FIG.

本実施形態においては、まず、ブドウ種子由来のポリフェノールを用意する。ここで、ブドウ種子由来のポリフェノールは、下記構造式で表される構造を有するプロアントシアニジンオリゴマーを主成分として含む。   In this embodiment, first, a grape seed-derived polyphenol is prepared. Here, the polyphenol derived from grape seed contains a proanthocyanidin oligomer having a structure represented by the following structural formula as a main component.

ブドウ種子に含まれるプロアントシアニジンオリゴマーは、カテキン(主にエピカテキン)が4−8位で縮合してなる4−8結合型オリゴマーであり、本実施形態においては、平均重合度3〜4のオリゴマーを使用することが好ましい。   The proanthocyanidin oligomer contained in the grape seed is a 4-8 linked oligomer formed by condensation of catechin (mainly epicatechin) at the 4-8 position. In this embodiment, the oligomer has an average degree of polymerization of 3-4. Is preferably used.

次に、上述したプロアントシアニジンオリゴマーを水酸化ナトリウム水溶液に溶解させた後、架橋剤を添加して混合する。ここで、本実施形態においては、架橋剤としてグルタルアルデヒド[OHC(CH2)3CHO]を用いることが好ましい。この場合、プロアントシアニジンオリゴマーに対して略等モルのグルタルアルデヒドを加えることが好ましい。 Next, after the proanthocyanidin oligomer described above is dissolved in an aqueous sodium hydroxide solution, a crosslinking agent is added and mixed. Here, in this embodiment, it is preferable to use glutaraldehyde [OHC (CH 2 ) 3 CHO] as the cross-linking agent. In this case, it is preferable to add approximately equimolar glutaraldehyde to the proanthocyanidin oligomer.

次に、この混合溶液を十分に攪拌した後、静置する。その結果、上述したプロアントシアニジンオリゴマーが架橋剤によって架橋されて水に不溶な不溶性ゲルが生じる。   Next, this mixed solution is sufficiently stirred and then allowed to stand. As a result, the above-mentioned proanthocyanidin oligomer is cross-linked by the cross-linking agent to produce an insoluble gel insoluble in water.

本実施形態においては、この不溶性ゲルを貴金属吸着剤として使用する。例えば、得られた不溶性ゲルを粉砕・乾燥して粒状にしたものを貴金属吸着剤として使用することができる。   In this embodiment, this insoluble gel is used as a noble metal adsorbent. For example, the obtained insoluble gel that has been pulverized and dried to be granulated can be used as a noble metal adsorbent.

本実施形態の貴金属吸着剤は、(Au)、銀(Ag)、パラジウム(Pd)などに対する高い吸着能を発現し、その中でも、特に、金(Au)に対して非常に高い吸着能を発現する。この吸着能は、プロアントシアニジンのOH基と貴金属イオンとの配位子置換反応ならびに当該OH基による還元作用に起因するものと推察される。   The noble metal adsorbent of the present embodiment expresses a high adsorbing ability for (Au), silver (Ag), palladium (Pd), etc., and in particular, expresses a very high adsorbing ability for gold (Au). To do. This adsorption ability is presumed to be caused by a ligand substitution reaction between the OH group of proanthocyanidins and a noble metal ion and a reducing action by the OH group.

一方、本実施形態の貴金属吸着剤は、貴金属の中でも白金(Pt)をほとんど吸着しないという特徴を有している。したがって、本実施形態の貴金属吸着剤は、白金(Pt)と白金(Pt)以外の他の貴金属が混在する対象溶液から当該他の貴金属(例えば、同じ白金族であるパラジウム(Pd))を選択的に分離するといった用途に適用することができる。   On the other hand, the noble metal adsorbent of the present embodiment has a feature that platinum (Pt) is hardly adsorbed among noble metals. Therefore, the noble metal adsorbent of this embodiment selects the other noble metal (for example, palladium (Pd) which is the same platinum group) from the target solution in which platinum (Pt) and other noble metals other than platinum (Pt) are mixed. It can be applied to uses such as separation.

なお、本実施形態の貴金属吸着剤を使用した貴金属の回収は、カラム法およびバッチ法のいずれの方法で行ってもよく、いずれの場合も吸着処理後の貴金属吸着剤を燃焼灰化することで、灰分から目的の貴金属を単離することができる。この場合、本実施形態の貴金属吸着剤は、ブドウ種子由来のポリフェノールを原料とする天然有機物を主成分とするため、燃焼時における環境負荷が低い。加えて、本実施形態の貴金属吸着剤は、その原料としてワインの製造過程で大量に排出されるブドウ種子を利用することができるので、その製造コストを低く抑えることができる上、廃棄物処理問題の解決の一助となる。   Note that the recovery of the noble metal using the noble metal adsorbent of the present embodiment may be performed by either the column method or the batch method, and in either case, the noble metal adsorbent after the adsorption treatment is burned and ashed. The target noble metal can be isolated from the ash. In this case, since the noble metal adsorbent of the present embodiment is mainly composed of natural organic matter made from polyphenols derived from grape seeds, the environmental load during combustion is low. In addition, the precious metal adsorbent of this embodiment can use grape seeds discharged in large quantities in the wine production process as its raw material, so that the production cost can be kept low, and the waste disposal problem To help solve the problem.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and the functions and effects of the present invention are within the scope of other embodiments that can be considered by those skilled in the art. As long as it plays, it is included in the scope of the present invention.

以下、本発明の貴金属吸着剤について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, the noble metal adsorbent of the present invention will be described more specifically using examples, but the present invention is not limited to the examples described below.

(貴金属吸着剤の作製) (Preparation of precious metal adsorbent)

上記構造式で表される構造を有するプロアントシアニジンオリゴマーを主成分として含むブドウ種子由来ポリフェノール(Gravinol-SE、平均重合度3‐4、キッコーマンバイオケミファ株式会社製)1.0gに対して、所定濃度の水酸化ナトリウム水溶液(水酸化ナトリウム:和光純薬製)と25%グルタルアルデヒド水溶液(和光純薬製)を混合・攪拌し、プロアントシアニジンオリゴマーに対するグルタルアルデヒド(架橋剤)の仕込みモル比が異なる3種類の混合溶液(全量2.5 mL)を調製した。3種類の混合溶液の組成の詳細を下記表1に示す。   Grape seed-derived polyphenol (Gravinol-SE, average degree of polymerization 3-4, manufactured by Kikkoman Biochemifa Co., Ltd.) 1.0 g containing a proanthocyanidin oligomer having a structure represented by the above structural formula as a main component. Three types with different molar ratios of glutaraldehyde (crosslinking agent) to proanthocyanidin oligomer mixed and stirred with aqueous sodium hydroxide (sodium hydroxide: Wako Pure Chemical) and 25% glutaraldehyde aqueous solution (Wako Pure Chemical) A mixed solution (total volume: 2.5 mL) was prepared. The details of the composition of the three types of mixed solutions are shown in Table 1 below.

上述した手順で得られた混合溶液1、2および3を、それぞれ、厚さ1 mmのスペーサを挟んだ2枚のガラス板間に注入し、湿潤条件下70℃で3時間静置した。その後、ガラス板間に生じたゲルを直径10 mmのポンチで打ち抜いてサンプル(直径10 mm、厚さ1 mm)を得た。以下、混合溶液1、2および3から得られたサンプルを、それぞれ、サンプル1、サンプル2およびサンプル3として参照する。   The mixed solutions 1, 2 and 3 obtained by the procedure described above were each injected between two glass plates sandwiching a spacer having a thickness of 1 mm and allowed to stand at 70 ° C. for 3 hours under wet conditions. Thereafter, the gel formed between the glass plates was punched with a punch having a diameter of 10 mm to obtain a sample (diameter 10 mm, thickness 1 mm). Hereinafter, the samples obtained from the mixed solutions 1, 2, and 3 are referred to as Sample 1, Sample 2, and Sample 3, respectively.

(架橋密度の検証)
不溶性ゲルは、架橋密度が高くなるほど水による膨潤が起こりにくくなり含水率が小さくなることが知られている。そこで、作製したサンプル1〜3について含水率を求めることにより架橋密度を検証した。具体的には、各サンプル(直径10 mm、厚さ1 mm)をイオン交換水に24時間浸漬した後に質量を計測し、同サンプルを70℃で恒量まで乾燥させた後に再度質量を計測し、各計測値を下記式に投入して含水率を求めた。なお、下記式において、Wwはイオン交換水浸漬後のサンプルの質量を示し、Wdは乾燥後のサンプルの質量を示す。
含水率(%)=(Ww - Wd) / Ww × 100
(Verification of crosslink density)
It is known that the insoluble gel is less likely to swell due to water and the water content decreases as the crosslink density increases. Then, the crosslinking density was verified by calculating | requiring the moisture content about the produced samples 1-3. Specifically, each sample (diameter 10 mm, thickness 1 mm) was immersed in ion-exchanged water for 24 hours, then the mass was measured, the sample was dried to a constant weight at 70 ° C., and the mass was measured again. Each measured value was input into the following formula to determine the moisture content. In the following formula, W w represents the mass of the sample after immersion in ion-exchanged water, and W d represents the mass of the sample after drying.
Moisture content (%) = (W w -W d ) / W w × 100

図2は、各サンプルの含水率を示す。図2に示されるように、3種類のサンプルのうち、サンプル2(仕込みモル比=1.0)の含水率が最も低いことから、サンプル2の架橋密度が最大であることが分かった。   FIG. 2 shows the moisture content of each sample. As shown in FIG. 2, among the three types of samples, the moisture content of Sample 2 (charged molar ratio = 1.0) was the lowest, indicating that the crosslinking density of Sample 2 was the highest.

(貴金属吸着能の検証)
金(Au)、銀(Ag)、白金(Pt)およびパラジウム(Pd)の標準液(1000 ppm、和光純薬製)をそれぞれ0.25 mLずつ混合して全量1 mLの貴金属イオン水溶液を調製した。次に、乾燥したサンプル2(0.1 g)を調製した貴金属イオン水溶液に入れて、室温で24時間静置した。その後、誘導結合プラズマ(ICP)発光分析法により貴金属イオン水溶液中の貴金属イオン濃度を測定し、下記式により各貴金属の吸着率(%)を算出した。なお、下記式において、C0はサンプル2を投入する前の溶液における各貴金属イオン濃度を示し、Csは24時間後の溶液における各貴金属イオン濃度を示す。
吸着率(%)=(C0 - Cs) /C0 × 100
(Verification of precious metal adsorption capacity)
A standard solution of gold (Au), silver (Ag), platinum (Pt) and palladium (Pd) (1000 ppm, manufactured by Wako Pure Chemical Industries, Ltd.) was mixed in an amount of 0.25 mL each to prepare a total volume of 1 mL of a noble metal ion aqueous solution. Next, the dried sample 2 (0.1 g) was put in the prepared noble metal ion aqueous solution and allowed to stand at room temperature for 24 hours. Thereafter, the concentration of noble metal ions in the aqueous solution of noble metal ions was measured by inductively coupled plasma (ICP) emission spectrometry, and the adsorption rate (%) of each noble metal was calculated by the following formula. In the following equation, C 0 represents the concentration of each noble metal ion in the solution before the sample 2 was added, and C s represents the concentration of each noble metal ion in the solution after 24 hours.
Adsorption rate (%) = (C 0 -C s ) / C 0 × 100

図3は、各貴金属の吸着率(%)を示す。図3に示されるように、金(Au)、銀(Ag)、パラジウム(Pd)の吸着が確認され、特に、金(Au)について高い吸着率(99.9%)が認められた。一方、パラジウム(Pd)が27.0%の吸着率を示したのに対し、同じ白金族である白金(Pt)はほとんど吸着しなかった。   FIG. 3 shows the adsorption rate (%) of each noble metal. As shown in FIG. 3, the adsorption of gold (Au), silver (Ag) and palladium (Pd) was confirmed, and in particular, a high adsorption rate (99.9%) was observed for gold (Au). On the other hand, while palladium (Pd) showed an adsorption rate of 27.0%, platinum (Pt), which is the same platinum group, hardly adsorbed.

(貴金属吸着能と仕込みモル比の関係の検証)
乾燥したサンプル1〜3(0.1 g)をそれぞれ別個の金イオン水溶液(1000 ppm標準液、和光純薬製)10mLに入れた後、各金イオン溶液中の金イオン濃度をICPにより経時的に測定し、金の吸着率(%)の経時的変化を調べた。
(Verification of relationship between precious metal adsorption capacity and charged molar ratio)
After each dried sample 1-3 (0.1 g) was placed in 10 mL of a separate aqueous gold ion solution (1000 ppm standard solution, Wako Pure Chemical Industries, Ltd.), the gold ion concentration in each gold ion solution was measured over time by ICP. Then, the time-dependent change in the gold adsorption rate (%) was examined.

図4は、サンプル1、2および3のそれぞれについて得られた結果をまとめて示したグラフである。図4に示すように、いずれのサンプルも時間の経過に伴って吸着率(%)が増加し、サンプル投入後6時間が経緯して以降は、ほぼ横ばいとなった。その中でも、のサンプル2(仕込みモル比=1.0)の立ち上がりが最も早く最も高い吸着率(%)を示した。   FIG. 4 is a graph summarizing the results obtained for each of Samples 1, 2, and 3. As shown in FIG. 4, the adsorption rate (%) increased with the passage of time for all the samples, and remained almost flat after 6 hours passed after the samples were added. Among them, sample 2 (charged molar ratio = 1.0) showed the fastest rise and the highest adsorption rate (%).

サンプル1(仕込みモル比=2.0)の吸着率(%)が低いのは、ブドウ種子由来ポリフェノールが完全に架橋されず、ポリフェノールの一部が溶液中に溶出したことが原因と推察される。一方、サンプル3(仕込みモル比=0.5)の吸着挙動がサンプル2のそれと若干異なったのは、サンプル3において、ブドウ種子由来ポリフェノールのOH基(金イオン吸着に必要な官能基)が過剰に存在するGAと反応したことが原因と推察される。   The reason why the adsorption rate (%) of Sample 1 (charged molar ratio = 2.0) is low is presumed to be that the grape seed-derived polyphenol was not completely cross-linked and a part of the polyphenol eluted into the solution. On the other hand, the adsorption behavior of sample 3 (charged molar ratio = 0.5) was slightly different from that of sample 2. In sample 3, OH groups (functional groups necessary for gold ion adsorption) of grape seed-derived polyphenols were present in excess. It is inferred that this was caused by the reaction with GA.

Claims (6)

ブドウ種子由来のポリフェノールに架橋剤を加えてなる不溶性ゲルを含む貴金属吸着剤。   A noble metal adsorbent comprising an insoluble gel obtained by adding a crosslinking agent to a polyphenol derived from grape seeds. 前記ポリフェノールはプロアントシアニジンオリゴマーを含む、請求項1に記載の貴金属吸着剤。   The noble metal adsorbent according to claim 1, wherein the polyphenol includes a proanthocyanidin oligomer. 前記プロアントシアニジンオリゴマーは下記構造式で表されるオリゴマーを含む、請求項2に記載の貴金属吸着剤。
The noble metal adsorbent according to claim 2, wherein the proanthocyanidin oligomer includes an oligomer represented by the following structural formula.
前記オリゴマーの平均重合度は3〜4である、請求項3に記載の貴金属吸着剤。   The noble metal adsorbent according to claim 3, wherein the average degree of polymerization of the oligomer is 3-4. 前記架橋剤はグルタルアルデヒドである、請求項2〜4のいずれか一項に記載の貴金属吸着剤。   The noble metal adsorbent according to any one of claims 2 to 4, wherein the cross-linking agent is glutaraldehyde. 前記不溶性ゲルは、前記プロアントシアニジンオリゴマーに対して略等モルの前記グルタルアルデヒドを加えてなる、請求項5に記載の貴金属吸着剤。   The noble metal adsorbent according to claim 5, wherein the insoluble gel is obtained by adding approximately equimolar amount of the glutaraldehyde to the proanthocyanidin oligomer.
JP2014173559A 2014-08-28 2014-08-28 Noble metal adsorbent using polyphenol derived from grape seeds as raw material Pending JP2016047505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173559A JP2016047505A (en) 2014-08-28 2014-08-28 Noble metal adsorbent using polyphenol derived from grape seeds as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173559A JP2016047505A (en) 2014-08-28 2014-08-28 Noble metal adsorbent using polyphenol derived from grape seeds as raw material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019013897A Division JP6719711B2 (en) 2019-01-30 2019-01-30 Noble metal adsorbent production method and noble metal recovery method

Publications (1)

Publication Number Publication Date
JP2016047505A true JP2016047505A (en) 2016-04-07

Family

ID=55648734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173559A Pending JP2016047505A (en) 2014-08-28 2014-08-28 Noble metal adsorbent using polyphenol derived from grape seeds as raw material

Country Status (1)

Country Link
JP (1) JP2016047505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404513A (en) * 2018-04-28 2019-11-05 同济大学 Polyaniline phenol is used as the application of noble metal adsorbent
CN114672647A (en) * 2022-03-28 2022-06-28 北京科技大学 Method for selectively and sequentially extracting palladium and platinum by using grape skin temperature control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JPH0566291A (en) * 1991-07-09 1993-03-19 Mitsubishi Nuclear Fuel Co Ltd Manufacturing of metallic element absorbent, and absorption and separation of metallic element by use of the absorbent
JP2000308825A (en) * 1999-02-26 2000-11-07 Mitsubishi Nuclear Fuel Co Ltd Method for manufacturing insoluble tannin and method for adsorbing hexa-valent chromium using the tannin
JP2003226923A (en) * 2002-02-04 2003-08-15 Mitsubishi Nuclear Fuel Co Ltd Method of recovering silver
JP2007297304A (en) * 2006-04-28 2007-11-15 Kao Corp Brain fatigue relieving agent
JP2014125641A (en) * 2012-12-25 2014-07-07 Mitsubishi Materials Corp Au ELEMENT RECOVERY METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JPH0566291A (en) * 1991-07-09 1993-03-19 Mitsubishi Nuclear Fuel Co Ltd Manufacturing of metallic element absorbent, and absorption and separation of metallic element by use of the absorbent
JP2000308825A (en) * 1999-02-26 2000-11-07 Mitsubishi Nuclear Fuel Co Ltd Method for manufacturing insoluble tannin and method for adsorbing hexa-valent chromium using the tannin
JP2003226923A (en) * 2002-02-04 2003-08-15 Mitsubishi Nuclear Fuel Co Ltd Method of recovering silver
JP2007297304A (en) * 2006-04-28 2007-11-15 Kao Corp Brain fatigue relieving agent
JP2014125641A (en) * 2012-12-25 2014-07-07 Mitsubishi Materials Corp Au ELEMENT RECOVERY METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404513A (en) * 2018-04-28 2019-11-05 同济大学 Polyaniline phenol is used as the application of noble metal adsorbent
CN114672647A (en) * 2022-03-28 2022-06-28 北京科技大学 Method for selectively and sequentially extracting palladium and platinum by using grape skin temperature control

Similar Documents

Publication Publication Date Title
Wang et al. New insights into trihalomethane and haloacetic acid formation potentials: correlation with the molecular composition of natural organic matter in source water
JP6719711B2 (en) Noble metal adsorbent production method and noble metal recovery method
Ye et al. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry
Wu et al. Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection
Fourest et al. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans
Ogunleye et al. Evaluation of biosorptive capacity of banana (Musa paradisiaca) stalk for lead (II) removal from aqueous solution
CN102504109B (en) Cyclodextrin supported hydrogel and preparation method thereof
Osborne et al. Molecular‐level characterization of reactive and refractory dissolved natural organic nitrogen compounds by atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry
US8936666B2 (en) Adsorption agent for noble metal, method for manufacturing the same, and method for recovering noble metal
CN103599760B (en) A kind of pair of mercury ion has efficient and high-selectivity adsorption poly-dopamine nanosphere
Liao et al. Adsorption of Cu (II) from aqueous solutions by tannins immobilized on collagen
Vani et al. Synthesis, characterization, and metal uptake capacity of a new polyaniline and poly (acrylic acid) grafted sodium alginate/gelatin adsorbent
JP2016047505A (en) Noble metal adsorbent using polyphenol derived from grape seeds as raw material
Morisada et al. Improved adsorption and separation of palladium (II) and platinum (IV) in strong hydrochloric acid solutions using thiocyanate‐retaining tannin gel
Morisada et al. Adsorption recovery of rhodium (III) in acidic chloride solutions by amine‐modified tannin gel
Baig et al. Biosorption characteristics of indigenous plant material for trivalent arsenic removal from groundwater: Equilibrium and kinetic studies
Saman et al. Silver adsorption enhancement from aqueous and photographic waste solutions by mercerized coconut fiber
Zamarripa–Cerón et al. Heavy metal removal using hydroxypropyl cellulose and polyacrylamide gels, kinetical study
Rodríguez et al. Inputs of terrestrial dissolved organic matter enhance bacterial production and methylmercury formation in oxic coastal water
Çimen et al. Poly-L-histidine attached poly (glycidyl methacrylate) cryogels for heavy metal removal
Mahmoud et al. A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal of Co (II), Cu (II), Cd (II), Hg (II) and Pb (II)
Ragheb et al. A novel dispersive liquid-liquid microextraction method based on solidification of floating organic drop for preconcentration of Pd (II) by graphite furnace atomic absorption spectrometry after complexation by a thienyl substituted 1, 2-ethanediamine
Targan et al. Removal of antimony (III) from aqueous solution by using grey and red Erzurum clay and application to the Gediz River sample
Copello et al. Exhausted yerba mate leaves (Ilex paraguariensis) as biosorbent for the removal of metals from aqueous solutions
Burham et al. Determination of heavy metal ions in environmental samples employing preconcentration on novel resins of polyurethane foam linked with o-Aminophenol or o-Hydroxyphenylazonaphthol

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106