JPS6154208A - Treatment of liquid to be treated in reverse-osmosis separation - Google Patents

Treatment of liquid to be treated in reverse-osmosis separation

Info

Publication number
JPS6154208A
JPS6154208A JP17504784A JP17504784A JPS6154208A JP S6154208 A JPS6154208 A JP S6154208A JP 17504784 A JP17504784 A JP 17504784A JP 17504784 A JP17504784 A JP 17504784A JP S6154208 A JPS6154208 A JP S6154208A
Authority
JP
Japan
Prior art keywords
treated
liquid
dissolved oxygen
reverse osmosis
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17504784A
Other languages
Japanese (ja)
Inventor
Yukio Nakagawa
幸雄 中川
Katsuya Edogawa
江戸川 勝也
Nobuyuki Matsuka
松家 伸行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17504784A priority Critical patent/JPS6154208A/en
Publication of JPS6154208A publication Critical patent/JPS6154208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the reaction velocity in removing dissolved oxygen and to carry out reverse-osmosis separation without damaging the selective separability of a composite membrane of furfuryl alcohol by adding a sulfurous reducing agent and a copper salt to a liquid to be treated. CONSTITUTION:A liquid to be treated such as seawater is separated by reverse- osmosis to obtain demineralized water by using a semipermeable membrane provided with a thin film consisting of a crosslinked polymer contg. furfuryl alcohol as an essential component. In this case, a sulfurous reducing agent such as sodium bisulfite is added to the liquid to be treated, and a copper salt such as copper sulfate is added in the range about 0.1-10ppm. The reaction velocity between dissolved oxygen and the sulfurous reducing agent in the liquid to be treated is accelerated by addition of said catalytic amt. of copper ions. Consequently, the cost of the chemical additives for pretreatment is reduced and the equipment is simplified. Besides, the propagation of microbes in the liquid can be controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フルフリルアルコールを必須成分とするV:
僑曵合体から成る薄膜を障壁層として有する半透性複合
膜から構成される逆浸透分離装置を用いて液体を分離す
る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides V:
The present invention relates to a method for separating liquids using a reverse osmosis separation device composed of a semipermeable composite membrane having a thin film made of a copolymer as a barrier layer.

[従来の技術] 半透膜の逆浸透現象を利用した逆浸透分離技術は近年、
急速な発展を見せており、多種の高性能膜が開発されつ
つある。逆浸透法による液体分離技術の進歩はその中核
となる逆浸透膜の開発および最適な逆浸透膜使用条件の
開発に負うところが大きく、中でも、従来の酢酸セルロ
ーズ系非対称膜〈いわゆるしoeblPJ)に代わる各
種の新規膜の開発や使用条件の検討などは年々盛んにな
っている。その−例としては、ポリスルホン、塩素化ポ
リ塩化ビニルなどから成る多孔質支持体上に、障壁層と
してフルフリルアルコールの架JLli合体から成る薄
膜を設けた複合膜く米国特許第3.926.798号、
特開昭54−107882号等)があり、卓越した選択
分離能を有している。しかしながら、この卓越した選択
分離能を有するフリルアルコール系重合体薄膜を障壁層
とする複合膜をはじめとする一部の半透膜には、酸化剤
に対する耐久性が十分でなく、長期にわたって連続的に
液体分離を行なうと、該半透膜の性能が低下するという
大きな欠点を有する。ずなわち、例えば湧水を逆浸透分
離し純水をII造する系には、被処理原液である海水中
に会よれる微生物などが原液輸送パイプに付着、蓄積し
、円滑な海水の流れを阻害ダるのを防ぎ、かつ、海水中
の有害物を除くために、海水中には、塩素等を添加する
のが一般的であるが、前記フルフリルアルコール系複合
膜を始めとする一部の酸化劣化性半透性膜にはこの塩素
によって劣化し、徐々にその選択分離性機能を失うとい
う欠点がある。更に、該フルフリルアルコール系の半透
性複合膜においては被処理原液中の溶存酸素によっても
劣化が進行し、その卓越した膜性能にもかかわらず実用
化の障害となっている。この溶存酸素は原液中には必ず
存在するものでありその除去は塩素はど容易ではない。
[Conventional technology] Reverse osmosis separation technology that utilizes the reverse osmosis phenomenon of semipermeable membranes has been developed in recent years.
It is showing rapid development, and various types of high-performance membranes are being developed. Advances in liquid separation technology using reverse osmosis are largely due to the development of reverse osmosis membranes, which are at the core of the process, and the development of optimal conditions for using reverse osmosis membranes.In particular, the development of the reverse osmosis membrane, which is the core of the technology, and the development of optimal conditions for using the reverse osmosis membrane, are particularly important. The development of various new membranes and the study of their usage conditions are becoming more active year by year. For example, a composite membrane comprising a thin film of furfuryl alcohol crosslinked JLli as a barrier layer is provided on a porous support made of polysulfone, chlorinated polyvinyl chloride, etc., U.S. Pat. No. 3,926,798. issue,
JP-A-54-107882, etc.) and has excellent selective separation ability. However, some semipermeable membranes, including composite membranes that use furyl alcohol-based polymer thin films as barrier layers, which have excellent selective separation ability, do not have sufficient durability against oxidizing agents and cannot be used continuously for long periods of time. If liquid separation is carried out in the semi-permeable membrane, the performance of the semi-permeable membrane deteriorates, which is a major drawback. For example, in a system where spring water is separated by reverse osmosis to produce pure water, microorganisms that are attracted to seawater, which is the raw liquid to be treated, adhere to and accumulate on the raw liquid transport pipe, making it difficult for the seawater to flow smoothly. It is common to add chlorine, etc. to seawater in order to prevent harmful substances from interfering with seawater and remove harmful substances from the seawater. The oxidation-degradable semipermeable membrane has the disadvantage that it is degraded by this chlorine and gradually loses its selective separation function. Furthermore, the furfuryl alcohol-based semipermeable composite membrane is also subject to deterioration due to dissolved oxygen in the raw solution to be treated, which is an obstacle to its practical application despite its excellent membrane performance. This dissolved oxygen always exists in the stock solution, and its removal is not as easy as with chlorine.

上記のフルフリルアルコール系複合膜の卓越した選択分
離性を損なうことなく被処理原液を処理する方法して、
既に被処理原液に亜硫酸塩あるいは重亜硫酸塩を添加す
る方法が提案されている(特開昭56−21604号公
報)。しかし、無触媒下での溶存酸素と亜硫酸イオンあ
るいは重亜IIイオンとの反応速度は必ずしも速いとは
いえず、特に、塩濃度の低いカン水や、有機化合物を被
処理原液とする場合には、きわめて遅くなる。
A method for treating an undiluted solution without impairing the excellent selective separation properties of the above-mentioned furfuryl alcohol-based composite membrane,
A method of adding sulfite or bisulfite to the stock solution to be treated has already been proposed (Japanese Unexamined Patent Publication No. 56-21604). However, the reaction rate between dissolved oxygen and sulfite ions or biite II ions in the absence of a catalyst is not necessarily fast, especially when using kansui with a low salt concentration or organic compounds as the stock solution to be treated. , becomes extremely slow.

したがって、該フルフリルアルコール系半透膜の性能低
下防止能を十分に発揮させるには、該仙硫酸性還元剤を
大過剰に添加するか、あるいは、反応を完了させるのに
十分な滞留時間をもったバッファタンク等を設置づ゛る
必要があり、また、被処理原液の温度が約15℃以下の
低温の場合には、溶存酸素量の増加に加えて、該亜硫酸
性還元剤と溶存酸素の反応速度も著しく低下するので、
上記の方法は、経済的な見地からみると、すべて工業的
に優れているとは言い難い。一方、上記の方法では、滅
菌剤である塩素および水中の溶存酸素も除去し、かつ、
亜硫酸塩の酸化により硫酸塩を生じるために、嫌気性雰
囲気下での硫酸還元菌の発生をはじめとして種々の微生
物問題の生じる可能性が大きい。
Therefore, in order to fully demonstrate the ability of the furfuryl alcohol-based semipermeable membrane to prevent performance deterioration, it is necessary to add a large excess of the sulfuric acid reducing agent or to provide sufficient residence time to complete the reaction. It is necessary to install a buffer tank, etc. with sufficient water, and if the temperature of the raw solution to be treated is as low as about 15°C or lower, in addition to the increase in the amount of dissolved oxygen, the sulfite reducing agent and dissolved oxygen The reaction rate of is also significantly reduced, so
It is difficult to say that all of the above methods are industrially superior from an economic standpoint. On the other hand, the above method also removes chlorine, which is a sterilizing agent, and dissolved oxygen in water, and
Since sulfate is produced by oxidation of sulfite, there is a high possibility that various microbial problems will occur, including the generation of sulfate-reducing bacteria in an anaerobic atmosphere.

[発明が解決しようとする問題点1 本発明は、該フルフリルアルコール系半透性複合膜の卓
越した選択分離能を損なうことなく、かつ、上記の諸問
題の発生を防ぐより経済的かつ工業的な方法ついて鋭意
検討を行なって本発明を見い出したものである。
[Problem to be Solved by the Invention 1] The present invention provides a more economical and industrial solution that prevents the occurrence of the above-mentioned problems without impairing the excellent selective separation ability of the furfuryl alcohol-based semipermeable composite membrane. The present invention was discovered through extensive research into methods.

[問題点を解決するための手段] すなわら、本発明の特徴は、被処理原液中の塩素および
溶存酸素を亜硫酸塩、重亜Ta酸塩あるいは亜1i!!
酸ガスのような亜硫酸性還元剤で除去するに際し、触媒
債の銅イオンを共存させることにより、脱溶存酸索の反
応速度を著しく促進すると同時に、微生物の増殖を防ぐ
点にある。
[Means for Solving the Problems] In other words, the feature of the present invention is that chlorine and dissolved oxygen in the raw solution to be treated are replaced with sulfite, biTa salt, or 1i! !
When removing with a sulfite reducing agent such as acid gas, the coexistence of copper ions as a catalytic bond greatly accelerates the reaction rate of removing dissolved acid, and at the same time prevents the growth of microorganisms.

上記に掲げた亜硫酸性還元剤の具体例としては、亜硫酸
す1−リウム、亜硫酸カリウムや亜硫酸カルシウム等の
亜VAM塩、重亜硫酸ナトリウムや重亜硫酸カリウムの
ような重亜硫酸塩、次亜硫酸ナトリウムのような次亜値
R塩および亜硫酸ガス等が挙げられる。
Specific examples of the sulfite reducing agents listed above include 1-lium sulfite, VAM salts such as potassium sulfite and calcium sulfite, bisulfites such as sodium bisulfite and potassium bisulfite, and sodium hyposulfite. Examples include sub-value R salts and sulfur dioxide gas.

また、銅塩の具体例としては、塩化銅や硫酸銅、硝酸銅
などの水溶性銅化合物が挙げられる。
Further, specific examples of copper salts include water-soluble copper compounds such as copper chloride, copper sulfate, and copper nitrate.

水中の溶存酸素と亜硫酸性還元剤との反応性を促進する
触媒としては、銅イオン以外にも、鉄イオンやコバルト
イオン、マンガンイオン等の遷移金属も知られているが
、微生物増殖の抑制効果の点では銅イオンに優るものは
なく、かつ添加mや経済性など総合的な工業見地からみ
ても銅塩の添加が最も好ましい。
In addition to copper ions, transition metals such as iron ions, cobalt ions, and manganese ions are also known as catalysts that promote the reactivity between dissolved oxygen in water and sulfite reducing agents, but they do not have the effect of suppressing microbial growth. There is nothing superior to copper ions in terms of this, and addition of copper salts is most preferable from a comprehensive industrial standpoint such as addition m and economical efficiency.

被処理原液に添加する銅イオンの添加母は多ければ多い
ほど溶存酸素と脱酸素剤との反応速度を加速し、かつ、
微生物対策上も好ましいが、通常は0.1からiopp
m程度でも十分な効果を示す。
The more copper ions added to the stock solution to be treated, the more the reaction rate between dissolved oxygen and the oxygen scavenger will be accelerated, and
Although it is preferable from a microbial countermeasure, it is usually 0.1 to iopp.
A sufficient effect can be obtained even at a distance of about m.

また溶存酸素と亜硫酸性還元剤、例えば、亜硫酸カルシ
ウムや重亜硫酸ナトリウムとの反応は次の化学方程式(
1)で示されるJ:うに酸基1分子あたり2分子の亜硫
B塩あるいは重亜硫酸1=と反応する。
The reaction between dissolved oxygen and a sulfite reducing agent, such as calcium sulfite or sodium bisulfite, is expressed by the following chemical equation (
1) J: Reacts with 2 molecules of sulfite B salt or 1 = bisulfite per molecule of uni acid group.

したがって、11)l)mの溶存酸素を除去するために
は、理論的には亜硫酸カルシウムj5よび亜硫酸ナトリ
ウムが各々7.5ppmおよび6.5ppm必要となる
Therefore, in order to remove dissolved oxygen of 11)l)m, 7.5 ppm and 6.5 ppm of calcium sulfite j5 and sodium sulfite are theoretically required, respectively.

本発明において、フルフリルアルコール系重合体からな
る半透性複合膜とは、ポリスルホン、ポリ塩化ビニル、
ポリ塩化ビニリデン、硝酸セルローズまたはそれらの共
用合体など、好ましくは、ポリスルホンからなる異方性
(14造を有し1〔多孔性支持体−ヒにフルフリルアル
コールあるいはフルフリルアルコールの他にトリスヒド
ロキシエヂルイソシアヌル酸、イノシトールやソルビ1
−−ルなどからなる反応成分系および酸触媒として、l
iU酸、リン酸、トルエン・スルホン酸、好ましくは、
硫酸を含有する水溶液を塗布して加熱重合せしめた薄膜
を障壁層として形成せしめた複合膜であり、さらに具体
的には、米国特許第3.926.79百号、特開昭54
−107882号明細書、特開昭55−159807号
明1四および特開昭56−158cz、F3明細書など
に開示されている反応成分系が望ましい。
In the present invention, the semipermeable composite membrane made of furfuryl alcohol-based polymer refers to polysulfone, polyvinyl chloride,
Polyvinylidene chloride, cellulose nitrate or co-combined combinations thereof, preferably an anisotropic (14-structured porous support) made of polysulfone, furfuryl alcohol or trishydroxyethyl alcohol in addition to furfuryl alcohol. lysocyanuric acid, inositol and sorbitol 1
- as a reaction component system consisting of l, etc. and as an acid catalyst, l
iU acid, phosphoric acid, toluene sulfonic acid, preferably
It is a composite film in which a barrier layer is formed of a thin film coated with an aqueous solution containing sulfuric acid and polymerized by heating.More specifically, it is disclosed in U.S. Pat.
Reaction component systems disclosed in JP-A-107882, JP-A-55-159807-Mei 14 and JP-A-56-158cz, F3 are preferred.

[発明の効果1 本発明ににれば、 ■ 触媒量の銅イオンの添加によって被処理原液中の溶
存酸素と亜硫酸性還元剤との反応速度が加速される結果
、必要量以上の亜硫酸性還元剤の添加を抑制することが
可能となる。あるいは、溶存酸素と亜硫酸性還元剤との
反応を完結させるために必要以上の大ぎさのバッファタ
ンクのRQ Rjfが不要になり、逆浸透分離装置に供
給する被処理原液の前処理添加薬品のコスト低減、ある
いは、前処理設備の簡素化が図れる。
[Effect of the invention 1 According to the present invention, ■ Addition of a catalytic amount of copper ions accelerates the reaction rate between dissolved oxygen in the stock solution to be treated and the sulfite reducing agent, resulting in reduction of sulfites in excess of the required amount. It becomes possible to suppress the addition of agents. Alternatively, the RQ Rjf of a buffer tank larger than necessary to complete the reaction between dissolved oxygen and sulfite reducing agent is no longer required, and the cost of pre-treatment additive chemicals for the raw solution to be treated to be supplied to the reverse osmosis separation device is reduced. It is possible to reduce or simplify the pretreatment equipment.

■ 銅イオンの添加によって被処理原液の微生物増殖抑
制効果が現れる。
■ The addition of copper ions has the effect of inhibiting the growth of microorganisms in the raw solution to be treated.

などフルフリルフルコール系半透性複合膜の実用化を可
能とする方法であり、その工業的意義は極めて大きいの
である。
This is a method that enables the practical application of furfuryl-furcol-based semipermeable composite membranes, and its industrial significance is extremely large.

以下、次に示す実施例によって本発明の効果をさらに具
体的に説明する。
Hereinafter, the effects of the present invention will be explained in more detail with reference to the following examples.

[実施例1 実施例1 特開昭57−24602、号の実施例1によって作成し
たフルフリルフルコール系の半透性複合膜を使って¥A
造した直径1Qcm、長さ1mのスパイラル型エレメン
ト6木入りのモジュールを用いて海水淡水化試験を行な
った。原海水中の塩濃度は3.5重量%、溶存酸素濃度
は7.2ppmであった。56 kcJ/ cl、25
°C1PH6,5、回収率40%の運転条イ!1で逆浸
透試験をするにあたり、彼処1![!海水原液中の溶存
酸素濃度を真空脱気法で1゜0 ppmに下げた後、重
亜硫酸ナトリウムおよび硫!l!2銅(II)の添加量
を各々、201)l)lおよび0゜5 ppmどし、両
循品を同時に添加した1麦の海水原液の逆浸透モジュー
ルまでの滞留時間を30秒とした逆浸透分離装置を製作
した。
[Example 1 Example 1 Using a furfurylfurcol-based semipermeable composite membrane prepared according to Example 1 of JP-A No. 57-24602,
A seawater desalination test was carried out using the manufactured spiral-shaped element 6 wooden module with a diameter of 1Qcm and a length of 1m. The salt concentration in the raw seawater was 3.5% by weight, and the dissolved oxygen concentration was 7.2 ppm. 56 kcJ/cl, 25
Operating conditions at °C1PH6.5 and recovery rate of 40%! When doing a reverse osmosis test with 1, he is 1! [! After reducing the dissolved oxygen concentration in the raw seawater solution to 1°0 ppm by vacuum degassing, sodium bisulfite and sulfur! l! The amount of copper (II) added was 201) l) l and 0.5 ppm, respectively, and the residence time to the reverse osmosis module of the raw seawater solution of wheat to which both products were added at the same time was 30 seconds. A osmotic separation device was manufactured.

上記の逆浸透分!lll1装置を運転開始したところ、
透過水として1301)I)m  (TDS)の水質が
得られた。なお、逆浸透モジュール入口での溶存酸素i
l′AILTは0.10pm以下であった。この装置を
上記の運転条件で1年間連続運転したところ、通過水水
質は1501)pm  (TDS)であった。また、特
にα1増殖によるモジュール圧損の上声や硫酸還元菌発
生に伴う硫化水素臭の発生等の微生物問題は存在しなか
った。
The above reverse osmosis portion! When Ill1 equipment started operating,
A water quality of 1301)I)m (TDS) was obtained as permeated water. In addition, dissolved oxygen i at the reverse osmosis module inlet
l'AILT was 0.10 pm or less. When this device was continuously operated for one year under the above operating conditions, the quality of the passing water was 1501) pm (TDS). In addition, there were no microbial problems such as the sound of module pressure loss due to α1 proliferation or the generation of hydrogen sulfide odor due to the generation of sulfate-reducing bacteria.

比較例1 実施例1に示した逆浸透分離装「を用いて硫酸銅(II
)添加を省略する以外は実施例1に示した運転条件で海
水淡水化試験をしたところ、逆浸透    ゛モジュー
ル入口での海水原液中の溶存酸素濃度はo、5ppmで
あった。また、運転Ili始後約3ヵ月後に硫酸還元菌
に由来すると考えられる硫化水素臭が発生し、その2週
間後には、モジュール圧jΩ ′が6 kv/ayfを
越えたので逆浸透試験を中断した。
Comparative Example 1 Copper sulfate (II
When a seawater desalination test was carried out under the operating conditions shown in Example 1 except that the addition of 2000 ml was omitted, the dissolved oxygen concentration in the raw seawater solution at the inlet of the reverse osmosis module was 0.5 ppm. Additionally, approximately 3 months after the start of operation, a hydrogen sulfide odor that was thought to originate from sulfate-reducing bacteria occurred, and 2 weeks later, the module pressure jΩ' exceeded 6 kv/ayf, so the reverse osmosis test was discontinued. .

比較例2 比較例1に示された微生物およびその代謝物で汚染され
た逆浸透分離装置を0.2重合%のドデシル硫酸ナトリ
ウム水溶液で洗かした後、2 ppmの硫酸銅(II)
を新たに添加したrfη水原液で1週間運転したところ
、モジュール圧損は2にワ/dを維持し、硫化水素臭も
なくなった。そこで、III!i酸銅(If)の添加を
止めて再び比較例1の運転条イロ1で逆浸透試験を行な
ったところ、通過水水質は徐々に悪化し、1年後には2
70ppm  (TDS)よで悪化した。
Comparative Example 2 After washing the reverse osmosis separator contaminated with the microorganisms and their metabolites shown in Comparative Example 1 with a 0.2% polymerization sodium dodecyl sulfate aqueous solution, 2 ppm copper(II) sulfate was added.
When operated for one week with a freshly added rfη water stock solution, the module pressure drop remained at 2 W/d, and the hydrogen sulfide odor disappeared. So, III! When the reverse osmosis test was carried out again using the operating column Iro 1 of Comparative Example 1 after stopping the addition of Iro acid copper (If), the quality of the passing water gradually deteriorated, and after one year, the reverse osmosis test was carried out again.
It got worse at 70ppm (TDS).

実施例2 3 、 5 ”;1 m % (7) 海水’ti:、
 Jl (+’ テ、56kq/Ci、25°C,PH
6,5の運転条件で実施例1に示されたエレメントを使
って逆浸透試験を行なうに際し、海水中の溶存酸素濃度
を測定すると7.21)Ilmであった。重亜硫酸ナト
リウムで溶ひ酸素を除去するに際し、原液中の溶存酸素
濃度を0.lppm以下にするのに必要な反応時間と重
亜T1jAIS!lナトリウム添加塁、llI!I酸銅
(It)添加色の関係を表1に示す。
Example 2 3,5''; 1 m% (7) Seawater'ti:,
Jl (+'TE, 56kq/Ci, 25°C, PH
When conducting a reverse osmosis test using the element shown in Example 1 under the operating conditions of 6.5, the dissolved oxygen concentration in seawater was measured to be 7.21)Ilm. When removing dissolved oxygen with sodium bisulfite, the dissolved oxygen concentration in the stock solution was adjusted to 0. The reaction time required to reduce the level to lppm or less and heavy nitrogen T1j AIS! 1 Sodium added base, llI! Table 1 shows the relationship between the colors of copper I acid (It) added.

表  1 溶存酸素濃度の変化(3,5%Zm水系〉実施例3 1001)l)Illの食塩および210111)II
Iの重炭酸ナトリウムから成る水溶液中の溶存酸素を!
IN硫酸カルシウムで除去するに際し、被処理原液中の
溶存Hl?、if’、1度を0.lppm以下にするの
に必要な反応時間ど重亜硫酸ナトリウム添加摂、硫酸銅
(H)添加機の関係を表2に示す。なお、被処理原液中
の溶存酸素濃度は7.51)l)m  (25℃)であ
り、測定は25℃のjji晶槽の中で行なった。
Table 1 Changes in dissolved oxygen concentration (3,5% Zm water system> Example 3 1001) Ill salt and 210111) II
Dissolved oxygen in an aqueous solution consisting of sodium bicarbonate of I!
When removing with IN calcium sulfate, is there any dissolved Hl in the raw solution to be treated? , if', 1 degree is 0. Table 2 shows the relationship between the reaction time, sodium bisulfite addition, and copper sulfate (H) addition equipment required to reduce the amount to 1 ppm or less. The dissolved oxygen concentration in the stock solution to be treated was 7.51)l)m (25°C), and the measurement was performed in a JJI crystal bath at 25°C.

表  2 溶存酸素濃度の変化 <100ppm NaCα+210ppm NaHCO
3系)実施例4 3.5重量%のンfa水を採取し、硫酸銅(■)による
、滅菌効果を検討した。採取海水中の菌数の変化と硫!
1!2銅(I[)添加量の関係を表3に示す。
Table 2 Change in dissolved oxygen concentration <100ppm NaCα+210ppm NaHCO
3) Example 4 3.5% by weight of FA water was collected and the sterilization effect with copper sulfate (■) was examined. Changes in the number of bacteria and sulfur in collected seawater!
Table 3 shows the relationship between the amount of 1!2 copper (I[) added.

表3:(Ji酸銅(II)の添加量と菌数の関係実施例
4 実施例1に示されたエレメントを用いて電子工業用途の
超純粋製造装面を設計した。原水中の溶存M m IC
5度は8.5ppm、原水の」n濃度が150ppm(
TDS)であった。被処理原水中に亜硫酸ナトリウム1
13J:び塩化銅(II)を各々、1100pI) J
′3よび2.01111m添加して逆浸透モジュールに
供給した。原水の温度は17℃、PHは7.0であり、
上記の薬品添加後、逆浸透モジュールに到達するまでの
原水の泪2留時間は5分間であり、逆浸透モジュール入
口における原水中の溶存酸素濃度は0.lppm以下に
保たれた。逆浸透モジュールは回収率80%、運転圧力
25kg/+a+fの条件で運転されたが、運転開始後
1年を経過しても、通過水水質は10tls/cm以下
であり、その後の脱炭酸およびイオン交換処理にJ:り
ほぼ16MΩの比抵抗諮を示した。
Table 3: Relationship between the amount of copper (II) added and the number of bacteria Example 4 Using the elements shown in Example 1, an ultra-pure manufacturing surface for electronic industry use was designed. m IC
5 degrees is 8.5 ppm, and the concentration of raw water is 150 ppm (
TDS). Sodium sulfite 1 in raw water to be treated
13J: copper (II) chloride, 1100 pI each) J
'3 and 2.01111 m were added and fed to the reverse osmosis module. The temperature of the raw water is 17℃, the pH is 7.0,
After adding the above-mentioned chemicals, the retention time of the raw water until it reaches the reverse osmosis module is 5 minutes, and the dissolved oxygen concentration in the raw water at the reverse osmosis module entrance is 0. It was kept below lppm. The reverse osmosis module was operated at a recovery rate of 80% and an operating pressure of 25 kg/+a+f, but even after one year had passed since the start of operation, the quality of the passing water was below 10 tls/cm, and subsequent decarboxylation and ionization J: showed a specific resistance value of approximately 16 MΩ during the exchange process.

比較例3 実施例4に示した超純水製造用逆浸透分離装置を用いて
、塩化銅(n)添加を省略する以外は実施例4に示した
条件で運転したところ、運転開始後半年を経過した段階
で逆浸透上ジュールからの通過水水質は20μS/cm
を超えた。なお、同モジュール入口における原水中の溶
存酸素濃度は、8、Op+onであった。
Comparative Example 3 Using the reverse osmosis separator for producing ultrapure water shown in Example 4, it was operated under the conditions shown in Example 4 except that the addition of copper chloride (n) was omitted. After the passage of time, the water quality of the water passing through reverse osmosis was 20 μS/cm.
exceeded. Note that the dissolved oxygen concentration in the raw water at the module entrance was 8, Op+on.

Claims (2)

【特許請求の範囲】[Claims] (1)フルフリルアルコールを必須成分とする架橋重合
体からなる薄膜を設けた半透性複合膜を用いて逆浸透分
離するに際し、被処理原液に亜硫酸性還元剤と銅塩を添
加することを特徴とする逆浸透分離法における被処理原
液の処理法。
(1) When performing reverse osmosis separation using a semipermeable composite membrane equipped with a thin film made of a crosslinked polymer containing furfuryl alcohol as an essential component, it is recommended to add a sulfite reducing agent and copper salt to the stock solution to be treated. Characteristic treatment method for the undiluted solution in reverse osmosis separation method.
(2)銅塩の添加量が0.1から10ppmの範囲であ
ることを特徴とする特許請求の範囲第1項記載の逆浸透
分離法における被処理原液の処理法。
(2) A method for treating an undiluted solution in a reverse osmosis separation method according to claim 1, wherein the amount of copper salt added is in the range of 0.1 to 10 ppm.
JP17504784A 1984-08-24 1984-08-24 Treatment of liquid to be treated in reverse-osmosis separation Pending JPS6154208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17504784A JPS6154208A (en) 1984-08-24 1984-08-24 Treatment of liquid to be treated in reverse-osmosis separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17504784A JPS6154208A (en) 1984-08-24 1984-08-24 Treatment of liquid to be treated in reverse-osmosis separation

Publications (1)

Publication Number Publication Date
JPS6154208A true JPS6154208A (en) 1986-03-18

Family

ID=15989295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17504784A Pending JPS6154208A (en) 1984-08-24 1984-08-24 Treatment of liquid to be treated in reverse-osmosis separation

Country Status (1)

Country Link
JP (1) JPS6154208A (en)

Similar Documents

Publication Publication Date Title
US5766479A (en) Production of high purity water using reverse osmosis
CN101053787B (en) Composite polyamide reverse osmosis membrane showing high boron rejection and method of producing the same
EP2046489B1 (en) Improved monopersulfate treatment of membranes
WO2003022751A1 (en) Method of multi-stage reverse osmosis treatment
JP4289757B2 (en) Method for producing composite reverse osmosis membrane
KR20010031737A (en) Treatment of composite polyamide membranes to improve performance
CN112805247B (en) Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
US20100136238A1 (en) Method of enhancing rejection of permeation membrane, rejection-enhanced membrane, method and apparatus for treatment by permeation membrane
JP3698093B2 (en) Water treatment method and water treatment apparatus
JP2008161818A (en) Pure water production method and apparatus
JPH09290275A (en) Device for removing boron in water and method thereof
WO2008059824A1 (en) Water treatment apparatus and method of water treatment
JPH09141260A (en) Method for desalination of seawater
JPS6154208A (en) Treatment of liquid to be treated in reverse-osmosis separation
JPWO2016111371A1 (en) Method of improving semi-permeable membrane blocking performance, semi-permeable membrane, semi-permeable membrane water generator
JP2011131209A (en) Method and apparatus for treating acidic solution
JPS61200810A (en) Membrane separation apparatus
JP2008036605A (en) Apparatus for producing purified water and method for producing purified water
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JP3312483B2 (en) Reverse osmosis treatment method and desalination method
JP2004244346A (en) Fungicide for water treatment, method for water treatment and apparatus for water treatment
JPH05309398A (en) Apparatus for producing pure water
JP2000271569A (en) Production of pure water
JPH07328392A (en) Treatment of reverse osmosis membrane separation apparatus
JP2009112927A (en) Method of modifying separation membrane, separation membrane modified thereby, modifier and apparatus for this modification