JPS6154161A - Lithium-ion-conducting solid electrolyte material - Google Patents

Lithium-ion-conducting solid electrolyte material

Info

Publication number
JPS6154161A
JPS6154161A JP17555384A JP17555384A JPS6154161A JP S6154161 A JPS6154161 A JP S6154161A JP 17555384 A JP17555384 A JP 17555384A JP 17555384 A JP17555384 A JP 17555384A JP S6154161 A JPS6154161 A JP S6154161A
Authority
JP
Japan
Prior art keywords
lithium
solid electrolyte
electrolyte material
ion
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17555384A
Other languages
Japanese (ja)
Other versions
JPH0317348B2 (en
Inventor
Hideaki Otsuka
大塚 秀昭
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17555384A priority Critical patent/JPS6154161A/en
Publication of JPS6154161A publication Critical patent/JPS6154161A/en
Publication of JPH0317348B2 publication Critical patent/JPH0317348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prepare a lithium-ion-conducting solid electrolyte material which has great conductivity and is chemically stable by using a composition represented by the general formula LiNb1-xTaxWO6 (0<=x<=1). CONSTITUTION:A composition represented by the general formula LiNb1-xTax WO6 (0<=x<=1) is used to prepare a lithium-ion-conducting solid electrolyte material used as the electrolyte of a solid battery containing lithium as the negative active material. Since this solid electrolyte material has a tolyltyl crystalline structure, it has relatively high lithium ion conductivity and high decomposition voltage, is thermally stable and is relatively stable even to water as compared to other lithium-ion-conducting materials. Accordingly, it is possible to greatly improve the characteristic of the battery by using this material as an electrolyte for a lithium solid battery.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は、リチウムイオン導電性固体電解質材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to lithium ion conductive solid electrolyte materials.

〔発明の背景〕[Background of the invention]

リチウムを負極活物質として用い、電解質としてリチウ
ム導電性の固体電解質を用いた固体電池は、高エネルギ
密度であり、液漏れがな(、小型薄型に出来る等の点で
、非常に利点が多い。
Solid-state batteries that use lithium as the negative electrode active material and a lithium-conductive solid electrolyte as the electrolyte have many advantages, such as high energy density, no leakage, and the ability to be made small and thin.

このような固体電池への応用を目的としてリチウムイオ
ン導電性固体電解質材料の開発が注目されている。しか
し、現在のところ、リチウムイオン導電性固体電解質材
料は得られておらず、僅かに、40mo1%のAl2O
3を添加したLilのみがリチウム固体電池に応用され
、実用されているにすぎない。
The development of lithium ion conductive solid electrolyte materials is attracting attention for application to such solid-state batteries. However, at present, no lithium ion conductive solid electrolyte material has been obtained, and only 40 mo1% Al2O
Only Lil added with 3 has been applied to lithium solid-state batteries and is in practical use.

最近、Li3N % LiAl5iOa等のリチウムイ
オン導電性の固体電解質材料が知られているが、まだ固
体電池に必要な特性を充分満足しているとは言い難い現
状である。たとえば、Li3Nは導電率は大きいが、分
解電圧が低いこと、LiAl5iOaは室温での導電率
が10−9Ω′1 c m−を以下と小さく、いずれも
固体電池への適用はなされていない。
Recently, lithium ion conductive solid electrolyte materials such as Li3N%LiAl5iOa have been known, but it is still difficult to say that they fully satisfy the characteristics required for solid-state batteries. For example, Li3N has a high conductivity but low decomposition voltage, and LiAl5iOa has a low conductivity at room temperature of less than 10<-9 >[Omega]'1 cm<->, and both have not been applied to solid-state batteries.

このようなわけで、これらの欠点を除去した固体電解質
材料、特に導電率が大きく、化学的に安定な材料の開発
が希求されている。
For this reason, there is a desire to develop solid electrolyte materials that eliminate these drawbacks, particularly materials that have high electrical conductivity and are chemically stable.

〔発明の概要〕[Summary of the invention]

本発明は上述の現状に鑑みなされたもので、導電率が大
きく、かつ化学的に安定なリチウムイオン導電性固体電
解質材料を提供することを目的とする。
The present invention was made in view of the above-mentioned current situation, and an object of the present invention is to provide a lithium ion conductive solid electrolyte material that has high electrical conductivity and is chemically stable.

したがって、本発明によるリチウムイオン導電性固体電
解質材料は、一般式、 LiNbx −x Tax WO6 (但し、0≦X≦1) で示される組成物よりなることを特徴とするものである
Therefore, the lithium ion conductive solid electrolyte material according to the present invention is characterized by comprising a composition represented by the general formula: LiNbx -x Tax WO6 (0≦X≦1).

本発明によるリチウムイオン導電性固体電解質材料によ
れば、トリチル構造を有することにより、比較的高いリ
チウムイオン導電性を示すとともに、分解電圧も高く、
熱的に安定であり、また、水分に対しても、他のリチウ
ムイオン導電体に比較して安定であるという利点があり
、このためこのリチウムイオン導電性固体電解質材料を
リチウム固体電池の電解質材料に適用することにより、
固体電池の特性改善が達成しえるという利点がある。
According to the lithium ion conductive solid electrolyte material according to the present invention, by having a trityl structure, it exhibits relatively high lithium ion conductivity and has a high decomposition voltage.
It has the advantage of being thermally stable and stable against moisture compared to other lithium ion conductors, and for this reason, this lithium ion conductive solid electrolyte material is used as an electrolyte material for lithium solid batteries. By applying to
There is an advantage that the characteristics of solid-state batteries can be improved.

〔発明の詳細な説明〕 本発明をさらに詳しく説明する。[Detailed description of the invention] The present invention will be explained in more detail.

本発明による一般式、 LiNbニー x Tax WO6 (但し、0≦X≦1) で示される組成物は、リチウムイオン導電率の高い材料
を作ることを目的に、その結晶構造に着目して作製した
ものである。
The composition represented by the general formula LiNb x Tax WO6 (where 0≦X≦1) according to the present invention was created by focusing on its crystal structure with the aim of creating a material with high lithium ion conductivity. It is something.

本発明によるリチウムイオン導電性固体電解質材料はト
リルチル構造を有するものである。すなわち、このトリ
ルチル構造はルチル構造のC軸方向に3倍伸びた構造を
しており、したがって(001)方向に隙間があり、こ
の方向にリチウムイオンの移動が容易であると考えられ
ることから、この材料系に着目したのである。
The lithium ion conductive solid electrolyte material according to the present invention has a trirutile structure. In other words, this trirutile structure has a structure that extends three times as much in the C-axis direction as the rutile structure, so there is a gap in the (001) direction, and it is thought that lithium ions can easily move in this direction. We focused on this material system.

前述の一般式において、0≦X≦1にある本発明による
リチウムイオン導電性固体電解質材料はトリルチル構造
を採り、いずれもリチウムイオン導電性を示す。
In the above general formula, the lithium ion conductive solid electrolyte material according to the present invention in which 0≦X≦1 has a trirutile structure, and all exhibit lithium ion conductivity.

本発明によるリチウムイオン導電性固体電解質材料の製
造方法は、本発明において限定されるものではない、た
とえば、通常の磁器焼成法あるいはホットプレス法によ
り製造することができる。
The method for producing the lithium ion conductive solid electrolyte material according to the present invention is not limited in the present invention, and can be produced by, for example, a normal porcelain firing method or a hot pressing method.

具体的には、たとえば次ぎのようにして製造することが
できる。
Specifically, it can be manufactured, for example, as follows.

まず市販特級試薬のLi2 CO3、Nb205 、T
a205およびWO3を原料とし、これらの原料を、L
iNb1−xTaχWO8なる秤量式に基づき、所定量
を秤量し、充分混合した後、アルミするつぼに移して、
仮焼成する。仮焼成は、700〜760℃の温度で24
時間、大気中にて行う。焼成後、生成物を電気炉より取
り出し、粉砕した後、1〜5t/c++!の圧力で、成
形し成形体とする。
First, commercially available special grade reagents Li2 CO3, Nb205, T
Using a205 and WO3 as raw materials, these raw materials are
Based on the weighing formula iNb1-xTaχWO8, weigh out a predetermined amount, mix thoroughly, and transfer to an aluminum crucible.
Temporarily fire. Temporary firing is performed at a temperature of 700 to 760°C for 24 hours.
time in the atmosphere. After firing, the product is taken out from the electric furnace and pulverized. It is molded into a molded body under the pressure of .

この成形体を、さらに760〜780℃の温度で6時間
焼成するか、760〜800°Cの温度で、400 K
g/cffIのプレス圧で2時間、ホットプレス焼成を
行う。
This molded body is further fired at a temperature of 760 to 780°C for 6 hours, or at a temperature of 760 to 800°C at 400 K.
Hot press firing is performed for 2 hours at a press pressure of g/cffI.

前述のように製造された焼結体を所要形状に切り出し、
研磨し、リチウムを負極活物質とする固体電池の固体電
解質材料とする。
The sintered body produced as described above is cut into the desired shape,
It is polished and used as a solid electrolyte material for solid batteries that use lithium as the negative electrode active material.

本発明によるリチウムイオン導電性固体電解質材料の導
電率は、仮焼成、本焼成あるいはホ・ノドブレス条件に
より若干の影響を受けるが、LiNb1− x Tax
 woeなる組成において、x =0.25の時、最大
の導電率を示す。
The conductivity of the lithium ion conductive solid electrolyte material according to the present invention is slightly affected by the preliminary firing, main firing, or hot-node breath conditions, but LiNb1- x Tax
In the composition woe, the maximum conductivity is exhibited when x = 0.25.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

以下の実施例における導電率の測定は、焼結体から、直
径1211、厚み約21貢の円盤状試料に成形し、その
両面にPt−Pd電極を付けて、交流法により行い、複
数アドミッタンス法により導電率を求めた。また電子輸
率は直流法により電子伝導性による導電率を求め、全導
電率との比より求めた。
The conductivity measurements in the following examples were performed by molding a sintered body into a disk-shaped sample with a diameter of 1211 mm and a thickness of about 21 mm, attaching Pt-Pd electrodes to both sides, and using the AC method, and using the multiple admittance method. The conductivity was determined by Further, the electron transport number was determined by determining the electrical conductivity based on the electron conductivity using the direct current method, and the ratio to the total electrical conductivity.

実施例1 前述の製造方法にしたがい、LiNbWOe  (前記
−JI&式のxOのばあい) 、LiNb(1,757
a(1,5WOs  (x =0゜25) 、LiNb
@、5Ta0,5WOe  (x =0.5 ) 、L
iNb0,5Ta(1,75Woe  (x =0.7
5) 、LiTaWO(x =1 )を、次ぎの条件で
装造した。
Example 1 According to the above-mentioned manufacturing method, LiNbWOe (in the case of xO in the above -JI & formula), LiNb (1,757
a(1,5WOs (x = 0°25), LiNb
@, 5Ta0,5WOe (x = 0.5), L
iNb0,5Ta(1,75Woe (x =0.7
5) LiTaWO (x = 1) was prepared under the following conditions.

仮焼成を750°C124時間行った後、成形し、これ
を780°C1400Kg/cotのプレス圧で、2時
間ホントプレスを行った。得られた焼結体材料を研暦成
形した後、電極を付けて、交流法により導電率を測定し
た。
After pre-firing at 750°C for 124 hours, it was molded and then pressed at 780°C for 2 hours at a press pressure of 1400 kg/cot. After the obtained sintered material was molded, an electrode was attached and the electrical conductivity was measured by an alternating current method.

結果を第1図に示す。The results are shown in Figure 1.

第1図は導電率の温度依存性を示す図であり、図中、(
1)はLiNbWO5、(2)はL i N b 6.
T5 T a o、z5 W 06 、(3)はLiN
bo、5 Tag、5 WO6、t4)はLiNbHT
a(115WO6、t5)はLiTaWoeについての
結果を示すグラフである。
Figure 1 is a diagram showing the temperature dependence of electrical conductivity, and in the figure (
1) is LiNbWO5, (2) is L i N b 6.
T5 T a o, z5 W 06 , (3) is LiN
bo, 5 Tag, 5 WO6, t4) is LiNbHT
a(115WO6, t5) is a graph showing the results for LiTaWoe.

この第1図における直線の傾きから活性化エネルギが求
められる。前述の(1)の活性化エネルギは0.51e
Vであり、(2)、(3)、(4)、(5)の順に大き
くなり、(5)においては0.59eVである。
Activation energy can be determined from the slope of the straight line in FIG. The activation energy of the above (1) is 0.51e
V, which increases in the order of (2), (3), (4), and (5), and is 0.59 eV in (5).

150°Cにおける導電率と組成の関係を第2図に示す
。第2図より明らかなように、組成がL i N b 
o、zsTao、?5WOsの付近で導電率が最大にな
る。
Figure 2 shows the relationship between conductivity and composition at 150°C. As is clear from Figure 2, the composition is L i N b
o, zsTao,? The conductivity reaches its maximum near 5WOs.

直流法による導電率の測定結果は、150℃において、
LiNb1’lOe 、LiNbIILtsTau5W
O6、LiTaWO5それぞれ、GXIO−’Ω−’ 
cm−’ 、I X 10− ”Ω−Icm−1,1,
5Xl0−10Ω−’cm〜1であり、電子輸率はそれ
ぞれ、0.03、Q、0001.0.04であった。こ
のことから、本発明によるリチウムイオン導電性固体電
解質材料はいずれもLiイオン導電性であることがわか
る。
The measurement results of electrical conductivity by the DC method are as follows at 150°C.
LiNb1'lOe, LiNbIILtsTau5W
O6, LiTaWO5, respectively, GXIO-'Ω-'
cm-', I x 10-''Ω-Icm-1,1,
5Xl0-10Ω-'cm~1, and the electron transport numbers were 0.03, Q, and 0001.0.04, respectively. This shows that all the lithium ion conductive solid electrolyte materials according to the present invention are Li ion conductive.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるLiNb1−χTa
xWO6なる磁器組成物は、トリルチル構造を有するこ
とにより、比較的高いリチウムイオン導電性を示す。ま
た、このリチウムイオン導電性固体電解質材料は分解電
圧も高く、熱的および水分に対しても安定であり、リチ
ウム固体電池の電解質材料に用いることにより固体電池
の特性改善が達成できる利点がある。
As explained above, LiNb1-χTa according to the present invention
The ceramic composition xWO6 exhibits relatively high lithium ion conductivity due to its trirutile structure. Furthermore, this lithium ion conductive solid electrolyte material has a high decomposition voltage and is stable against heat and moisture, and has the advantage of being able to improve the characteristics of solid-state batteries by using it as an electrolyte material for lithium solid-state batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のリチウムイオン導電性固
体電解質材料の導電率の温度依存性を示す図であり、第
2図は本発明によるリチウムイオン導電性固体電解質材
料の150°Cにおける導電率と組成の関係を示す図で
ある。 出願人代理人     雨 宮 正 季第1図 1000/T(に−1)
FIG. 1 is a diagram showing the temperature dependence of the electrical conductivity of a lithium ion conductive solid electrolyte material according to an example of the present invention, and FIG. 2 is a diagram showing the temperature dependence of the conductivity of a lithium ion conductive solid electrolyte material according to an embodiment of the present invention FIG. 3 is a diagram showing the relationship between conductivity and composition in FIG. Applicant's agent Masaki Amemiya Figure 1 1000/T (ni-1)

Claims (1)

【特許請求の範囲】 一般式、 LiNb_1_−_xTa_xWO_6 (但し、0≦x≦1) で示される組成物よりなることを特徴とするリチウムイ
オン導電性固体電解質材料。
[Claims] A lithium ion conductive solid electrolyte material comprising a composition represented by the general formula: LiNb_1_-_xTa_xWO_6 (where 0≦x≦1).
JP17555384A 1984-08-23 1984-08-23 Lithium-ion-conducting solid electrolyte material Granted JPS6154161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17555384A JPS6154161A (en) 1984-08-23 1984-08-23 Lithium-ion-conducting solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17555384A JPS6154161A (en) 1984-08-23 1984-08-23 Lithium-ion-conducting solid electrolyte material

Publications (2)

Publication Number Publication Date
JPS6154161A true JPS6154161A (en) 1986-03-18
JPH0317348B2 JPH0317348B2 (en) 1991-03-07

Family

ID=15998092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17555384A Granted JPS6154161A (en) 1984-08-23 1984-08-23 Lithium-ion-conducting solid electrolyte material

Country Status (1)

Country Link
JP (1) JPS6154161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030115A (en) * 2016-08-26 2018-03-01 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2019130454A (en) * 2018-01-30 2019-08-08 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361722A (en) * 1986-09-02 1988-03-17 Mitsui Eng & Shipbuild Co Ltd Cooling process of gas turbine combustor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361722A (en) * 1986-09-02 1988-03-17 Mitsui Eng & Shipbuild Co Ltd Cooling process of gas turbine combustor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030115A (en) * 2016-08-26 2018-03-01 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor
JP2019130454A (en) * 2018-01-30 2019-08-08 国立大学法人信州大学 Strontium adsorbent and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0317348B2 (en) 1991-03-07

Similar Documents

Publication Publication Date Title
Boilot et al. Phase transformation in Na1+ xSixZr2P3− xO12 compounds
Mizushima et al. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density
US4042482A (en) Substituted lithium orthosilicates and solid electrolytes therefrom
CA2091380C (en) Flexible solid electrolyte for use in solid state cells, and solid state cell including said flexible solid electrolyte
JP6242620B2 (en) All solid battery
JPH01195676A (en) Solid lithium cell
Vogel et al. Na+ ion conductivity and crystallographic cell characterization in the Hf-nasicon system Na1+ xHf2SixP3− xO12
US3499796A (en) Solid state energy storage device
US3446677A (en) Method of making a solid ionic conductor
CN112470317B (en) Solid electrolyte for all-solid sodium battery, manufacturing method thereof and all-solid sodium battery
JPH0670906B2 (en) Solid electrolyte battery
JP7002199B2 (en) Manufacturing method of all-solid-state battery
US3475225A (en) Method for preparing solid state ionic conductor
US3607436A (en) Sintered beta-alumina bodies and method
JPS6154161A (en) Lithium-ion-conducting solid electrolyte material
US4117103A (en) Lithium ion transport compositions
US4172882A (en) Lithium ion transport compositions
JPH03246868A (en) Lithium ion conductive solid electrolyte material
CN109075389A (en) solid electrolyte and all-solid-state battery
JPS6361722B2 (en)
Makyta et al. The lithium ion conductivity of materials formed by pressed vitreous borosulfide slices
JPS6357913B2 (en)
JPH0774093B2 (en) Beta-alumina solid electrolyte and method for producing the same
JP7510118B2 (en) Solid electrolyte sheet, manufacturing method thereof, and all-solid-state secondary battery
US5264308A (en) Method of making a flexible solid electrolyte for use in solid state cells