JPS6154142B2 - - Google Patents

Info

Publication number
JPS6154142B2
JPS6154142B2 JP56182490A JP18249081A JPS6154142B2 JP S6154142 B2 JPS6154142 B2 JP S6154142B2 JP 56182490 A JP56182490 A JP 56182490A JP 18249081 A JP18249081 A JP 18249081A JP S6154142 B2 JPS6154142 B2 JP S6154142B2
Authority
JP
Japan
Prior art keywords
heat exchanger
air
blower
fins
indoor radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56182490A
Other languages
Japanese (ja)
Other versions
JPS5885034A (en
Inventor
Shinjiro Myahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56182490A priority Critical patent/JPS5885034A/en
Publication of JPS5885034A publication Critical patent/JPS5885034A/en
Publication of JPS6154142B2 publication Critical patent/JPS6154142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

【発明の詳細な説明】 本発明は送風機と熱交換器とで構成され、送風
機下流側に熱交換器を配して成る室内放熱機に関
し、熱交換器内の空気抵抗を用いて送風機から吐
出口に至る空気の流れ方向を変化させるようにし
たものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an indoor radiator that is composed of an air blower and a heat exchanger, and the heat exchanger is arranged downstream of the air blower. It is designed to change the direction of air flow leading to the outlet.

従来のこの種室内放熱機は第1図に示すよう
に、外装1内にシロツコフアンを用いた羽根車2
とベルマウス型の吸入口3を有するケーシング4
とから成る送風機5を配し、送風機5の出口6に
は直方体状の熱交換器7を配するとともにその下
流部には吐出室8を設け、外装1前面に設けた給
気口9及び吐出口10によつて給気口9から送風
機5、熱交換器7、吐出室8を介して吐出口10
に至る送風路を構成している。又熱交換器7は第
2図に示すようにアルミ板等の薄板を長方形に成
型したフイン11を多数積層し、各フイン11を
貫通して温水等を通すパイプ12を配して直方体
状に構成されている。尚第1図において13は羽
根車2を駆動するための電動機を示し、第1図及
び第2図において矢印は空気の流れる方向を示
す。従来の室内放熱器は以上のように構成されて
いるため、送風機5が運転された場合、給気口9
から空気が外装1内に吸引され、熱交換器7にて
温風等に変化した後、吐出室8を介して吐出口1
0より外装1外へ吐出される流れが形成される。
しかし、熱交換器7は第2図に示すように、長方
形に成型されたフイン11を多数積層し直方体状
に構成されているため、熱交換器7内の空気抵抗
は略均一な状態であり、このため送風機5の出口
6より熱交換器7に流入した空気は熱交換器7内
を通過する際、殆んど流れ方向が変化することな
く吐出室8へ流れる。一方、吐出室8内に流入し
た空気は吐出口10方向へ急激に方向が変化させ
られるため、吐出室8内の空気流中に著しい乱れ
を生じ、この乱れによつて騒音が発生するととも
に吐出室8内での空気抵抗が増大し、送風機5の
負荷が増大し、羽根車2から発生する騒音も増加
する欠点があつた。そこで吐出室8内の容積を大
きくするか、或いは第1図に示すように吐出室8
内に断面が円弧状の案内板14を配する等して、
吐出室8内での急激な空気流の変化を極力抑制す
る方法が採られていた。しかし前者の場合は室内
放熱機の構成が大型化し、後者は案内板14を配
さなければならない欠点があり、その効果も完全
なものではなかつた。
As shown in Fig. 1, a conventional indoor radiator of this kind has an impeller 2 using a Shirotzko fan inside an exterior 1.
and a casing 4 having a bellmouth-shaped inlet 3
A rectangular parallelepiped heat exchanger 7 is disposed at the outlet 6 of the blower 5, and a discharge chamber 8 is provided downstream of the heat exchanger 7. The outlet 10 connects the air supply port 9 to the blower 5, the heat exchanger 7, and the discharge chamber 8 to the outlet 10.
It constitutes a ventilation path leading to. As shown in FIG. 2, the heat exchanger 7 is constructed by stacking a large number of fins 11 made of thin plates such as aluminum plates into a rectangular shape, and a pipe 12 for passing hot water etc. through each fin 11 is arranged to form a rectangular parallelepiped. It is configured. In FIG. 1, reference numeral 13 indicates an electric motor for driving the impeller 2, and in FIGS. 1 and 2, arrows indicate the direction in which air flows. Since the conventional indoor radiator is configured as described above, when the blower 5 is operated, the air supply port 9
Air is sucked into the exterior 1 from the outside, and after being changed into warm air etc. in the heat exchanger 7, it is passed through the discharge chamber 8 to the discharge port 1.
0, a flow is formed that is discharged to the outside of the exterior 1.
However, as shown in FIG. 2, the heat exchanger 7 is configured in a rectangular parallelepiped shape by stacking a large number of rectangular fins 11, so the air resistance inside the heat exchanger 7 is approximately uniform. Therefore, when the air flowing into the heat exchanger 7 from the outlet 6 of the blower 5 passes through the heat exchanger 7, it flows into the discharge chamber 8 with almost no change in flow direction. On the other hand, since the air that has flowed into the discharge chamber 8 is suddenly changed direction toward the discharge port 10, significant turbulence occurs in the air flow within the discharge chamber 8, and this turbulence generates noise and discharge This has disadvantages in that the air resistance within the room 8 increases, the load on the blower 5 increases, and the noise generated from the impeller 2 also increases. Therefore, the volume of the discharge chamber 8 must be increased, or the volume of the discharge chamber 8 must be increased as shown in FIG.
By arranging a guide plate 14 with an arc-shaped cross section inside,
A method has been adopted to suppress rapid changes in air flow within the discharge chamber 8 as much as possible. However, in the former case, the structure of the indoor radiator becomes large, and in the latter case, a guide plate 14 must be provided, and the effect is not perfect.

これに対して本発明は、熱交換器内部の通気路
の長さを変化させて熱交換器内部の空気抵抗を変
化させることにより、熱交換器内部で空気の流れ
方向を変化させることによつて従来の欠点を解決
せんとするものである。以下本発明を実施の一例
を示す図面に基づいて説明する。本発明の室内放
熱機は第3図に示すように外装21内にシロツコ
フアンを用いた羽根車22とベルマウス型の吸入
口23を有するケーシング24から成る送風機2
5を配し、送風機25の出口26にはアルミ板等
の薄板を成形した多数のフイン27を並行に積層
して構成した熱交換器28を配するとともに外装
21前面に設けた給気口29及び吐出口30によ
つて、給気口29から送風機25、熱交換器28
を介して吐出口30に至る送風路を構成し、更に
熱交換器28は第4図に示すように送風機25の
出口26側即ち熱交換器28上端から下端に至る
フイン27の長さを熱交換器28前面から後面に
至るに従つて徐々に長く成型したフイン27を並
行に多数且つフイン27相互間に通気路31を有
するように積層して前面下端には傾斜面32を形
成してある。又この熱交換器28は傾斜面32を
前記吐出口30に臨ませて配設されている。尚図
において33は羽根車22を駆動するための電動
機、34はフイン27を貫通して配した温水等を
通すためのパイプ、矢印は空気の流れる方向を示
す。従つて送風機25が運転された場合、給気口
29から空気が外装21内に吸引され、熱交換器
28にて温風等に変化した後、吐出口30より外
装21外へ吐出される流れが形成される。しか
し、熱交換器28は第4図に示すように熱交換器
28の上端から下端に至るフイン27の長さを前
面と後面との間の長さよりも長くなるように成型
し、このフイン27を多数並行に積層して前面下
端には傾斜面32を形成しているため、フイン2
7相互間に構成されて熱交換器28上端から下端
に至る通気路31の長さは熱交換器28前方より
後方に至るに従つて長くなり、よつてフイン27
相互間の通気路31内の空気抵抗は熱交換器28
前方より後方に至るに従つて大きくなる。
In contrast, the present invention changes the air flow direction inside the heat exchanger by changing the air resistance inside the heat exchanger by changing the length of the air passage inside the heat exchanger. The aim is to solve the drawbacks of the conventional technology. The present invention will be described below based on drawings showing an example of implementation. As shown in FIG. 3, the indoor radiator of the present invention has a blower 2 which is comprised of a casing 24 having an impeller 22 using a Shirotzko fan inside an exterior 21 and a bellmouth-shaped suction port 23.
5, and the outlet 26 of the blower 25 is provided with a heat exchanger 28 constructed by laminating in parallel a large number of fins 27 formed from thin plates such as aluminum plates, and an air supply port 29 provided on the front surface of the exterior 21. And the discharge port 30 connects the air supply port 29 to the blower 25 and the heat exchanger 28.
As shown in FIG. A large number of fins 27 are formed in parallel and are stacked so that air passages 31 are formed between the fins 27, and an inclined surface 32 is formed at the lower end of the front surface of the exchanger 28. . Further, the heat exchanger 28 is disposed with an inclined surface 32 facing the discharge port 30. In the figure, 33 is an electric motor for driving the impeller 22, 34 is a pipe for passing hot water etc. through the fins 27, and arrows indicate the direction in which air flows. Therefore, when the blower 25 is operated, air is sucked into the exterior 21 from the air supply port 29, changed into hot air etc. by the heat exchanger 28, and then discharged to the outside of the exterior 21 from the discharge port 30. is formed. However, as shown in FIG. 4, the heat exchanger 28 is molded so that the length of the fins 27 from the upper end to the lower end of the heat exchanger 28 is longer than the length between the front and rear surfaces. A large number of fins are stacked in parallel to form an inclined surface 32 at the lower end of the front surface.
The length of the ventilation passage 31 that is constructed between the fins 27 and 27 and extends from the upper end to the lower end of the heat exchanger 28 becomes longer from the front to the rear of the heat exchanger 28.
The air resistance in the air passages 31 between them is reduced by the heat exchanger 28.
It becomes larger from the front to the rear.

一方、空気の流れは空気抵抗の小さい方向に流
れる性質があるため、熱交換器28上端から通気
路31内に流入した空気は通気路31内を通過す
る際、徐々に熱交換器28前方へ方向転換され、
その大部分が傾斜面32から吐出口30方向へ流
れる空気流となり、熱交換器28外へ流出する。
On the other hand, since air has a tendency to flow in a direction with lower air resistance, the air that flows into the ventilation passage 31 from the upper end of the heat exchanger 28 gradually moves toward the front of the heat exchanger 28 as it passes through the ventilation passage 31. changed direction,
Most of the air flows from the inclined surface 32 toward the discharge port 30 and flows out of the heat exchanger 28 .

以上の説明から明らかなように本発明によれば
送風機出口から吐出口に至る空気の流れは熱交換
器内の通気路を通過する際、その通気路内の徐々
に変化する空気抵抗によつて徐々に流れ方向が変
化するため、空気流に乱れを生じることは殆んど
無い。従つて、空気流の乱れによる騒音の発生も
なく、乱れによる送風機の負荷増加を大幅に抑制
できる利点がある。更に従来のように熱交換器下
流に案内板や吐出室を設ける必要がないため、室
内放熱機をコンパクトに構成することができる利
点がある。
As is clear from the above description, according to the present invention, the air flow from the blower outlet to the discharge port is caused by the gradually changing air resistance in the air passage when passing through the air passage in the heat exchanger. Since the flow direction changes gradually, there is almost no turbulence in the airflow. Therefore, there is no generation of noise due to turbulence in the airflow, and there is an advantage that an increase in the load on the blower due to turbulence can be significantly suppressed. Further, since there is no need to provide a guide plate or a discharge chamber downstream of the heat exchanger as in the conventional case, there is an advantage that the indoor radiator can be configured compactly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の室内放熱機の構成を示す断面
図、第2図は同室内放熱機に用いる熱交換器の斜
視図、第3図は本発明の実施の一例にもとづく室
内放熱機の構成を示す断面図、第4図は同室内放
熱機に用いる熱交換器の斜視図である。 21……外装、25……送風機、26……出
口、27……フイン、28……熱交換器、29…
…給気口、30……吐出口、31……通気路、3
2……傾斜面。
FIG. 1 is a sectional view showing the configuration of a conventional indoor radiator, FIG. 2 is a perspective view of a heat exchanger used in the indoor radiator, and FIG. 3 is a configuration of an indoor radiator based on an example of implementation of the present invention. FIG. 4 is a perspective view of a heat exchanger used in the indoor radiator. 21...Exterior, 25...Blower, 26...Outlet, 27...Fin, 28...Heat exchanger, 29...
...Air supply port, 30...Discharge port, 31...Vent passage, 3
2...Slope surface.

Claims (1)

【特許請求の範囲】 1 送風機と、この送風機下流側に配された熱交
換器を設け、熱交換器を構成する多数のフイン相
互間の通気路内の空気抵抗を変化させて熱交換器
内を流れる空気流を熱交換器内で方向変化させる
ようにした室内放熱機。 2 フイン相互間の通気路の長さを変化させて空
気抵抗を変化させるようにした特許請求の範囲第
1項記載の室内放熱機。
[Claims] 1. A blower and a heat exchanger disposed downstream of the blower are provided, and the air resistance in the air passage between the many fins constituting the heat exchanger is changed to improve the temperature inside the heat exchanger. An indoor radiator that changes the direction of air flowing through the heat exchanger. 2. The indoor radiator according to claim 1, wherein air resistance is changed by changing the length of the air passage between the fins.
JP56182490A 1981-11-13 1981-11-13 Indoor radiator Granted JPS5885034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56182490A JPS5885034A (en) 1981-11-13 1981-11-13 Indoor radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56182490A JPS5885034A (en) 1981-11-13 1981-11-13 Indoor radiator

Publications (2)

Publication Number Publication Date
JPS5885034A JPS5885034A (en) 1983-05-21
JPS6154142B2 true JPS6154142B2 (en) 1986-11-20

Family

ID=16119187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56182490A Granted JPS5885034A (en) 1981-11-13 1981-11-13 Indoor radiator

Country Status (1)

Country Link
JP (1) JPS5885034A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114710B (en) * 2017-06-26 2021-04-30 青岛海高设计制造有限公司 Radiating air conditioner

Also Published As

Publication number Publication date
JPS5885034A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
US20060260791A1 (en) Ventilator
US4313493A (en) Forced air unit
JPS61150824A (en) Car engine cooling device
JP3117334B2 (en) Outdoor unit of air conditioner
JPS6154142B2 (en)
JPS622417Y2 (en)
JPH0218457Y2 (en)
CN210399238U (en) Outdoor unit of air conditioner and air conditioner
JP2000320856A (en) Cross flow fan
JPH086931B2 (en) Air conditioner
JPH0231298B2 (en)
JPS6212182Y2 (en)
JPS627936Y2 (en)
JPS6225606Y2 (en)
CN210970593U (en) Water collector subassembly and car as a house air conditioner indoor unit
JPH0534469U (en) Air conditioner
JPS5843708Y2 (en) radiator
JPS5829774Y2 (en) air conditioner
JPS6118359Y2 (en)
JPH08614Y2 (en) Air conditioner heat exchanger
JPH02290493A (en) Heat exchanger
JPH0124497Y2 (en)
JP3331873B2 (en) Air conditioner indoor unit
JP2005037026A (en) Heat exchanging ventilating device
JPS5824099Y2 (en) indoor unit