JPS5824099Y2 - indoor unit - Google Patents

indoor unit

Info

Publication number
JPS5824099Y2
JPS5824099Y2 JP7093279U JP7093279U JPS5824099Y2 JP S5824099 Y2 JPS5824099 Y2 JP S5824099Y2 JP 7093279 U JP7093279 U JP 7093279U JP 7093279 U JP7093279 U JP 7093279U JP S5824099 Y2 JPS5824099 Y2 JP S5824099Y2
Authority
JP
Japan
Prior art keywords
rotor
flat plate
plate
flow fan
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7093279U
Other languages
Japanese (ja)
Other versions
JPS55169928U (en
Inventor
信夫 垣内
幸男 原
歓治郎 木下
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP7093279U priority Critical patent/JPS5824099Y2/en
Publication of JPS55169928U publication Critical patent/JPS55169928U/ja
Application granted granted Critical
Publication of JPS5824099Y2 publication Critical patent/JPS5824099Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Description

【考案の詳細な説明】 本考案は熱交換器及びクロスフローファンを備えた室内
ユニットの低騒化に関する。
[Detailed Description of the Invention] The present invention relates to a low-noise indoor unit equipped with a heat exchanger and a cross-flow fan.

従来、此種室内ユニットは、奥行寸法の薄形化がなされ
るのみで、高さ寸法は大きく、壁面に据付けた時室内ユ
ニットがかもいの下にはみ出すという問題、あるいは室
内ユニットの高さが大きいため、該室内ユニット下方の
空間が狭くなり、空間利用効率が低下するという問題が
あった。
Conventionally, this type of indoor unit has only been made thinner in depth, but the height has been larger, which has caused problems such as the indoor unit protruding under the roof when installed on a wall, or the height of the indoor unit being too large. Because of the large size, there was a problem in that the space below the indoor unit became narrow, resulting in a decrease in space utilization efficiency.

そこで、この据付上の問題をなくすべく、室内ユニット
の幅寸法を大きくしないで高さ寸法を小さくするには、
熱交換器の高さ寸法を低くする他ないが、このとき、風
量をほぼ同じにすれば、熱交換器の前面面積の減少に比
例して、熱交換器内の空気流速が増大し、該熱交換器の
空気側の熱伝達率が増大することにより、前記熱交換器
の熱交換能力は、従来とほぼ同じになる。
Therefore, in order to eliminate this installation problem, in order to reduce the height dimension of the indoor unit without increasing the width dimension,
The only option is to reduce the height of the heat exchanger, but in this case, if the air volume is kept approximately the same, the air flow velocity within the heat exchanger increases in proportion to the decrease in the front surface area of the heat exchanger. By increasing the heat transfer coefficient on the air side of the heat exchanger, the heat exchange capacity of the heat exchanger is approximately the same as before.

ところが、前記の如く熱交換器内の空気流速の増大によ
り熱交換器の通風抵抗が極端に増大して、クロスフロー
ファンの必要静圧が極端に増大するため、従来のクロス
フローファンでは、サージングが発生して、風量は減少
し、さらに騒音も増大するという問題があった。
However, as mentioned above, due to the increase in air flow velocity within the heat exchanger, the ventilation resistance of the heat exchanger increases extremely, and the required static pressure of the crossflow fan increases dramatically. There was a problem in that this caused the air volume to decrease and the noise to increase.

更に、従来の問題を第2図に示す実施例により説明する
と、この実施例では従来の熱交換器として、横巾寸法が
630mm、上下方向の熱交換管4aが段数が10段、
前後方向の熱交換管4aの列数が2列であるクロスイン
コイル形熱交換器を、クロスフローファンのロータ5と
して、外径が90mm、長さが620mmのものを用い
、この熱交換器を用いた室内ユニットの機内抵抗は第2
図に示す一定の曲線■である。
Furthermore, to explain the conventional problem with the embodiment shown in FIG. 2, in this embodiment, the conventional heat exchanger has a width dimension of 630 mm, a vertical heat exchange tube 4a having 10 stages,
A cross-in coil type heat exchanger having two rows of heat exchange tubes 4a in the front-rear direction and having an outer diameter of 90 mm and a length of 620 mm was used as the rotor 5 of the cross flow fan. The internal resistance of the indoor unit using
It is a constant curve ■ shown in the figure.

又、従来のものに比し熱交換器の高さを低くした例とし
て、前記従来のものの段数を6段にしたものを用いた。
Further, as an example in which the height of the heat exchanger is lower than that of the conventional one, the number of stages of the conventional one is increased to six.

このときの機内抵抗は第2図の曲線IIである。The internal resistance at this time is curve II in FIG.

そして従来のものは、風量当りの静圧が第3図の曲線I
IIとなり機内抵抗の曲線Iとの交点P、即チ風量カ6
.9m3/min、静圧が1.5mmH2Oの状態で運
転されることとなる。
In the conventional model, the static pressure per air volume is curve I in Figure 3.
II becomes the intersection point P with the in-flight resistance curve I, which means the air volume is 6.
.. It will be operated at a rate of 9 m3/min and a static pressure of 1.5 mmH2O.

所が熱交換器の前記段数を前記したごとく単に6段に低
くしただけでは、風速が増大し通風抵抗が増大して必要
静圧が増大するため、結局第6図曲線IIIの点線で示
す風量が小さいサージング領域で運転する状態となり、
サージングにより運転が不安定で効率が低下すると共に
騒音が増大する問題が生ずるのである。
However, if the number of stages of the heat exchanger is simply lowered to 6 as described above, the wind speed will increase, the ventilation resistance will increase, and the required static pressure will increase, so in the end, the air volume as shown by the dotted line in curve III in Figure 6 will increase. is operating in a small surging region,
Surging causes problems such as unstable operation, reduced efficiency, and increased noise.

更に以上のごとく生ずる従来の問題を第9図の空気流線
図により説明する。
Furthermore, the conventional problems that arise as described above will be explained with reference to the air flow diagram shown in FIG.

第9図の空気流線図は、従来のクロスフローファン20
にロータ5を取付けると共に高さを低くした熱交換器4
を取付けて、機内抵抗を第2図の曲線IIのごとく大き
く威した時のもので、空気流線中に生ずる渦の中心Aが
前板21近くの一定位置から後板22における渦巻部2
2 aの上端B方向寄りの位置に偏位しているのである
The air flow diagram in FIG. 9 is based on the conventional cross flow fan 20.
A heat exchanger 4 with a rotor 5 attached and a lowered height.
is installed and the in-flight resistance is greatly increased as shown by curve II in Figure 2.The center A of the vortex generated in the air streamline moves from a fixed position near the front plate 21 to the vortex part 2 on the rear plate 22.
2a is deviated to a position closer to the upper end B direction.

尚前記一定位置とは、図示していないが前記段数を10
段とした従来の熱交換器を用いて機内抵抗を第2図の曲
線IIのごとく一定値とした時における渦の中心位置の
ことで、詳記しないがサージングが生じない安定した性
能が得られる。
Incidentally, the above-mentioned fixed position means that the number of stages is 10, although not shown in the figure.
This refers to the center position of the vortex when a conventional multi-stage heat exchanger is used and the in-machine resistance is kept at a constant value as shown in curve II in Figure 2. Although not detailed, stable performance without surging can be obtained. .

即ち従来のスロクフローファン20に、高さを低くした
熱交換器4を取付けたものでは、第9図のごとく渦の中
心Aが前記渦巻部22 aの上端Bに近寄り過ぎるので
、ロータ5と上端Bとの隙間からロータ5の上流側へ逆
流を生じ易くて効率が低下すると共にサージングに弱く
騒音が増大することとなり、又渦の中心Aが前板21か
ら離れ過ぎるので、空気の流れが不安定で、しかもロー
タ5と前板21との隙間から逆流量が多く効率が低下す
ることとなるのである。
That is, in the conventional sloch flow fan 20 with the heat exchanger 4 attached with a reduced height, the center A of the vortex is too close to the upper end B of the vortex part 22a, as shown in FIG. A backflow tends to occur from the gap with the upper end B to the upstream side of the rotor 5, which reduces efficiency and makes it susceptible to surging, increasing noise. Also, since the center A of the vortex is too far away from the front plate 21, the air flow is It is unstable, and moreover, there is a large amount of backflow from the gap between the rotor 5 and the front plate 21, resulting in a decrease in efficiency.

しかして、本考案は、以上の問題を解決すべく種々研究
の結果、熱交換器を、従来品より高さを低くして熱交換
面積を減少させても、流通空気の流速を大きくして熱交
換面積の減少にも拘わらず熱交換能力を十分大きく保持
しながら、斯く流速を増大させるために、機内抵抗が増
大してサージングを生じ易くて騒音が大きくなり、運転
が不安定で効率が低下することとなる各問題を、本体ケ
ーシング内における通風路の各部の長さ及び角度の値を
特定することにより、確実に解消できることを見出した
ので゛ある。
As a result of various studies to solve the above-mentioned problems, the present invention has been developed to reduce the heat exchange area by lowering the height of the heat exchanger compared to conventional products, while increasing the flow velocity of circulating air. In order to increase the flow velocity while maintaining a sufficiently large heat exchange capacity despite the reduction in the heat exchange area, internal resistance increases, surging is likely to occur, and noise becomes louder, making operation unstable and reducing efficiency. It has been discovered that the various problems associated with deterioration can be reliably resolved by specifying the length and angle values of each part of the ventilation passage within the main body casing.

即ち本考案は熱交換器の高さ寸法のみ小さくしでも、十
分な熱効率能力を保持できながら、サージングの発生が
なくて、騒音を小さく、効率を高く安定に運転を行なう
ことができて、全体の高さ寸法を低くでき据付けに場所
をとらず簡単に据付工事を行なえる室内リニットを提供
するもので、本体ケーシング内にロータ、前板及び後板
から戒るクロスフローファンを配設し、前記本体ケーシ
ングの前面上部に設けた吸込口から室内空気を吸込み、
前記本体ケーシングを前面下部に設けた吹出口から前記
室内空気を吹出す如くした室内ユニットにおいて、前記
本体ケーシングの吸込口と前記クロスフローファンのロ
ーターとの間の前記クロスフローファンの吸込側に熱交
換器を設けると共に、前記クロスフローファンの前板を
、平板部と、該平板部のロータ側先端に設けた立上り部
とにより構成する一方、前記クロスフローファンの後板
のうち、ロータ背面側を渦巻状に形成した渦巻部と威し
、該渦巻部の吹出口側先端から前記吹出口に向う部分を
平板状に形成した平板部と威し、前記前板の平板部と前
記後板の平板部とを、これら平板部間の吹出通路が吹出
方向に向って末広り状となる如く配設し、前記クロスフ
ローファンのロータの外径をD、渦ロータの中心と前記
後板の渦巻部の両端を結ぶ線の威す角度を01、前記ロ
ータの中心から前記後板の平板部の上面に下した垂線の
距離をHl、前記前板の立上り部の高さをL、該立上り
部と前記ロータとの間の最小間隙をε、前記立上り部と
前記後板の平板部との間の最小間隙をH2,前記前板の
平板部下面と前記後板の平板部上面の間の角度を02と
した時、これら各DI、θ1゜Hl、L、ε、H2,θ
2を、120°〈θ1〈160°、0.7< ”<1.
0,0.2< 、 <0.3,0.08< H<0.1
1,0.34<O。
In other words, even if the height of the heat exchanger is reduced, the present invention maintains sufficient thermal efficiency, does not cause surging, and can operate stably with low noise, high efficiency, and improved overall efficiency. This product provides an indoor linnit that can reduce the height dimension of the fan, does not take up much space, and can be easily installed.A cross-flow fan is installed inside the main body casing, which is connected to the rotor, front plate, and rear plate. Indoor air is sucked in from the suction port provided at the upper front of the main body casing,
In an indoor unit in which the indoor air is blown out from an air outlet provided at the lower front of the main body casing, heat is generated on the suction side of the cross flow fan between the suction port of the main body casing and the rotor of the cross flow fan. In addition to providing an exchanger, the front plate of the cross-flow fan is constituted by a flat plate part and a rising part provided at the tip of the flat plate part on the rotor side, while the rear plate of the cross-flow fan is formed of a rear plate of the rotor. a spiral portion formed in a spiral shape, a portion of the spiral portion from the tip of the air outlet side toward the air outlet as a flat plate portion formed in a flat plate shape, and a flat plate portion of the front plate and a portion of the rear plate. The flat plate portions are arranged so that the blowout passage between these flat plate portions widens toward the blowing direction, and the outer diameter of the rotor of the cross flow fan is D, and the center of the vortex rotor and the vortex of the rear plate are The angle of the line connecting both ends of the section is 01, the distance of the perpendicular line drawn from the center of the rotor to the upper surface of the flat plate section of the rear plate is Hl, the height of the rising part of the front plate is L, the rising part and the rotor, ε is the minimum gap between the rising portion and the flat plate portion of the rear plate, H2, and the angle between the lower surface of the flat plate of the front plate and the upper surface of the flat plate portion of the rear plate. When 02, each of these DI, θ1°Hl, L, ε, H2, θ
2, 120°〈θ1〈160°, 0.7<''<1.
0,0.2< , <0.3,0.08<H<0.1
1,0.34<O.

4.20°〈θ2〈50°の各式を満足する範囲内の値
と戒したことを特徴とするものである。
4.20°<θ2<50°.

以下本考案室内ユニットの実施例を図面に基づいて説明
する。
Embodiments of the indoor unit of the present invention will be described below based on the drawings.

第1図において、1は本体ケーシングで、前記上部に吸
込口2を、又前面下部に吹出口3をそれぞれ設けており
、該本体ケーシング1内にクロスフィンコイル形の熱交
換器4及びロータ5、前板6及び後板7から成るクロス
フローファン8を配設しており、前記熱交換器4は、図
示していないが室外ユニットに連通ずる冷媒配管が接続
され、冷房時蒸発器として作用し、又暖房時凝縮器とし
て作用するものである。
In FIG. 1, 1 is a main body casing, which is provided with an inlet 2 at the upper part and an outlet 3 at the lower front, and inside the main casing 1 is a cross-fin coil type heat exchanger 4 and a rotor 5. , a cross-flow fan 8 consisting of a front plate 6 and a rear plate 7 is disposed, and the heat exchanger 4 is connected to a refrigerant pipe that communicates with an outdoor unit (not shown), and functions as an evaporator during cooling. It also acts as a condenser during heating.

しかして前記熱交換器4は前記本体ケーシング1の吸込
口2と前記クロスフローファン8のロータ5との間の前
記クロスフローファン8の吸込側に設けるのである。
Therefore, the heat exchanger 4 is provided on the suction side of the crossflow fan 8 between the suction port 2 of the main body casing 1 and the rotor 5 of the crossflow fan 8.

そして該熱交換器4は第1図では、前記した従来の熱交
換器における熱交換器4aの段数を少なくしたもの、詳
しくな横幅寸法が630mm、上下方向の熱交換管4a
の段数が6段、前後方向の熱交換管4aの列数が2列の
ものをそのまま用いたのである。
In FIG. 1, the heat exchanger 4 is a conventional heat exchanger with a reduced number of stages, a detailed width dimension of 630 mm, and vertical heat exchange tubes 4a.
The number of stages of heat exchange tubes 4a is six, and the number of rows of heat exchange tubes 4a in the longitudinal direction is two.

又前記クロスフローファン8は、その前板6を平板部6
aと、該平板部6aのロータ5側先端に設けた立上り部
6bとにより構威し、又前記後板7の内、ロータ5の背
面側を渦巻状に形成した渦巻部7aと威し、該渦巻部7
aの吹出口3側先端から前記吹出口3に向う部分を平板
状に形成した平板部7bと成し、前記前板6の平板部6
aと前記後板7の平板部7bとを、これら平板部6a、
7b間の吹出通路が吹出方向に向って末広り状となる如
く配設するものである。
Further, the cross flow fan 8 has a front plate 6 as a flat plate part 6.
a, and a rising portion 6b provided at the tip of the flat plate portion 6a on the rotor 5 side, and a spiral portion 7a formed in a spiral shape on the back side of the rotor 5 of the rear plate 7, The spiral part 7
A portion from the tip of the air outlet 3 side toward the air outlet 3 of a is formed into a flat plate shape to form a flat plate portion 7b, and the flat plate portion 6 of the front plate 6
a and the flat plate part 7b of the rear plate 7, these flat plate parts 6a,
The blowing passage between the holes 7b is arranged so as to widen toward the blowing direction.

ソシて前記クロスフローファン8のロータ5は、第1図
では従来のものと同様、外径が9Qmm長さが620m
mのものを用いたので゛ある。
As shown in FIG. 1, the rotor 5 of the cross flow fan 8 has an outer diameter of 9Q mm and a length of 620 m, similar to the conventional one.
This is because I used the one from m.

そして前記クロスフローファン8のロータ5の外径をD
(第1図では90mm)、該ロータ5の中心と前記後板
7の渦巻部7aの両端を結ぶ線の成す角度をθ1°、前
記ロータ5の中心から前記後板7の平板部7bの上面に
下した垂禅の距離をHl、前記前板6の立上り部6bの
高さをL、該立上り部6bと前記ロータ5との間の最小
間隙をε、前記立上り部6aと前記後板7の平板部7b
との間の最小間隙をH2、前記前板6の平板部6b下面
と前記後板7の平板部7b上面の間の角度をθ2でそれ
ぞれ表す時、これらθ1.H1,L、H2,ε、θ2を
、以下のごとく設定すべく威したのである。
Then, the outer diameter of the rotor 5 of the cross flow fan 8 is D
(90 mm in FIG. 1), the angle formed by the line connecting the center of the rotor 5 and both ends of the spiral portion 7a of the rear plate 7 is θ1°, and the upper surface of the flat plate portion 7b of the rear plate 7 from the center of the rotor 5. Hl is the distance of the suise drawn down to the front plate 6, L is the height of the rising part 6b of the front plate 6, ε is the minimum gap between the rising part 6b and the rotor 5, and is the height of the rising part 6b of the front plate 6 and the rear plate 7. flat plate part 7b of
When the minimum gap between the two is represented by H2, and the angle between the lower surface of the flat plate portion 6b of the front plate 6 and the upper surface of the flat plate portion 7b of the rear plate 7 is represented by θ2, these θ1. He forced H1, L, H2, ε, and θ2 to be set as follows.

先ず前記H0の値の設定範囲を求める。First, the setting range of the value of H0 is determined.

Hの値を変化させて運転音(ホン)を測定した結り 果、第3図のごとく骨の値を0.7乃至1.0の範囲内
の値とした時運転音を42ホン以下に抑制できたのであ
る。
As a result of measuring the driving noise (hons) by changing the value of H, as shown in Figure 3, when the bone value was set to a value within the range of 0.7 to 1.0, the driving noise was below 42 phons. It was possible to suppress it.

即ち前記H1の値は0.7乃至1.0Dの範囲内の値に
設定するのである。
That is, the value of H1 is set within the range of 0.7 to 1.0D.

即ちHlの値を前記範囲内の値に威すと、熱交換器4の
下部背方に生ずる渦の中心Aを、第8図のごとく前記立
上り部6bから一定距離内方の適正位置に位置させるこ
とができてロータ5から吹出した空気がロータ5の下部
及び上部の各流入側に逆流することなく、全量吹出口3
方向に円滑に流通でき、高効率で、サージングの発生が
なくて、運転音を小さくできるのである。
That is, when the value of Hl is set within the above range, the center A of the vortex generated at the back of the lower part of the heat exchanger 4 is located at an appropriate position within a certain distance from the rising portion 6b as shown in FIG. This allows the air blown out from the rotor 5 to not flow back to the lower and upper inflow sides of the rotor 5, and the entire amount to the air outlet 3.
It can flow smoothly in all directions, is highly efficient, does not generate surging, and can reduce operating noise.

因みに前記号の値を前記範囲より大きくすると、前記渦
の中心Oが前記適正位置から内方に離脱して前記逆流が
生じ効率の低下、サージングの凡 発生、騒音の増大を来たすのであり、又前記号の値を前
記範囲より小さくすると、本体ケーシングとの間の通風
抵抗が増大し騒音が大きくなるのである。
Incidentally, if the value of the preceding symbol is made larger than the above range, the center O of the vortex departs inward from the proper position, causing the backflow, resulting in a decrease in efficiency, frequent occurrence of surging, and increase in noise. If the value of the preceding symbol is made smaller than the above range, the ventilation resistance between the main body casing and the main body casing will increase and the noise will become louder.

次に前記θ1の値の設定範囲を求める。Next, the setting range of the value of θ1 is determined.

前記ロータ5の中心から前記渦巻部7aの下端を結ぶ線
を基準にした前記角度θ1を変化させて′運転音を測定
した結果、第4図のごとくθlの値を120°乃至16
0°の範囲内の値とした時運転音を42ホン以下に抑制
できたのである。
As a result of measuring the operating noise by varying the angle θ1 with reference to the line connecting the center of the rotor 5 to the lower end of the spiral portion 7a, the value of θl ranged from 120° to 16° as shown in FIG.
When the value was within the range of 0°, the operating noise could be suppressed to 42 phons or less.

即ち前記θ1の値は120°乃至160°の範囲内の値
に設定するのである。
That is, the value of θ1 is set within the range of 120° to 160°.

即ち前記θ1を前記範囲内の値にすると、前記H1の値
を設定した時と同様に、第8図のごとく前記渦の中心A
を前記立上り部6bから一定距離内方の適正位置に位置
させることができて、ロータ5から吹出した空気が逆流
作用することなく全量吹出口3方向に円滑に流通でき、
高効率で、サージングの発生がなくて運転音を小さくで
きるのである。
That is, when θ1 is set to a value within the above range, the center A of the vortex as shown in FIG.
can be located at an appropriate position a certain distance inward from the rising portion 6b, and the air blown from the rotor 5 can smoothly flow in the direction of the three air outlet ports without causing a backflow effect.
It is highly efficient, does not generate surging, and can reduce operating noise.

しかも同時に前記熱交換器4の上部背面側にサージング
なく良好な風速分布を呈するような適正空間を形成でき
るため、該空間で騒音が発生することも防止できるので
ある。
Moreover, at the same time, it is possible to form an appropriate space on the upper rear side of the heat exchanger 4 that exhibits a good wind speed distribution without surging, and therefore it is possible to prevent noise from being generated in the space.

因みに前記θ1の値を前記範囲より大きくすると、熱交
換器4の上部背面側に形成される前記空間の奥行寸法が
小さくなり過ぎ、風速ひいては通風抵抗が過大となって
騒音が大きくなるのであり、又前記θ1の値を前記範囲
より小さくすると、渦巻部7aの上端Bが前記渦の中心
Aに近寄り過ぎて渦巻部7aの上端Bとロータ5との隙
間から逆流が生じ、効率が低下し、サージングが生じ易
くなるのである。
Incidentally, if the value of θ1 is made larger than the above range, the depth dimension of the space formed on the upper rear side of the heat exchanger 4 becomes too small, and the wind speed and therefore the ventilation resistance become excessive, resulting in an increase in noise. If the value of θ1 is made smaller than the above range, the upper end B of the spiral portion 7a will be too close to the center A of the vortex, and a backflow will occur from the gap between the upper end B of the spiral portion 7a and the rotor 5, resulting in a decrease in efficiency. This makes surging more likely to occur.

又前記H2の値の設定範囲を求める。Also, find the setting range of the value of H2.

前記平板部7bを基準にして、前記前板6を、前記角度
θ2を変えることなく立上り部6bが離間又は近接する
ごとく移動させることにより、H2ひいては鴇の値を変
化させて運転音を測定した結り 果、第5図のごとく珪の値を0.3乃至0.4の範囲り 内の値とした時運転音を42ホン以下に抑制できたので
ある。
Using the flat plate part 7b as a reference, the front plate 6 was moved so that the rising part 6b moved away from or came close to each other without changing the angle θ2, thereby changing the value of H2 and, in turn, measuring the driving sound. As a result, the operating noise could be suppressed to 42 phon or less when the value of silicon was set within the range of 0.3 to 0.4 as shown in FIG.

即ち前記H2の値は0.3D乃至0.4 Dの範囲内の
値に設定するのである。
That is, the value of H2 is set within the range of 0.3D to 0.4D.

即ちH2の値を前記範囲内の)値に或すと前記H1の値
を設定した時と同様に、第8図のごとく前記渦の中心A
を前記立上り部6b内方の適正位置に位置させることが
できて、ロータ5から吹出した空気が逆流作用すること
なく全量吹出口3方向に円滑に流通できて、運転音を小
さくできるのである。
That is, if the value of H2 is set to a value within the above range, the center A of the vortex as shown in FIG.
can be located at an appropriate position inside the rising portion 6b, and the air blown from the rotor 5 can flow smoothly in the direction of the air outlet 3 without causing a backflow effect, thereby reducing operating noise.

しかして前記H1の値が、大き過ぎると立上り部6bと
ロータ5との間隔が大きくなって逆流を生じてサージン
グを生じ易く又小さ過ぎると通風抵抗が大きくなり、騒
音が増大することとなるのである。
However, if the value of H1 is too large, the distance between the rising portion 6b and the rotor 5 will become large, causing backflow and surging. If it is too small, ventilation resistance will increase and noise will increase. be.

更に前記ε及びLの値の設定範囲を求める。Furthermore, the setting ranges of the values of ε and L are determined.

上を媒介変数として五の値を変化させて運転音り を測定した結果、第6図のとと<JBの値を0.2乃至
0.3、父方の値を0.08乃至0.11の範囲内の値
とした時運転音を42ホン以下に抑制できたのである。
As a result of measuring the driving noise by changing the value of 5 using the above as a parameter, we found that the value of 0.2 to 0.3 for JB in Figure 6 and 0.08 to 0.11 for the paternal side. When the value was within the range of , the operating noise could be suppressed to 42 phon or less.

即ち前記りの値は0.2D乃至0.3Dの範囲内の値に
、又前記εの値は0.08D乃至0.11Dの範囲内の
値にそれぞれ設定するのである。
That is, the above values are set within the range of 0.2D to 0.3D, and the value of ε is set within the range of 0.08D to 0.11D.

即ち前記ε及び土の値を前記各範囲内の値に或すと、ロ
ータ5の羽根5aと立上り部6bとの干渉音、所謂ヒ二
−音をなぐすることができるのである。
That is, by setting the values of ε and soil within the respective ranges, it is possible to reduce the interference sound between the blade 5a of the rotor 5 and the rising portion 6b, that is, the so-called hini sound.

因みに前記εの値を小さくし過ぎるとヒユー音による騒
音が著るしく増大するのであり、又εの値を大きくし過
ぎると該間隔εからの逆流が生ずることとなるのである
Incidentally, if the value of ε is made too small, the noise due to the whistling sound will increase significantly, and if the value of ε is made too large, a backflow from the interval ε will occur.

又前記θ2の値の設定範囲を求める。Also, find the setting range of the value of θ2.

前記立上り部6bの下端を中心として前記平板部6aの
傾斜角度を変えるごとくして前記θ2の値を変化させて
運転音を測定した結果、第7図のごとくθ2の値を20
°乃至50°の範囲内の値とした時運転音を42ホン以
下に抑制できたのである。
As a result of measuring the operating noise by changing the value of θ2 by changing the inclination angle of the flat plate portion 6a around the lower end of the rising portion 6b, the value of θ2 was changed to 20 as shown in FIG.
When the value was within the range of 50° to 50°, the operating noise could be suppressed to 42 phon or less.

即ち前記θ2の値は20°乃至50°の範囲内の値に設
定するのである。
That is, the value of θ2 is set within the range of 20° to 50°.

即ち前記平板部6aを、第8図のごとく前記渦の中心A
の位置に見合う、吹出風の流線に沿うように傾斜させる
のであり、斯くすることにより吹出空気は両手板部6
a 、7 b間を円滑に流通し、騒音を十分小さくでき
るのである。
That is, the flat plate portion 6a is positioned at the center A of the vortex as shown in FIG.
The blown air is tilted along the streamline of the blown air, which corresponds to the position of the blown air.
This allows for smooth flow between a and 7b, making it possible to sufficiently reduce noise.

以上のごとく本体ケーシング1内における通風路の各θ
1.H1,L、H2,ε、θ2の値を特定することによ
り、第8図のごとく、渦の中心Aが前記立上り部6b近
くの一定位置に位置することとなって、ロータ5と立上
り部6bとの隙間からの逆流がなくて、空気の流れが安
定で効率を高くできるのであり、しかも渦の中心Aが前
記渦巻部7aの上端Bからも十分離れた位置に位置する
こととなって、ロータ5と該上端Bとの隙間がらの逆流
がなくて一層効率を高くできると共に、第2図の図Qの
ごとく高周量6(m3/m1n)、高静化3.5 (m
mH20)で、サージングにも強く全体に騒音を十分小
さくできるのである。
As described above, each θ of the ventilation passage in the main body casing 1
1. By specifying the values of H1, L, H2, ε, and θ2, the center A of the vortex is located at a certain position near the rising portion 6b, as shown in FIG. Since there is no backflow from the gap between the vortex and the vortex, the air flow is stable and the efficiency can be increased, and the center A of the vortex is located at a sufficient distance from the upper end B of the vortex part 7a. There is no backflow in the gap between the rotor 5 and the upper end B, which makes it possible to further increase the efficiency.
mH20), it is resistant to surging and can sufficiently reduce overall noise.

尚以上の説明では、ロータ5の直径りを9Qmmとした
が、この値に限定されるものでなく、任意の直径のもの
に適用できる。
In the above description, the diameter of the rotor 5 was set to 9Qmm, but it is not limited to this value and can be applied to any diameter.

又以上の説明では、熱交換器4は多数のプレートフィン
・・・・・・に熱交換管4a・・・・・・を6段、2列
に亙って配設したものを用いたが、任意のものに適用で
きることは云うまでもない。
Furthermore, in the above explanation, the heat exchanger 4 is constructed by disposing heat exchange tubes 4a in six stages and in two rows on a large number of plate fins. , it goes without saying that it can be applied to anything.

又前記前板6は、第1図のごとく熱交換器4の下方に設
けるドレンパンを、平板部6a、立上り部6bを備える
ごとく形成して兼用させるのが好ましく、構造を簡単に
できる。
Further, it is preferable that the front plate 6 is formed to have a flat plate part 6a and a rising part 6b to serve as a drain pan provided below the heat exchanger 4, as shown in FIG. 1, so that the structure can be simplified.

以上のごとく本考案によれば、熱交換器の高さのみを低
くして熱交換面積を減少させても、熱交換器内を流通さ
せる空気の流速を増大させて十分な熱交換能力を有する
ごとくできながら、しがも斯く流速を増大させるために
増大する機内抵抗に対応して、本体ケーシング内におけ
る空気通路の各部の長さ、角度の値を特定することによ
り、第8図のごとく渦の中心Aを前板の立上り部近くの
適正位置に位置させることができて、逆流がなく空気の
流れが安定で高効率にでき、かつサージングに強く全体
に騒音を少くできるのである。
As described above, according to the present invention, even if the heat exchange area is reduced by lowering only the height of the heat exchanger, sufficient heat exchange capacity can be achieved by increasing the flow velocity of air flowing through the heat exchanger. However, by specifying the length and angle of each part of the air passage in the main body casing, in response to the increased internal resistance due to increasing the flow velocity, the vortex can be reduced as shown in Figure 8. The center A of the front plate can be located at an appropriate position near the rising part of the front plate, so there is no backflow, the air flow is stable and highly efficient, and it is resistant to surging and reduces overall noise.

従ってユニット全体の外形寸法を、薄さを保ちながら低
くできて、壁面に据付けた時かもいの下にはみ出すこと
がなく、ユニット下方の空間利用率を大きくできるので
ある。
Therefore, the external dimensions of the entire unit can be reduced while maintaining its thinness, and when installed on a wall, it does not protrude under the roof, making it possible to increase the space utilization rate below the unit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す断面説明図、第2図は風
量と静圧の関係を示す説明図、第3図乃至第7図は各寸
法H1,θ1.H2,ε+ L +θ2と運転音との関
係を示す説明図、第8図は空気流線図、第9図は従来に
おける説明図で゛ある。 1・・・・・・本体ケーシング、2・・・・・・吸込口
、3・・・・・・吹出口、4・・・・・・熱交換器、5
・・・・・・ロータ、6・・・・・・前板、6a・・・
・・・平板部、6b・・・・・・立上り部、7・・・・
・・後板、7a・・・・・・渦巻部、7b・・・・・・
平板部、8・・・・・・クロスフローファン。
FIG. 1 is a cross-sectional explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the relationship between air volume and static pressure, and FIGS. 3 to 7 are each dimension H1, θ1. FIG. 8 is an air flow diagram, and FIG. 9 is an explanatory diagram showing the relationship between H2, ε+L +θ2 and operating noise. 1...Body casing, 2...Suction port, 3...Blowout port, 4...Heat exchanger, 5
...Rotor, 6...Front plate, 6a...
...Flat plate part, 6b... Rising part, 7...
... Rear plate, 7a ... Spiral section, 7b ...
Flat plate part, 8...Cross flow fan.

Claims (1)

【実用新案登録請求の範囲】 本体ケーシング内にロータ、前板及び後板から成るクロ
スフローファンを配設し、前記本体ケーシングの前面上
部に設けた吸込口から室内空気を吸込み、前記本体ケー
シングの前面下部に設けた吹出口から前記室内空気を吹
出す如くした室内ユニットにおいて、前記本体ケーシン
グの吸込口と前記クロスフローファンのローターとの間
の前記クロスフローファンの吸込側に熱交換器を設ける
と共に、前記クロスフローファンの前板を、平板部と、
該平板部のロータ側先端に設けた立上り部とにより構成
する一方、前記クロスフローファンの後板のうち、ロー
タ背面側を渦巻状に形成した渦巻部と威し、該渦巻部の
吹出口側先端から前記吹出口に向う部分を平板状に形成
した平板部と威し、前記前板の平板部と前記後板の平板
部とを、これら平板部間の吹出通路が吹出方向に向って
末広り状となる如く配設し、前記クロスフローファンの
ロータの外径をD、該ロータの中心と前記後板の渦巻部
の両端を結ぶ線の威す角度を01、前記ロータの中心か
ら前記後板の平板部の上面に下した垂線の距離をHl、
前記前板の立上り部の高さをL、該立上り部と前記ロー
タとの間の最小間隙をε、前記立上り部と前記後板の平
板部との間の最小間隙をH2,前記前板の平板部下面と
前記後板の平板部上面の間の角度をθ2とした時、これ
ら各D1.θ1.H1,L、ε、H2,θ2を、120
°くθ1<160’、O。 礼 7< D< 1.0,0.2< j<0.3,0.08
<万<0.11,0゜3〈皆<0.4,20°〈θ2〈
50°の各式を満足する範囲内の値と威したことを特徴
とする室内ユニット。
[Claims for Utility Model Registration] A crossflow fan consisting of a rotor, a front plate, and a rear plate is disposed inside the main casing, and indoor air is sucked in from the suction port provided at the upper front of the main casing. In an indoor unit in which the indoor air is blown out from an outlet provided at a lower front surface, a heat exchanger is provided on the suction side of the cross-flow fan between the suction port of the main body casing and the rotor of the cross-flow fan. In addition, the front plate of the cross flow fan is a flat plate part,
On the other hand, the back plate of the cross flow fan has a spiral portion formed in a spiral shape on the back side of the rotor, and a spiral portion on the blower outlet side of the spiral portion. The part from the tip toward the air outlet is formed into a flat plate part, and the flat plate part of the front plate and the flat plate part of the rear plate are formed so that the air outlet passage between these flat plate parts widens toward the blowing direction. The outer diameter of the rotor of the cross-flow fan is D, the angle of the line connecting the center of the rotor and both ends of the spiral portion of the rear plate is 01, and the angle from the center of the rotor to the The distance of the perpendicular line drawn to the top surface of the flat plate part of the rear plate is Hl,
The height of the rising part of the front plate is L, the minimum gap between the rising part and the rotor is ε, the minimum gap between the rising part and the flat plate part of the rear plate is H2, and the minimum gap between the rising part and the rotor is H2. When the angle between the lower surface of the flat plate and the upper surface of the flat plate portion of the rear plate is θ2, each of these D1. θ1. H1, L, ε, H2, θ2, 120
° θ1<160', O. Rei 7 < D < 1.0, 0.2 < j < 0.3, 0.08
<10,000<0.11,0゜3〈All<0.4,20°〈θ2〈
An indoor unit characterized by having a value within a range that satisfies each equation of 50°.
JP7093279U 1979-05-26 1979-05-26 indoor unit Expired JPS5824099Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7093279U JPS5824099Y2 (en) 1979-05-26 1979-05-26 indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7093279U JPS5824099Y2 (en) 1979-05-26 1979-05-26 indoor unit

Publications (2)

Publication Number Publication Date
JPS55169928U JPS55169928U (en) 1980-12-06
JPS5824099Y2 true JPS5824099Y2 (en) 1983-05-23

Family

ID=29304650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7093279U Expired JPS5824099Y2 (en) 1979-05-26 1979-05-26 indoor unit

Country Status (1)

Country Link
JP (1) JPS5824099Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067229A (en) * 2002-02-07 2003-08-14 엘지전자 주식회사 installing structure for stabilizer in the air conditioner

Also Published As

Publication number Publication date
JPS55169928U (en) 1980-12-06

Similar Documents

Publication Publication Date Title
JP6058242B2 (en) Air conditioner
CN211781451U (en) Indoor unit of air conditioner
JP3700578B2 (en) Air conditioner indoor unit
JP6566060B2 (en) Outdoor unit of fan unit and air conditioner equipped with the same
JPS5824099Y2 (en) indoor unit
JP2006153332A (en) Outdoor unit for air conditioner
JP2013148248A (en) Air conditioner
CN107850320A (en) Top setting type air conditioner and heat exchanger
JP2003202119A (en) Air conditioner
JP2007170757A (en) Indoor unit of air conditioner
JP3170545B2 (en) Air conditioner
JP4706305B2 (en) Air conditioner
JPH08313049A (en) Air conditioner
JP3331873B2 (en) Air conditioner indoor unit
WO2022120980A1 (en) Air conditioner indoor unit and air conditioner
JPS5819693A (en) Finned tube type heat exchanger
KR100360429B1 (en) Blowing apparatus of air conditioner
JP3170546B2 (en) Air conditioner
KR100377615B1 (en) Blower for Indoor unit of Air conditioner
JPH03211396A (en) Air conditioner
KR100833849B1 (en) Ceiling-installed air conditioner
JP2539708Y2 (en) Air conditioner
JPS6125524Y2 (en)
JPH06159702A (en) Wall type indoor unit
JP2002054820A (en) Air conditioner