JPS6154125B2 - - Google Patents

Info

Publication number
JPS6154125B2
JPS6154125B2 JP56104689A JP10468981A JPS6154125B2 JP S6154125 B2 JPS6154125 B2 JP S6154125B2 JP 56104689 A JP56104689 A JP 56104689A JP 10468981 A JP10468981 A JP 10468981A JP S6154125 B2 JPS6154125 B2 JP S6154125B2
Authority
JP
Japan
Prior art keywords
catalyst
combustion
woven
combustor
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56104689A
Other languages
Japanese (ja)
Other versions
JPS586318A (en
Inventor
Jun Yagi
Takashige Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56104689A priority Critical patent/JPS586318A/en
Publication of JPS586318A publication Critical patent/JPS586318A/en
Publication of JPS6154125B2 publication Critical patent/JPS6154125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気体もしくは液体の燃料を触媒を用
いて無炎で表面燃焼させる触媒燃焼器にあつて、
織布状触媒を用いることにより触媒物質の離散や
脱落による寿命低下や表面発熱分布の低下、さら
には触媒物質の室内飛散を防ぐとともに、定常燃
焼時の燃料生ガスのスリツプを著しく低くした触
媒燃焼器を得ることを目的とする。 従来より触媒燃焼を用いた燃焼器としては、液
体燃料を用いる携帯用のカイロがあり、また獣舎
暖房等の特殊な用途として、プロパン等を燃料と
したストーブがある。これらはいずれも空気と燃
料とも予め混合した予混合ガス燃焼ではなく、い
わゆる3次空気による最外面触媒面にて表面燃焼
を行わせるもので、この燃焼の特徴としては、予
混合燃焼に比べて、燃焼温度を低く抑えた低温燃
焼が可能なことと、この条件下において、いわゆ
る無炎の平面燃焼としての特徴をもたせることが
できる。この燃焼方式によれば、理論上、全燃焼
成分の完全燃焼が可能なうえに、燃焼生成物とし
てNOの発生を伴わず、室内燃焼器として理想的
な燃焼方式といえる。さらに暖房器として考えれ
ば、燃焼面からの輻射エネルギーが、より赤外領
域にあつて、人体への吸収効率が高いことが特長
的である。このために、省エネルギーや室内空気
汚染防止の観点から、触媒を用いたこの表面燃焼
方式が注目されている。しかしながら、従来より
用いられている触媒燃焼器の触媒としては、その
ほとんどが無機繊維からなる不繊布に触媒物質を
含浸付着させたものであり、触媒表面の機械的も
しくは局部燃焼やガス圧変動等による外乱によ
り、容易に表面形状に変化が生じ、その結果とし
て、発熱分布の片寄りや、生ガスの未燃焼放出を
生じたり、触媒物質の室内放散を起し、それらの
結果として燃焼寿命の低下を生ずる等、本来触媒
燃焼であることの長所がすべて短所となる等の不
都合な点が多いことが難点であつた。 本発明は、以上のような触媒燃焼器として、そ
の効果を最大限発揮しうるとともに、従来より難
点とされてきたことを改善した新規な触媒燃焼器
の構成を提供するものである。 以下、本発明を実施例の図面とともに詳述す
る。 実施例 1 第1図に示すように、予め酸処理によつてシリ
カ純度を90wt%以上にしたシリカクロスにあつ
て、その形状は糸密度が経糸30本/25mm、緯糸19
本/25mmであり、厚さがほゞ0.3mmの平織クロス
の表面にシリカ4wt%、さらにその表面にアルミ
ナ15wt%をそれぞれ別個に通常の浸漬・乾燥・
焼成によつて担持したものを担体とし、この担体
の表面に白金とパラジウムが原子比で1対5であ
り、全金属量が0.5g/m2となるように、やはり通
常の浸漬、乾燥、活性化焼成により担持した触媒
布1の2枚組みと、かさ密度0.06g/c.c.で厚さ5
mmの無機繊維不織布2を重ね、再び触媒布3の1
枚をその下に重ね、さらにかさ密度0.06g/c.c.、
厚さ5mmの無機繊維不織布4と、やはりかさ密度
0.16g/c.c.、厚さ10mmの無機繊維不織布5を順次
下側に重ねて組合せた燃焼層をケースに納めて燃
焼器とした。ここで触媒布1と触媒布3はともに
同一組成よりなる触媒布であり、またケースは燃
焼層保持のラス板6と燃焼ガス供給口7を有する
下ケース8と、触媒面を押えるステンレス金網9
を有する上ケース10とからなつている。なお、
上記不織布2,4,5は燃料の燃焼表面への均一
拡散を効果的に行わせる燃料供給抵抗体である。 実施例 2 第1図における触媒布1は実施例1における触
媒布と同一なものを用い、下層の触媒布3には、
糸密度が経糸10本/25mm、緯糸10本/25mm、厚さ
がほゞ0.4mmの目抜き平織クロスを基材とし、触
媒布1と同一の触媒材組成とした触媒布2枚を重
ねて用い、燃料ガス拡散抵抗材としての無機繊維
不織布4,5は実施例1と同一の構成として組合
せた燃焼層を、やはり実施例1と同一のケースに
納めて燃焼器とした。 実施例 3 第2図に示すように、触媒布1は実施例1と同
一の触媒布を、不織布2も実施例1と同一形状の
ものであり、触媒布3は実施例2における触媒布
3と同一の触媒布であり、これらの下に実施例1
の不織布2と同一の不織布11を、さらにその下
に糸密度が経糸8本/25mm、緯糸8本/25mm、厚
さがほゞ0.4mmの目抜き平織クロスを基材とし、
触媒布1と同一触媒材組成とした触媒布12を組
合せ、その下に実施例1と同一の不織布4と5を
組合せた燃焼層を、やはり実施例1と同一のケー
スに納めて燃焼器とした。 実施例 4 第1図と同じ構成で、触媒布1には糸密度が経
糸43本/25mm、緯糸37本/25mm、厚さが0.7mmの
朱子織クロスを基材とし、その表面に実施例1の
触媒布1と同等の触媒材を担持したものを用い、
触媒布3には糸密度が経糸32本/25mm、緯糸22
本/25mmで厚さが0.5mmの擬紗織クロスを基材と
し、この表面に実施例1と同等の担体を担持した
のちに、白金とロジウムが原子比で10対1であ
り、全金属量として0.5wt%となるように触媒金
属を担持したものを用いて、やはり実施例1と同
一のケースに納めて燃焼器とした。 以上の実施例と比較するための比較例として、
実施例1に用いたと同じ触媒布3枚を重ね、その
下に、やはり実施例1で用いたと同じ、かさ密度
0.06g/c.c.で厚さ5mmの無機繊維不織布を2枚、
さらにかさ密度0.16g/c.c.で厚さ10mmの無機繊維
不織布を順次下側に重ねて組合せた燃焼層をケー
スに納めて、比較用燃焼器とした。 上記各実施例ならびに比較例による触媒燃焼器
にプロパンガス(燃料としては液化プロパン)を
燃料として燃焼させたところ、次の表に示すとお
り、定常燃焼時の燃焼生ガスのスリツプ率は実施
例のいずれの場合も3〜1.5%であり、その時の
表面温度は480℃〜550℃でほゞ均風な温度分布を
示した。さらに2000時間燃焼後のスリツプ率の増
加は、初期スリツプ率の5%増以内に納まつてお
り、室内燃焼器として有効なものであつた。 一方、比較例による触媒燃焼器においては、定
常燃焼時の燃焼生ガスのスリツプ率は5.6%であ
り、表面温度は310℃〜650℃の範囲にあり、特に
中央部分が高く周辺部が低い温度分布を呈した。
また2000時間燃焼後のスリツプ率の増加は初期ス
リツプ率の9%増であつた。
The present invention relates to a catalytic combustor that burns gaseous or liquid fuel flamelessly on the surface using a catalyst.
The use of a woven catalyst prevents shortened service life and surface heat generation distribution due to dispersion and shedding of the catalyst material, as well as preventing the catalyst material from scattering indoors, and achieves catalytic combustion that significantly reduces the slip of raw fuel gas during steady combustion. The purpose is to obtain a vessel. Conventional combustors using catalytic combustion include portable body warmers that use liquid fuel, and stoves that use propane or the like as fuel for special purposes such as heating animal shelters. All of these combustion methods are not premixed gas combustion in which air and fuel are mixed in advance, but surface combustion is performed on the outermost catalyst surface using so-called tertiary air.The characteristics of this combustion are that it is different from premixed combustion. , it is possible to perform low-temperature combustion by keeping the combustion temperature low, and under these conditions, it is possible to provide the characteristics of so-called flameless planar combustion. According to this combustion method, it is theoretically possible to completely burn all combustion components, and it does not involve the generation of NO as a combustion product, so it can be said to be an ideal combustion method for an indoor combustor. Furthermore, when considered as a heater, the radiant energy from the combustion surface is in the infrared region, and is characterized by high absorption efficiency into the human body. For this reason, this surface combustion method using a catalyst is attracting attention from the viewpoint of energy saving and prevention of indoor air pollution. However, most of the catalysts used in conventional catalytic combustors are made by impregnating and adhering catalytic substances to nonwoven fabrics made of inorganic fibers, and they are susceptible to mechanical or local combustion on the catalyst surface, gas pressure fluctuations, etc. Disturbances caused by this can easily cause changes in the surface shape, resulting in uneven heat generation distribution, unburned release of raw gas, and indoor dispersion of catalytic materials, which can shorten the combustion life. The disadvantage was that there were many disadvantages, such as the fact that the advantages of catalytic combustion turned out to be disadvantages, such as reduced combustion. The present invention provides a novel catalytic combustor configuration that can maximize the effects of the catalytic combustor as described above and improves the conventional drawbacks. Hereinafter, the present invention will be described in detail with reference to drawings of embodiments. Example 1 As shown in Figure 1, a silica cloth whose silica purity has been made 90wt% or more by acid treatment has a shape with a thread density of 30 threads/25 mm in warp threads and 19 threads in weft threads.
4wt% silica on the surface of a plain weave cloth with a thickness of approximately 0.3mm and 15wt% alumina on the surface were separately soaked, dried, and
The material supported by firing is used as a carrier, and the surface of this carrier is immersed, dried, and washed in the usual manner so that the atomic ratio of platinum and palladium is 1:5 and the total metal amount is 0.5 g/m 2 . A set of two catalyst cloths 1 supported by activation firing and a bulk density of 0.06 g/cc and a thickness of 5
Layer the inorganic fiber nonwoven fabric 2 of
Stack the sheets underneath, and add a bulk density of 0.06g/cc.
Inorganic fiber nonwoven fabric 4 with a thickness of 5 mm and bulk density
A combustion layer made by sequentially stacking inorganic fiber nonwoven fabrics 5 of 0.16 g/cc and 10 mm thickness on the lower side was housed in a case to form a combustor. Here, both the catalyst cloth 1 and the catalyst cloth 3 are catalyst cloths made of the same composition, and the case includes a lower case 8 having a lath plate 6 for holding the combustion layer and a combustion gas supply port 7, and a stainless wire mesh 9 for pressing the catalyst surface.
and an upper case 10 having a. In addition,
The nonwoven fabrics 2, 4, and 5 are fuel supply resistors that effectively uniformly diffuse the fuel to the combustion surface. Example 2 The catalyst cloth 1 in FIG. 1 is the same as the catalyst cloth in Example 1, and the lower layer catalyst cloth 3 is
Two sheets of catalyst cloth with the same catalyst material composition as catalyst cloth 1 were stacked on top of each other, with a thread density of 10 warps/25 mm, weft 10 yarns/25 mm, and a thickness of about 0.4 mm. The inorganic fiber nonwoven fabrics 4 and 5 used as fuel gas diffusion resistance materials had the same structure as in Example 1, and the combined combustion layer was housed in the same case as in Example 1 to form a combustor. Example 3 As shown in FIG. 2, the catalyst cloth 1 was the same catalyst cloth as in Example 1, the nonwoven fabric 2 was also of the same shape as in Example 1, and the catalyst cloth 3 was the same as that in Example 2. and below these are the same catalyst cloths as those of Example 1.
A non-woven fabric 11 which is the same as the non-woven fabric 2 is further used as a base material, and below it is an open plain woven cloth with a thread density of 8 warps/25 mm, 8 wefts/25 mm, and a thickness of approximately 0.4 mm.
A combustor was constructed by combining catalyst cloth 1 and catalyst cloth 12 having the same catalyst material composition, and under it a combustion layer combining nonwoven fabrics 4 and 5, which were the same as in Example 1, in the same case as in Example 1. did. Example 4 The catalyst cloth 1 has the same configuration as in Fig. 1, and the base material is satin cloth with a thread density of 43 warps/25 mm, 37 wefts/25 mm, and a thickness of 0.7 mm. Using a catalyst cloth 1 carrying a catalyst material equivalent to that of 1,
Catalyst cloth 3 has a thread density of 32 warps/25mm and 22 wefts.
A pseudo-sawn cloth with a diameter of 25 mm and a thickness of 0.5 mm was used as the base material, and after supporting the same carrier as in Example 1 on the surface, it was found that the atomic ratio of platinum and rhodium was 10:1, and the total metal content was A combustor was prepared by using a catalytic metal supported at a concentration of 0.5 wt% and placed in the same case as in Example 1. As a comparative example for comparing with the above examples,
Three sheets of the same catalyst cloth as used in Example 1 are stacked, and below that, the same bulk density as used in Example 1 is placed.
Two sheets of 0.06g/cc, 5mm thick inorganic fiber nonwoven fabric,
Furthermore, a combustion layer made by sequentially stacking inorganic fiber nonwoven fabrics with a bulk density of 0.16 g/cc and a thickness of 10 mm on the bottom was housed in a case to prepare a comparative combustor. When propane gas (liquefied propane was used as fuel) was burned in the catalytic combustor according to each of the above examples and comparative examples, the slip rate of the combustion raw gas during steady combustion was as shown in the table below. In all cases, the concentration was 3% to 1.5%, and the surface temperature at that time was 480°C to 550°C, showing a nearly uniform temperature distribution. Furthermore, the increase in slip rate after 2000 hours of combustion was within 5% of the initial slip rate, making it an effective indoor combustor. On the other hand, in the catalytic combustor according to the comparative example, the slip rate of the combustion raw gas during steady combustion was 5.6%, and the surface temperature was in the range of 310℃ to 650℃, with the temperature being particularly high in the center and low in the periphery. It showed a distribution.
The increase in slip rate after 2000 hours of combustion was 9% higher than the initial slip rate.

【表】 ただし、
排ガス中の可燃成分
の総発熱量(k〓〓h)
スリツプ率=
[Table] However,
Combustible components in exhaust gas
Total calorific value (k〓〓h)
Slip rate =

Claims (1)

【特許請求の範囲】 1 気体もしくは液体の燃料を無炎で表面燃焼す
る燃焼器にあつて、糸密度の異なる複数枚の織布
状触媒を、燃焼器の燃焼開放面より順次内部へ、
糸密度の大きい順に配置し、かつ、これら織布状
触媒を、互に隔離するために、織布状触媒厚さの
5〜50倍の厚さをもつ、触媒材の付着していない
無機質不織布を織布状触媒の間に配置してなる触
媒燃焼部を備えたことを特徴とする触媒燃焼器。 2 織布状触媒が、シリカクロスを基材として、
その表面に触媒材を担持した触媒であることを特
徴とする特許請求の範囲第1項に記載の触媒燃焼
器。
[Claims] 1. In a combustor that burns gaseous or liquid fuel flamelessly on the surface, a plurality of woven catalysts having different thread densities are sequentially introduced into the combustor from the open combustion surface,
In order to arrange the woven catalysts in descending order of yarn density and to isolate these woven catalysts from each other, an inorganic non-woven fabric to which no catalyst material is attached is 5 to 50 times as thick as the woven catalyst. What is claimed is: 1. A catalytic combustor comprising: a catalytic combustor disposed between woven catalysts; 2 The woven catalyst uses silica cloth as a base material,
The catalytic combustor according to claim 1, wherein the catalytic combustor is a catalyst having a catalytic material supported on its surface.
JP56104689A 1981-07-03 1981-07-03 Catalytic combustor Granted JPS586318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104689A JPS586318A (en) 1981-07-03 1981-07-03 Catalytic combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104689A JPS586318A (en) 1981-07-03 1981-07-03 Catalytic combustor

Publications (2)

Publication Number Publication Date
JPS586318A JPS586318A (en) 1983-01-13
JPS6154125B2 true JPS6154125B2 (en) 1986-11-20

Family

ID=14387431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104689A Granted JPS586318A (en) 1981-07-03 1981-07-03 Catalytic combustor

Country Status (1)

Country Link
JP (1) JPS586318A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149617U (en) * 1985-03-05 1986-09-16
JPS6266015A (en) * 1985-08-30 1987-03-25 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst combustion device
JPS6279846A (en) * 1985-10-04 1987-04-13 Cataler Kogyo Kk Catalyst body for combustion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232347A (en) * 1975-09-08 1977-03-11 Nippon Telegr & Teleph Corp <Ntt> Wave guide light modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232347A (en) * 1975-09-08 1977-03-11 Nippon Telegr & Teleph Corp <Ntt> Wave guide light modulator

Also Published As

Publication number Publication date
JPS586318A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US3057400A (en) Glow burner for fuel-air mixture
US4177168A (en) Catalyst bed for use in a catalytic flameless heater device
US3191659A (en) Radiant gas burner
US4313998A (en) Textile element and woven material intended in particular to serve as substrate for a catalytic material, for instance a combustion catalytic material
US3245459A (en) Catalytic heater and catalyst therefor
WO1994020790A1 (en) Improved catalytic combustion system including a separator body
US3240256A (en) Catalytic heater
US4735568A (en) Wicks for oil burning appliance
JPS6154125B2 (en)
TW252180B (en) Improved catalyst configuration for catalytic combustion systems
JPH0152645B2 (en)
JPS5952530A (en) Catalyst
IE41915B1 (en) Catalytic apparatus
JPS5973053A (en) Carrier for catalyst
JPS6279847A (en) Catalyst system for combustion of lower hydrocarbon fuel and combustion method using said system
JPS61252409A (en) Method of igniting methane fuel
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPS6380849A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
KR102136121B1 (en) Metal Fiber Pad and Burner Head using the same
JPH0828826A (en) Surface combustion burner
JPS5977214A (en) Heating method by catalytic combustion
JPS62114650A (en) Combustion catalyst body
JPH1151329A (en) Burner
JPS6066009A (en) Combustion member for catalyst combustion apparatus
Mercea et al. Catalytic combustor for hydrogen