JPS6153900A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPS6153900A
JPS6153900A JP59174981A JP17498184A JPS6153900A JP S6153900 A JPS6153900 A JP S6153900A JP 59174981 A JP59174981 A JP 59174981A JP 17498184 A JP17498184 A JP 17498184A JP S6153900 A JPS6153900 A JP S6153900A
Authority
JP
Japan
Prior art keywords
composite
piezoelectric material
composite piezoelectric
ultrasonic probe
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59174981A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takeuchi
裕之 竹内
Chitose Nakatani
中谷 千歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP59174981A priority Critical patent/JPS6153900A/en
Publication of JPS6153900A publication Critical patent/JPS6153900A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide an ultrasonic probe with excellent characteristics by imbedding a number of needle shaped crystal of antimony sulfaiodide in a sheet shaped organic material to form a composite piezoelectrc material. CONSTITUTION:The needle shape crystal of antimony sulfaiodide is produced by the vapor growth method. A number of the needle shaped crystal 12 is imbedded in the sheet shaped organic material 11 to form the composite piezoelectric material. The composite piezoelectric material thus produced facilitates the manufacture of uniform one, and has better piezoelectric characteristics than one made of PZT ceramic fiber. Therefore, this type of composite piezoelectric material provides the ultrasonic probe with excellent characteristics.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波診断装置などに用いる超音波探触子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic probe used in an ultrasonic diagnostic apparatus or the like.

〔発明の背景〕[Background of the invention]

従来、超音波探触子における圧電振動子用材料としては
ジルコン酸、チタン酸鉛(PZT)系セラミクスが多く
使用されている。しかし、これらの圧電セラミクスは(
i)音響インピーダンスが人体に比較して著しく大きい
ため診断用としては音響整合層などに工夫を要する、(
it)誘電率が著しく大きいため圧電電圧定数gが小さ
く超音波を受けた場合に高い電圧を得ることができない
、(tit)人体の形状に適合する曲率をもたせること
が困難、などの欠点をもっている。これらの問題点を解
決するために、有機物と圧電体を複合させた、いわゆる
複合圧電材料が提案されている。その例として、米国の
Newnhamらは第1図に示したように有機物11の
中に柱状のP Z T 1.2を埋め込む複合化が有効
であることを報告している(マテリアル・リサーチ・プ
リテン誌第13巻525頁〜536頁(1978) )
 、実際に、PZTとシリコンゴム、エポキシなどの有
機物との複合化で、音響インピーダンスが小さく圧電電
圧定数gが大きな材料が得られている。
Conventionally, ceramics based on zirconate and lead titanate (PZT) are often used as materials for piezoelectric vibrators in ultrasonic probes. However, these piezoelectric ceramics (
i) Since the acoustic impedance is significantly larger than that of the human body, it is necessary to take measures such as an acoustic matching layer for diagnostic purposes.
It has disadvantages such as (it) the piezoelectric voltage constant g is small because the dielectric constant is extremely large, making it impossible to obtain a high voltage when subjected to ultrasonic waves, and (tit) it is difficult to create a curvature that matches the shape of the human body. . In order to solve these problems, so-called composite piezoelectric materials, which are composites of organic matter and piezoelectric materials, have been proposed. As an example, Newham et al. of the United States have reported that it is effective to embed columnar P Z T 1.2 in organic matter 11 as shown in Figure 1 (Materials Research Preprints). (1978), Vol. 13, pp. 525-536 (1978)
In fact, by combining PZT with organic substances such as silicone rubber and epoxy, materials with low acoustic impedance and high piezoelectric voltage constant g have been obtained.

このような場合圧電体においては、その圧電特性は有機
物中に占める圧電体の体積分率によって大きく変化する
。また、体積分率は同じでも、柱状圧電体のサイズをで
きるだけ小さくして、使用周波数からみて複合圧電体が
均一と見なせる状態が望ましい。このため、径の細いフ
ァイバ状のPZTセラミクスを作成し、これらを互いに
間隙をおいて配列しその間隙に樹脂を流し込んで固める
という方法がある。しかし径の細い(<0.5w+)P
ZTセラミクファイバの作成は非常に困難で、また作成
できたとしても機械的強度が弱く、配列する工程で折れ
るなど製造の歩留りは極めて悪い。そこで、最近特に高
周波用複合圧電体の製造方法として、PZTセラミク板
を適当な厚みの刃を用いて網の目状に切断し、生じた溝
に有機物を充填して固めるという方法が開発されている
In such a case, the piezoelectric properties of the piezoelectric material vary greatly depending on the volume fraction of the piezoelectric material in the organic substance. Further, even if the volume fraction is the same, it is desirable to make the size of the columnar piezoelectric body as small as possible so that the composite piezoelectric body can be considered uniform in terms of the operating frequency. For this reason, there is a method in which PZT ceramics in the form of fibers with a small diameter are created, these are arranged with gaps between them, and resin is poured into the gaps to harden them. However, P with a small diameter (<0.5w+)
It is very difficult to create ZT ceramic fibers, and even if they can be created, their mechanical strength is weak and they break during the arranging process, resulting in extremely low production yields. Therefore, recently, a method has been developed for manufacturing composite piezoelectric materials especially for high frequencies, in which a PZT ceramic plate is cut into a mesh shape using a blade of an appropriate thickness, and the resulting grooves are filled with organic matter and hardened. There is.

しかし、良好な圧電特性を得るためには柱の幅Wを高さ
hより小さくする必要があるので、これでも周波数が5
 M T(zを越えると切断加工が困難になる。例えば
7 、5 M Hz では、PZTセラミク柱の高さは
約0.2+++n+ どなるので、幅を0.2wnより
小さく切断する必要がある。
However, in order to obtain good piezoelectric properties, it is necessary to make the width W of the column smaller than the height h, so even with this, the frequency is 5
Cutting becomes difficult when exceeding M T (z). For example, at 7 or 5 MHz, the height of the PZT ceramic column is about 0.2+++n+, so it is necessary to cut the width to be smaller than 0.2wn.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は、均一なものが製造容易で特性的
にもPZTセラミクファイバを用いたものを上回る複合
圧電体およびそれを用いた超音波探触子を提供すること
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a composite piezoelectric material that is uniform, easy to manufacture, and has superior properties to those using PZT ceramic fibers, and an ultrasonic probe using the same.

〔発明の概要〕[Summary of the invention]

発明者らは、硫沃化アンチモン(SbST)という強誘
電体が、気相成長法によりC軸方向に伸びた針状結晶が
得られ、かつC軸方向の縦振動に対する電気機械結合係
数k。が0.8〜0.9とPZTセラミクを上回ること
に着目し、これを用いて複合圧電体を構成した。その結
果、5bSTの針状結晶は断面が0.5X0.5wn”
以下のものが容易に得られ、記械的強度もPZTセラミ
クファイバに比較して大きく、複合化工程が容易である
ことが判った。さらに、k3aの値がPZTより大きい
ため、複合圧電体としての特性もPZTを用いたものを
上回ることが判明した。本発明はこのような実験結果に
基づくものである。以下本発明を実施例を参照しながら
詳しく説明する。
The inventors have discovered that a ferroelectric substance called antimony sulfide (SbST) has a needle-shaped crystal extending in the C-axis direction by a vapor-phase growth method, and has an electromechanical coupling coefficient k for longitudinal vibration in the C-axis direction. It was noted that the PZT ceramic was 0.8 to 0.9, which was higher than that of PZT ceramic, and a composite piezoelectric material was constructed using this material. As a result, the cross section of the acicular crystal of 5bST is 0.5×0.5wn”
It was found that the following materials were easily obtained, the mechanical strength was greater than that of PZT ceramic fiber, and the composite process was easy. Furthermore, since the value of k3a was larger than that of PZT, it was found that the properties as a composite piezoelectric material were also superior to those using PZT. The present invention is based on such experimental results. The present invention will be described in detail below with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

実施例l SbSIの針状結晶を気相成長法で作成した。 Example l Acicular crystals of SbSI were created by vapor phase growth.

アンチモンsb、硫黄S、沃素工の混合物をパイレック
スアンプル中に入れ、真空に封じ切った。
A mixture of antimony sb, sulfur S, and iodine was placed in a pyrex ampoule and sealed in vacuum.

これを電気炉に入り、550℃に加熱後アンプルの長手
方向に温度勾配(高温部410℃、低温部320℃)を
つけて1週間放置した。その結果、長さ140〜20m
m、断面積0.2IIIII角〜0.7mm角度の多数
の針状結晶が得られた。
This was placed in an electric furnace, heated to 550°C, and left for one week with a temperature gradient in the longitudinal direction of the ampoule (410°C in the high temperature part, 320°C in the low temperature part). As a result, the length is 140-20m
A large number of needle-shaped crystals with a cross-sectional area of 0.2 mm angle to 0.7 mm angle were obtained.

次に、長さ15mn、断面積0.3X0.3e”程度の
針状結晶21を、第2図に示したように配列し、エポキ
シ系樹脂を流し込んで固化し10mmφの複合物を構成
した。これを、約0.5+anの厚さに切断・研磨し、
両面に電極としてクロムと金の2層膜を蒸着した。最後
に、電極間に500V/lの直流電界を印加した状態で
、キュリ一温度(約20℃)を通過して冷却させること
により分極処理を行なった。
Next, needle-like crystals 21 with a length of 15 mm and a cross-sectional area of about 0.3 x 0.3 e'' were arranged as shown in FIG. 2, and an epoxy resin was poured and solidified to form a composite with a diameter of 10 mm. This was cut and polished to a thickness of about 0.5+an,
Two layers of chromium and gold were deposited on both sides as electrodes. Finally, a polarization process was performed by cooling through the Curie temperature (approximately 20° C.) while applying a DC electric field of 500 V/l between the electrodes.

このようにして作成した複合圧電体を用い、第3図に示
したように水中で超音波パルスの送受波実験を行なった
。その結果、PZTセラミクファイバを用いた複合圧電
体に比較して、送受波総合感度が5〜1.0 d B高
いことが判明した。
Using the composite piezoelectric material thus prepared, an experiment of transmitting and receiving ultrasonic pulses was conducted underwater as shown in FIG. As a result, it was found that the total transmitting and receiving sensitivity was 5 to 1.0 dB higher than that of a composite piezoelectric material using PZT ceramic fiber.

以上説明したように、板状有機物の中に多数の硫沃化ア
ンチモン5bSTの針状結晶を埋め込んだ構造の複合圧
電体は、均一なものが製造容易で圧電特性においてもP
ZTセラミクファイバを用いた複合圧電体より優れ、こ
れを用いた超音波探触子が極めて優れた性能を示すこと
は明らかである。
As explained above, a composite piezoelectric material having a structure in which a large number of antimony sulfide 5bST needle crystals are embedded in a plate-like organic material is easy to manufacture uniformly and has good piezoelectric properties.
It is clear that this is superior to a composite piezoelectric material using ZT ceramic fiber, and that an ultrasonic probe using this material exhibits extremely excellent performance.

実施例2 本発明の第2の複合圧電体は、圧電体としてニオブ酸リ
チウム単結晶を用いることを特徴とする。
Example 2 A second composite piezoelectric body of the present invention is characterized in that a lithium niobate single crystal is used as the piezoelectric body.

ニオブ酸リチウムは、PZTセラミックスと同様大きな
圧電性をもち、特に36°回転Y板(板面に垂直方向が
結晶軸又と直交しかつ結晶軸Yと成す角度が36°であ
るような結晶板)は厚み方向振動をし電気機械結合係数
が約0.5 と大きい。
Like PZT ceramics, lithium niobate has a large piezoelectric property, and is particularly suitable for use with 36° rotated Y plates (crystal plates in which the direction perpendicular to the plate surface is perpendicular to the crystal axis or the crystal axis Y and the angle formed with the crystal axis Y is 36°). ) vibrates in the thickness direction and has a large electromechanical coupling coefficient of approximately 0.5.

また共振の周波数定数も3200Hz−mとPZTセラ
ミク(1500Hz−m)に比較し約2倍大きいので柱
状にして複合化した後にも同じ高さく厚さ)でより高い
周波が実現できる。ニオブ酸リチウムのこのような特性
に着目して有機物との複合化を試みた結果、5MT(z
以上の高周波材料が容易に実現できまた特性的にもPZ
Tセラミクスを用いたものと遜色がないことが明らかに
なった。本発明はこのような実験結果に基づくものであ
る。以下本発明を実施例を参照しながら詳しく説明する
Furthermore, the resonance frequency constant is 3200 Hz-m, which is about twice as large as that of PZT ceramic (1500 Hz-m), so even after making it into a columnar composite, a higher frequency can be achieved with the same height and thickness. As a result of focusing on these characteristics of lithium niobate and attempting to combine it with organic matter, we found that 5MT (z
The above-mentioned high-frequency materials can be easily realized and have the same characteristics as PZ.
It became clear that it was comparable to that using T ceramics. The present invention is based on such experimental results. The present invention will be described in detail below with reference to Examples.

面積10X1.Omm”、厚み0.4+nmのニオブ酸
リチウム単結晶36°回転Y板をフェライト基板−Lに
エレクトロンワックスで接着した。この単結晶板を、厚
さ0.211W11の刃を用い0.4mピッチで第4図
に示したように網の目状に切断した。第4図において、
41はフェライト基板、42は切断されたニオブ酸リチ
ウム単結晶を示す。切断により生じた溝にエポキシ系樹
脂を充填・固化後、エレクトロンワックスを溶かして板
状複合圧電体をフェライト基板からはく離した。このよ
うにして、ニオブ酸リチウムの体積分率が25%で、柱
の幅が高さの1/2である、ニオブ酸リチウムとエポキ
シ系樹脂の複合圧電体を得た。この複合圧電体の両面に
電極としてクロムと金を蒸着後、先に述べた第1の実施
例と同様な方法で超音波パルスの送受実験を行なった。
Area 10X1. A 36° rotated Y plate of lithium niobate single crystal with a thickness of 0.4+nm was bonded to the ferrite substrate-L with electron wax. It was cut into a mesh shape as shown in Figure 4. In Figure 4,
41 is a ferrite substrate, and 42 is a cut lithium niobate single crystal. After filling and solidifying the epoxy resin into the grooves created by cutting, the electron wax was melted and the plate-shaped composite piezoelectric material was peeled off from the ferrite substrate. In this way, a piezoelectric composite of lithium niobate and epoxy resin was obtained, in which the volume fraction of lithium niobate was 25% and the width of the pillars was 1/2 of the height. After chromium and gold were vapor-deposited as electrodes on both surfaces of this composite piezoelectric material, an experiment of transmitting and receiving ultrasonic pulses was conducted in the same manner as in the first embodiment described above.

周波数応答から、共振周波数は約7 、5 M Hz 
であることが判った。これは同じ形状およびサイズのP
ZTセラミクを用いた場合の約2倍の周波数である。ま
た送受波感度もPZTセラミクスを用いたものとほぼ同
程度であった。
From the frequency response, the resonant frequency is approximately 7.5 MHz
It turned out to be. This is a P of the same shape and size.
This is approximately twice the frequency when ZT ceramic is used. Furthermore, the wave transmitting and receiving sensitivity was almost the same as that using PZT ceramics.

次に、同様な実験を5°おきに20’〜50″回転Y板
について行なった。その結果、複合圧電体の共振周波数
は7〜8 M Hzでほぼ一定であったが、20°以下
、40’以上で送受波感度は急激に悪くなり、また30
″以下および40°以上で超音波パルスに大きな尾引き
が観測された。これは、36°付近を除いて厚み方向振
動と同時に励振される煎断振動の影響と考えられる。
Next, a similar experiment was conducted on a Y-plate rotated 20' to 50'' every 5 degrees.As a result, the resonance frequency of the composite piezoelectric material was almost constant at 7 to 8 MHz, but below 20 degrees, The transmitting and receiving sensitivity deteriorates rapidly above 40';
Significant trailing was observed in the ultrasonic pulse at angles below 36° and above 40°. This is considered to be due to the effect of shearing vibration, which is excited simultaneously with the thickness direction vibration except at around 36°.

以上説明したように、有機物の中に多数の柱状圧電体が
板面に垂直に埋め込まれた構造の複合圧電体において、
柱状圧電体がニオブ酸リチウム単結晶からなり柱の上下
面に垂直な方向が結晶軸又と直交し結晶軸Yと成す角度
が30〜40°の範囲である複合圧電体は優れた圧電特
性を示し、かつこれを用いた超音波探触子が優れた性能
を示すことは明らかである。
As explained above, in a composite piezoelectric material having a structure in which a large number of columnar piezoelectric materials are embedded perpendicularly to the plate surface in an organic material,
A composite piezoelectric material in which the columnar piezoelectric material is made of a lithium niobate single crystal, and the direction perpendicular to the top and bottom surfaces of the pillar is perpendicular to the crystal axis or the crystal axis Y, and the angle formed with the crystal axis Y is in the range of 30 to 40 degrees, has excellent piezoelectric properties. It is clear that the ultrasonic probe using this method shows excellent performance.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、従来のPZT系セラ
ミクスを用いるより製造が容易であり、かつ高性能な複
合圧電体を用いた超音波探触子を得ることができる。
As described above, according to the present invention, it is possible to obtain an ultrasonic probe using a composite piezoelectric material that is easier to manufacture and has higher performance than using conventional PZT ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第11図は複合圧電体の概念を示す図、第2図は本発明
の一実施例の製造工程の一部を示す図、第21・・・S
bSI針状結晶、31・・・水そう、32・・・探触子
、33・・・反射体、34・・・印加パルス、35・・
・超音波パルス、41・・・フェライト基板、42・・
・ニオブ酸リチウム単結晶。
Fig. 11 is a diagram showing the concept of a composite piezoelectric body, Fig. 2 is a diagram showing a part of the manufacturing process of an embodiment of the present invention, Fig. 21...S
bSI needle-shaped crystal, 31... water sore, 32... probe, 33... reflector, 34... applied pulse, 35...
・Ultrasonic pulse, 41... Ferrite substrate, 42...
・Lithium niobate single crystal.

Claims (1)

【特許請求の範囲】 板状有機物の中に多数の硫沃化アンチモン SbSIの針状結晶を埋め込んだ構造の複合圧電体およ
びそれを用いた超音波探触子。
[Claims] A composite piezoelectric material having a structure in which a large number of needle-like crystals of antimony sulfide SbSI are embedded in a plate-like organic material, and an ultrasonic probe using the same.
JP59174981A 1984-08-24 1984-08-24 Ultrasonic probe Pending JPS6153900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174981A JPS6153900A (en) 1984-08-24 1984-08-24 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174981A JPS6153900A (en) 1984-08-24 1984-08-24 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS6153900A true JPS6153900A (en) 1986-03-17

Family

ID=15988130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174981A Pending JPS6153900A (en) 1984-08-24 1984-08-24 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6153900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281599A (en) * 1986-05-29 1987-12-07 Shimadzu Corp Ultrasonic probe
JPH01166699A (en) * 1987-12-22 1989-06-30 Nippon Dempa Kogyo Co Ltd Manufacture of composite piezoelectric plate
JPH01168198A (en) * 1987-12-24 1989-07-03 Nippon Dempa Kogyo Co Ltd Manufacture of ultrasonic probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281599A (en) * 1986-05-29 1987-12-07 Shimadzu Corp Ultrasonic probe
JPH01166699A (en) * 1987-12-22 1989-06-30 Nippon Dempa Kogyo Co Ltd Manufacture of composite piezoelectric plate
JPH01168198A (en) * 1987-12-24 1989-07-03 Nippon Dempa Kogyo Co Ltd Manufacture of ultrasonic probe

Similar Documents

Publication Publication Date Title
Shung et al. Piezoelectric materials for high frequency medical imaging applications: A review
Cheng et al. Single crystal PMN-0.33 PT/epoxy 1-3 composites for ultrasonic transducer applications
Jiang et al. Fabrication of a (K, Na) NbO3-based lead-free 1-3 piezocomposite for high-sensitivity ultrasonic transducers application
Zhou et al. Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications
US5135295A (en) Fiber-optic piezoelectric devices
JPH0239251B2 (en)
JPH0553360B2 (en)
CN103041978A (en) Focusing ultrasonic transducer and producing method thereof
Saitoh et al. A 20 MHz single-element ultrasonic probe using 0.91 Pb (Zn/sub 1/3/Nb/sub 2/3/) O/sub 3/-0.09 PbTiO/sub 3/single crystal
US20100001620A1 (en) Microstructure of perovskite-type oxide single crystal and method of manufacturing the same, composite piezoelectric material, piezoelectric vibrator, ultrasonic probe, and ultrasonic diagnostic apparatus
JP3589482B2 (en) Piezoelectric vibrator
JPS6153900A (en) Ultrasonic probe
US2669666A (en) Piezoelectric transducer
JPS5821883A (en) Manufacture of composite piezoelectric material
Saitoh et al. Single-element ultrasonic probe using PZN-PT single crystal
EP1496553B1 (en) Composite piezoelectric body
JP2001025094A (en) 1-3 compound piezoelectric body
Lu et al. Single crystals vs. PZT ceramics for medical ultrasound applications
JP3943731B2 (en) Piezoelectric plate for ultrasonic transducer and manufacturing method thereof
Tian et al. Piezoelectric crystal composite for high frequency ultrasound application
Ritter et al. 1-3 single-crystal composites for ultrasonic transducer arrays
Nakamura et al. Electromechanical coupling factor of KNbO/sub 3/single crystal
Kari et al. Investigation of potassium niobate as an ultrasonic transducer material
JPS6173409A (en) Elastic surface wave device
Kim et al. Lead-free Piezoelectric Composite with Configurable Material Properties by Interdigital Pair-bonding