JPS6153830B2 - - Google Patents

Info

Publication number
JPS6153830B2
JPS6153830B2 JP56061417A JP6141781A JPS6153830B2 JP S6153830 B2 JPS6153830 B2 JP S6153830B2 JP 56061417 A JP56061417 A JP 56061417A JP 6141781 A JP6141781 A JP 6141781A JP S6153830 B2 JPS6153830 B2 JP S6153830B2
Authority
JP
Japan
Prior art keywords
platinum
carbon
electrode
carbon plate
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56061417A
Other languages
Japanese (ja)
Other versions
JPS57176671A (en
Inventor
Masashi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56061417A priority Critical patent/JPS57176671A/en
Publication of JPS57176671A publication Critical patent/JPS57176671A/en
Publication of JPS6153830B2 publication Critical patent/JPS6153830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 この発明は、燃料電池用カーボン電極の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a carbon electrode for a fuel cell.

従来の燃料電池、特にメタノールを用いた酸性
燃料電池においては、メタノール極として例えば
特開昭54―154048号公報に記載されているよう
に、多孔質カーボン板に白金を含浸法により薄く
コーテングしたもの、あるいはカーボン粉末と結
着剤としてポリ四フツ化エチレン(商品名:テフ
ロン)粉末とを混合・成型し、これを焼成したも
のに白金を含浸コーテイングしたものが多く用い
られている。
In conventional fuel cells, especially acid fuel cells using methanol, the methanol electrode is a porous carbon plate coated thinly with platinum by an impregnation method, as described in JP-A No. 54-154048. Alternatively, a mixture of carbon powder and polytetrafluoroethylene (trade name: Teflon) powder as a binder is mixed and molded, and then fired and coated with platinum impregnation.

しかしながら、このような従来の燃料電池用カ
ーボン電極の製造方法にあつては、まず、多孔質
カーボン板を用いた場合にその伝導性担体として
の表面積が小さく、それに伴ない付着した白金の
表面積も小となり、電極板としてのメタノールの
陽極酸化活性は小さいという問題点を有し、ま
た、カーボン粉末をテフロン粉末で結着して板状
に製造して白金を付着させたものにあつては、テ
フロン上にも白金が付着し、この白金は電極の触
媒として働らかず無駄であるという問題点を有し
ていた。したがつて、カーボンの表面積を増大
し、しかもこのカーボン板に付着する白金はすべ
て電極の触媒として有効に働くように付着させる
ことが燃料電池の実用化にあたつて重要な技術課
題である。
However, in the conventional manufacturing method of carbon electrodes for fuel cells, firstly, when a porous carbon plate is used, its surface area as a conductive carrier is small, and the surface area of the attached platinum is also small. There is a problem that the anodic oxidation activity of methanol as an electrode plate is small, and when carbon powder is bound with Teflon powder and manufactured into a plate shape and platinum is attached, There was a problem in that platinum also adhered to the Teflon, and this platinum did not work as a catalyst in the electrode and was wasted. Therefore, increasing the surface area of carbon and ensuring that all of the platinum attached to the carbon plate acts effectively as an electrode catalyst is an important technical issue for the practical application of fuel cells.

この発明は、このような従来の問題点に着目し
てなされたもので、多孔質カーボンの表面にあら
かじめ白金を付着させたのち、これを電極として
電解質水溶液中で電気化学的に酸化・還元を行な
うことによつてカーボン表面を浸蝕多孔質化させ
ることによりカーボンの表面積を増大させ、次い
で触媒を付着することにより上記問題点を解決す
ることを目的としている。ここで、あらかじめ付
着する白金は、後で付着する触媒の量よりは少な
くて十分な効果が得られる。
This invention was made by focusing on these conventional problems, and involves attaching platinum to the surface of porous carbon in advance, and then electrochemically oxidizing and reducing it in an electrolyte aqueous solution using this as an electrode. The purpose of this method is to increase the surface area of the carbon by eroding the surface of the carbon and making it porous, and then attaching a catalyst to solve the above-mentioned problems. Here, the amount of platinum deposited in advance is smaller than the amount of catalyst deposited later, and a sufficient effect can be obtained.

以下、この発明を実施例に基づいて説明する。
カーボン板の表面積の増大は次に示す2つの段階
より行なう。すなわち、まず第一に、多孔質のカ
ーボン板(例えば日本カーボン(株)製のカーボンブ
ラツクを主成分とした焼結板;気孔率40%)表面
に微量に白金を含浸コーテイングする段階、次い
で第二にこれを電極板として電解質水溶液中で電
気化学的に酸化・還元をくりかえす段階とよりな
る。
Hereinafter, this invention will be explained based on examples.
The surface area of the carbon plate is increased in the following two steps. That is, first of all, the surface of a porous carbon plate (for example, a sintered plate mainly composed of carbon black manufactured by Nippon Carbon Co., Ltd.; porosity 40%) is impregnated with a trace amount of platinum and coated. The second step involves repeating electrochemical oxidation and reduction using this as an electrode plate in an electrolyte aqueous solution.

さらに詳しくは、まず第一の段階では上記カー
ボン板を白金濃度として10g/の塩化白金酸水
溶液(80℃)に1分間含浸し、引きつづき乾燥後
10重量%KOH水溶液(25℃)に3分程度浸すこ
とによつて白金を水に不溶性の白金化合物として
カーボン板表面に固定する。次いで、100%抱水
ヒドラジン(25℃)に30分間浸漬し、前記白金化
合物を還元して白金とし、カーボン板に固定す
る。こうすることによつて、カーボンの見かけの
表面積1cm2当り0.05〜0.08mg程度の白金を付着す
る。次に、第二段階では、この微量に白金が付着
されたカーボン板を電極として10重量%硫酸水溶
液中において、この電極を電気化学的に酸化・還
元する。すなわち、カーボン電極に三角波状の電
位を印加する。ここで印加する電位は50mVから
1800mV(rhe:可逆水素電極電位規準)の間で
50mV/secの速度で走査し、50サイクル印加し
た。次いで白金触媒工程に移る。すなわち、かか
る処理をしたカーボン板を80℃の塩化白金酸水溶
液(濃度100g/l)に1分間浸漬し、次いで乾
燥した後10重量%のKOH水溶液(25℃)に約3
分間浸漬し、白金を水に不溶性の白金化合物とし
てカーボン板の表面に固定する。このカーボン板
を100%抱水ヒドラジン(25℃)に30分間浸漬
し、白金化合物を還元して白金として固定する。
More specifically, in the first step, the above carbon plate was immersed in an aqueous solution of chloroplatinic acid (80°C) with a platinum concentration of 10 g/min for 1 minute, and then dried.
Platinum is fixed to the surface of the carbon plate as a water-insoluble platinum compound by immersing it in a 10% by weight KOH aqueous solution (25°C) for about 3 minutes. Next, it is immersed in 100% hydrazine hydrate (25°C) for 30 minutes to reduce the platinum compound to platinum, which is then fixed on a carbon plate. By doing this, approximately 0.05 to 0.08 mg of platinum is deposited per 1 cm 2 of the apparent surface area of the carbon. Next, in the second step, the carbon plate to which a trace amount of platinum is attached is used as an electrode, and this electrode is electrochemically oxidized and reduced in a 10% by weight sulfuric acid aqueous solution. That is, a triangular wave potential is applied to the carbon electrode. The potential applied here starts from 50mV.
between 1800mV (rhe: reversible hydrogen electrode potential standard)
The voltage was scanned at a rate of 50 mV/sec and applied for 50 cycles. Next, proceed to the platinum catalyst step. That is, the carbon plate thus treated was immersed in a chloroplatinic acid aqueous solution (concentration 100 g/l) at 80°C for 1 minute, then dried and then soaked in a 10% by weight KOH aqueous solution (25°C) for about 3 minutes.
Platinum is fixed to the surface of the carbon plate as a water-insoluble platinum compound by immersion for a minute. This carbon plate is immersed in 100% hydrazine hydrate (25°C) for 30 minutes to reduce the platinum compound and fix it as platinum.

一方、比較のために前記実施例に用いたと同じ
カーボン板を従来の方法で、換言すれば微量の白
金を付着して酸化還元するという工程を経ずして
カーボン板にいきなり白金触媒工程で白金を付着
したものを作成した。
On the other hand, for comparison, the same carbon plate used in the previous example was used in the conventional method, in other words, without going through the process of attaching a small amount of platinum and oxidation-reduction, the carbon plate was suddenly coated with platinum using a platinum catalyst process. I created one with .

試験例 前述の実施例のカーボン板(以下、本発明電極
という)と比較のために作成したカーボン板(以
下、比較例電極という)の白金の表面積を測定し
た。この測定は、白金原子1個に水素原子が1個
吸着されることを利用し、その吸着させた水素を
イオン化させるのに要する電気量によつて表面積
を表わした。その結果、カーボン板の見かけの表
面積1cm2当り比較例電極では20mCであり、これ
に対し本発明電極では80mCと比較例電極の4倍
の表面積を得ることができた。
Test Example The surface area of platinum was measured on the carbon plate of the above-described example (hereinafter referred to as the electrode of the present invention) and the carbon plate prepared for comparison (hereinafter referred to as the comparative example electrode). This measurement utilized the fact that one hydrogen atom was adsorbed to one platinum atom, and the surface area was expressed by the amount of electricity required to ionize the adsorbed hydrogen. As a result, the electrode of the comparative example had a surface area of 20 mC per cm 2 of the apparent surface area of the carbon plate, whereas the electrode of the present invention had a surface area of 80 mC, four times that of the electrode of the comparative example.

これらの本発明電極と比較例電極を用いて各々
通常の構造のメタノール燃料電池を組立てた。そ
して、電解液として1M―H2SO4を用い、当該電
解液に燃料としてCH3OHを電解液1当り1.3モ
ル溶かした。
Using these electrodes of the present invention and comparative electrodes, methanol fuel cells each having a conventional structure were assembled. Then, 1M-H 2 SO 4 was used as the electrolytic solution, and 1.3 mol of CH 3 OH was dissolved in the electrolytic solution as a fuel per 1 electrolytic solution.

かかる燃料電池に負荷を接続し、出力電圧を
0.4Vとした。このとき得られる電流を測定した
ところ、本発明電極では電極のみかけの面積1cm2
当り500μAであつた。これは比較例電極の30μ
Aに比較して約27倍も多いという結果であつた。
Connect a load to such a fuel cell and set the output voltage to
It was set to 0.4V. When the current obtained at this time was measured, it was found that in the electrode of the present invention, the apparent area of the electrode was 1 cm 2
It was 500μA per hit. This is the 30μ of the comparative example electrode.
The result was about 27 times more than A.

すなわち、本発明の方法では高性能の燃料電池
用カーボン電極を作ることができるという効果が
得られる。
That is, the method of the present invention has the effect that a high-performance carbon electrode for fuel cells can be produced.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質カーボンの表面にあらかじめ白金を付
着させ、ついで前記白金の付着したカーボン電極
表面を酸化・還元処理し、次いで触媒を付着して
なる燃料電池用カーボン電極の製造方法。
1. A method for manufacturing a carbon electrode for a fuel cell, which comprises depositing platinum on the surface of porous carbon in advance, then subjecting the carbon electrode surface to which the platinum has been deposited to oxidation/reduction treatment, and then depositing a catalyst.
JP56061417A 1981-04-24 1981-04-24 Manufacture of carbon electrode for fuel cell Granted JPS57176671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56061417A JPS57176671A (en) 1981-04-24 1981-04-24 Manufacture of carbon electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56061417A JPS57176671A (en) 1981-04-24 1981-04-24 Manufacture of carbon electrode for fuel cell

Publications (2)

Publication Number Publication Date
JPS57176671A JPS57176671A (en) 1982-10-30
JPS6153830B2 true JPS6153830B2 (en) 1986-11-19

Family

ID=13170499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56061417A Granted JPS57176671A (en) 1981-04-24 1981-04-24 Manufacture of carbon electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS57176671A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507443A1 (en) * 1985-03-02 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
US6153323A (en) * 1998-10-16 2000-11-28 Ballard Power Systems Inc. Electrode treatment method for improving performance in liquid feed fuel cells

Also Published As

Publication number Publication date
JPS57176671A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
Watanabe et al. Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells
Gloaguen et al. Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
US20020034676A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
JPH05129023A (en) Improved catalyst material
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JP2836275B2 (en) Method for producing catalyst for liquid fuel cell and method for producing electrode thereof
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
JP2005327721A (en) Catalyst for fuel cell and fuel cell including this
JPH0822827A (en) Fuel cell electrode and its manufacture
US3892592A (en) Method of manufacturing electrodes for fuel cells
Pavese et al. Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd (II) ions
JPS6153830B2 (en)
US3284240A (en) Cells for generating electrical energy employing a hydrogen peroxide electrolyte in contact with an improved platinum electrode
JP2000012041A (en) Fuel cell electrode and its manufacture
CN114583183A (en) Acidic glucose fuel cell electrode and preparation method thereof
US3468717A (en) Electrodes having an intimate mixture of platinum and a second metal
JP2775771B2 (en) Manufacturing method of fuel electrode catalyst for liquid fuel cell
Kao et al. Electrochemical oxidation of arsenious acid at a platinum electrode
US3802922A (en) Stabilization of nickel boride catalyst in potassium hydroxide electrolytes
US3522094A (en) Electrode including hydrophobic polymer,method of preparation and fuel cell therewith
Woods Specific activity of platinum for the electrocatalytic oxidation of acetate
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
US3737344A (en) Process for increasing the activity of porous fuel cell electrodes
US3258362A (en) Method of producing a silver oxide electrode structure