JPS6153767A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS6153767A
JPS6153767A JP59175188A JP17518884A JPS6153767A JP S6153767 A JPS6153767 A JP S6153767A JP 59175188 A JP59175188 A JP 59175188A JP 17518884 A JP17518884 A JP 17518884A JP S6153767 A JPS6153767 A JP S6153767A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
spectral sensitivity
conversion element
sensitivity characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59175188A
Other languages
Japanese (ja)
Other versions
JPH0533543B2 (en
Inventor
Setsuo Kotado
古田土 節夫
Toshihiko Miyakoshi
宮越 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP59175188A priority Critical patent/JPS6153767A/en
Publication of JPS6153767A publication Critical patent/JPS6153767A/en
Publication of JPH0533543B2 publication Critical patent/JPH0533543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

PURPOSE:To obtain a photoelectric conversion element having uniform spectral sensitivity characteristics over a wide wavelength range, by providing first and second photo diode arrays whose ratio of light-receiving area is approximately reciprocal of the ratio between first and second spectral sensitivity characteristics. CONSTITUTION:A first photo diode array 3 of a P-I-N structure having first spectral sensitivity characteristics and formed on a substrate 1, and a second photo diode array 4 of a P-I-N structure having second spectral sensitivity characteristics are arranged alternately in honeycomb form. Each P type layer in these arrays 3 and 4 is connected with a conductive film 2, while each N type layer is connected with a conductive film 6. Light is introduced to I-type section through the P or N type layer. The ratio of light-receiving area between the arrays 3 and 4 is approximaely reciprocal of the ratio of the first spectral sensitivity characteristics to the second spectral sensitivity characteristics.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体の接合を利用した光電変換素子に関する
。さらに詳述すれば、光電変換素子として、使用する半
導体材料が材料固有の分光感度特性を有することに着目
して、異なった分光感度特性を有する半導体からなる少
なくとも2つの種類の光電変換素子を組み合わせて同一
基板上に並置することによシ、波長検出感度が広い波長
範囲にわたシはぼ一様な特性を示すようにした光電変換
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photoelectric conversion element using semiconductor junctions. More specifically, focusing on the fact that the semiconductor material used in the photoelectric conversion element has its own spectral sensitivity characteristics, at least two types of photoelectric conversion elements made of semiconductors having different spectral sensitivity characteristics are combined. The present invention relates to a photoelectric conversion element in which wavelength detection sensitivity exhibits approximately uniform characteristics over a wide wavelength range by being arranged side by side on the same substrate.

〔従来技術とその問題点〕[Prior art and its problems]

従来、光電変換素子は数多〈発明されてきた。 Conventionally, many photoelectric conversion elements have been invented.

例えば、光電子放出効果を利用した光電子増倍管(ホト
マル)がおり、その光電子放出面には、C3I 、 C
gTe + 5bC3などが使用されているが、一般に
高電圧、真空ガラス容器を必要とするために小型化、安
価な光電変換素子にはなシにくく、また光検出感度は波
長に大きく依存する。
For example, there is a photomultiplier tube (photomultiplier) that uses the photoelectron emission effect, and its photoelectron emission surface has C3I, C
gTe + 5bC3 and the like have been used, but they generally require high voltage and a vacuum glass container, making them difficult to use as small, inexpensive photoelectric conversion elements, and the photodetection sensitivity largely depends on the wavelength.

また、光起電力効果を利用した光電変換素子には、ホト
ダイオード、ホトトランジスタなどがあり、特に、光通
信用の光電変換素子としてはp〜i−nホトダイオード
や、アバランシェホトダイオードなどが用いられる。p
−1−nホトダイオードは、PN接合の間に高純度(真
性;工)層を挿入して接合容量を小さくし、光吸収層を
拡大することにより高感度化したものであシ、またアバ
ランシェホトダイオードは、半導体中のなだれ現象を利
用したホトダイオードである。PN接合あるいはジット
キー接合を逆バイヤスし、10 V /an程度の高電
界中で光照射により発生したキャリヤを加速し、原子と
衝突させ電子−正孔対を発生させる。再び、これらのキ
ャリヤを加速し、衝突電子を繰り返して増幅作用を得て
いる。また、逆バイヤスの制御により増幅率を変えるこ
とができるため大きなダイナミックレンジを祷ることが
できる。ホトダイオードでは、一般に、Si 、 Ge
Further, photoelectric conversion elements that utilize the photovoltaic effect include photodiodes, phototransistors, and the like, and in particular, p-i-n photodiodes, avalanche photodiodes, and the like are used as photoelectric conversion elements for optical communication. p
-1-n photodiodes have high sensitivity by inserting a high purity (intrinsic) layer between the PN junctions to reduce the junction capacitance and enlarging the light absorption layer, and avalanche photodiodes. is a photodiode that utilizes the avalanche phenomenon in semiconductors. The PN junction or the Jittky junction is reverse biased, and carriers generated by light irradiation are accelerated in a high electric field of about 10 V/an and collide with atoms to generate electron-hole pairs. Again, these carriers are accelerated and the collision of electrons is repeated to obtain an amplification effect. Furthermore, since the amplification factor can be changed by controlling the reverse bias, a large dynamic range can be achieved. Photodiodes generally use Si, Ge
.

IMF 、 G&AgP + 11G1A3 + 11
GaAaP +  などを用いているが、異なった禁制
帯幅の半導体を組み合わせて同一基板上にアレイを形成
していないために、波長に対する分光感度特性は狭く、
より広い波長に対して検出を行う場合には、異なった分
光感度特性の光電変換素子を複数個使用しなければなら
ない。また、異なった分光感度特注の光電変換素子を複
数個使用する場合には、各々の検出感度、   。
IMF, G&AgP + 11G1A3 + 11
GaAaP + etc. are used, but because semiconductors with different forbidden band widths are not combined to form an array on the same substrate, the spectral sensitivity characteristics with respect to wavelength are narrow.
When performing detection over a wider range of wavelengths, it is necessary to use a plurality of photoelectric conversion elements with different spectral sensitivity characteristics. In addition, when using multiple custom-made photoelectric conversion elements with different spectral sensitivities, the detection sensitivity of each,

応答特性、暗電流を補正する必要がある。It is necessary to correct the response characteristics and dark current.

また、分光感度が波長に依存しない光電変換素子として
は、光吸収層に全黒を用いた熱電対形センサや光吸収に
よる昇温効果を利用した焦電素子があるが、いずれも熱
電変換方式を用いているので、検出感度・応答特性に限
界があシ、高感度・高速応答を示す光電変換素子は得ら
れていない。
In addition, as photoelectric conversion elements whose spectral sensitivity does not depend on wavelength, there are thermocouple type sensors that use all black in the light absorption layer and pyroelectric elements that utilize the temperature raising effect due to light absorption, but both of them use thermoelectric conversion. , there are limits to detection sensitivity and response characteristics, and a photoelectric conversion element that exhibits high sensitivity and high-speed response has not been obtained.

〔発明の要約・発明を構成する手段〕 。[Summary of the invention/Means constituting the invention].

本発明は上記先行技術が備えていた欠点を除去し、広い
波長範囲で分光感度特性が一様な光電変換素子を提供す
ることを目的としている。本発明では、異なった分光感
度特性を有する、p−4−%−n層(または、n−1−
p層)構造のホトダイオードを、少なくとも2種類組み
合わせ、しかも、それらホトダイオードを複数個配列し
たホトダイオードアレイを宿成し、この時、各々のホト
ダイオードの分光感度特性の和が異なった波長に対して
、全体でほぼ一様になるように光電変換すべき光を受け
る範囲、すなわち受光面積を分配する構成とし、この構
成によυ応答特性、暗電流の補正の必要のない光電変換
素子を提供するものである。
The present invention aims to eliminate the drawbacks of the above-mentioned prior art and provide a photoelectric conversion element with uniform spectral sensitivity characteristics over a wide wavelength range. In the present invention, the p-4-%-n layer (or n-1-%
A photodiode array is formed by combining at least two types of photodiodes with a p-layer (p-layer) structure and arranging a plurality of these photodiodes. At this time, the sum of the spectral sensitivity characteristics of each photodiode is This structure distributes the range of light to be photoelectrically converted, that is, the light receiving area, so that it is almost uniform at 100 nm, and this structure provides a photoelectric conversion element that does not require correction of υ response characteristics and dark current. be.

〔実施例〕〔Example〕

第1図及び第2図は本発明による光電変換素子の一実施
例(第1実施例)の構成を示す図であり、第1図は平面
図、第2図は第1図の線x−Xにおける断面図をそれぞ
れ示す。両図とも発明の構成を明示するために、模式的
に描いである。
1 and 2 are diagrams showing the configuration of an embodiment (first embodiment) of a photoelectric conversion element according to the present invention, in which FIG. 1 is a plan view and FIG. 2 is a line x-- A cross-sectional view at X is shown respectively. Both figures are schematically drawn to clearly illustrate the structure of the invention.

図中、1は基板、2は導電膜、3は第1の分光感度特性
を有するp−1−n層(またはn−%−i〜p層)構造
の第1の(柵類の)ホトダイオードアレイ、4は第2の
分光感度特性を有する第2の(拙類の)ホトダイオード
アレイ、5は素子分離用絶縁膜、6は導電膜、7・8は
取シ出し用電極であり、1は本発明の光電変換素子の全
体を相称する符号である。第1のホトダイオードアレイ
と第2のホトダイオードアレイは、図示の実施例では、
交互にハニカム状に配列されている。この配列の仕方は
全体の分布が均一で、しかも稠密に配列できる一つの例
である。すなわち、被測定光ビーム20・21が光電変
換素子9の受光面積よシ一般に小さいので、ビーム位置
による感度のバラツキをなくすためによい。矢印20.
21は光ビームの入射方向を示す。第5図は本実施例の
分光感度特性を示す。なお、図中特性曲線A、Bはそれ
ぞれ第1の種類及び第2の種類のホトダイオードの特性
を示す。両者の組み合せによシ広い波長範囲で平坦な特
性が得られる。基板1に不透明基板を用いた場合には、
光ビームは矢印20の方向よシ入射され、透明導電膜6
を透してホトダイオードアレイ3.4によυ検知される
。一方、基板1に透明基板、例えば透明石英ガラスを用
いた場合には、矢印21の方向より光ビームを入射させ
ることができる。この場合、透明導電膜6の代わりにM
等の不透明金属膜を用いることができる。また、基板、
各導電膜に透明なものを用いれば、入射された光ビーム
の一部を吸収して入射された光ビームの光量を検出し、
吸収されなかった大部分の光ビームを透過させる、いわ
ゆるブC透過形光電変換素子を構成することができる。
In the figure, 1 is a substrate, 2 is a conductive film, and 3 is a first (fence type) photodiode having a p-1-n layer (or n-%-i to p layer) structure having a first spectral sensitivity characteristic. 4 is a second (our kind) photodiode array having second spectral sensitivity characteristics; 5 is an insulating film for element isolation; 6 is a conductive film; 7 and 8 are extraction electrodes; These are symbols that represent the entire photoelectric conversion element of the present invention. In the illustrated embodiment, the first photodiode array and the second photodiode array are
They are arranged in an alternating honeycomb pattern. This arrangement is an example of a uniform overall distribution and a dense arrangement. That is, since the light beams 20 and 21 to be measured are generally smaller than the light receiving area of the photoelectric conversion element 9, this is good for eliminating variations in sensitivity depending on the beam position. Arrow 20.
21 indicates the direction of incidence of the light beam. FIG. 5 shows the spectral sensitivity characteristics of this example. Note that characteristic curves A and B in the figure represent the characteristics of the first type and second type of photodiode, respectively. By combining the two, flat characteristics can be obtained over a wide wavelength range. When an opaque substrate is used as the substrate 1,
The light beam is incident in the direction of the arrow 20, and the transparent conductive film 6
υ is detected by the photodiode array 3.4 through the photodiode array 3.4. On the other hand, when a transparent substrate such as transparent quartz glass is used as the substrate 1, the light beam can be incident from the direction of the arrow 21. In this case, instead of the transparent conductive film 6, M
An opaque metal film such as can be used. In addition, the substrate,
If a transparent conductive film is used for each conductive film, a portion of the incident light beam will be absorbed and the amount of the incident light beam will be detected.
A so-called B-C transmission type photoelectric conversion element that transmits most of the light beam that is not absorbed can be constructed.

この光透過形光電変換素子は、入射された光ビームの一
部(1〜10チ)を吸収することによシ光ビームの全光
量を検出するとともに、大部分の光量(90〜99チ)
は光電変換素子を透過するので、そのまま計測用信号や
レーザ加工用光ビームとして使用できる。しかも、この
光電変換素子を透過した後の光ビームは光量が既知なの
で、高精度な計測には非常に有用となる。いいかえれば
、従来方式の光分波用ミラーと光検出器を一体化させた
ものを構成できる。
This light transmission type photoelectric conversion element detects the total amount of light beam by absorbing a part (1 to 10 inches) of the incident light beam, and detects the majority of the light amount (90 to 99 inches).
Since it passes through the photoelectric conversion element, it can be used as it is as a measurement signal or a light beam for laser processing. Moreover, since the light intensity of the light beam after passing through this photoelectric conversion element is known, it is extremely useful for highly accurate measurement. In other words, it is possible to configure a conventional optical demultiplexing mirror and a photodetector integrated together.

第3図および第4図は本発明による他の一実施例(第2
実施例)を示す図で、第4図は第3図の線X−X’にお
ける断面を示す図である。両図とも発明の構成を明示す
るために模式的に描いである。
FIGS. 3 and 4 show another embodiment (second embodiment) of the present invention.
FIG. 4 is a cross-sectional view taken along line XX' in FIG. 3. Both figures are schematically drawn to clearly illustrate the structure of the invention.

図中、11はp (n )形の第1の半導体基板、12
は基板用オーミック電極、13は第1の半導体薄膜層よ
りなるホトダイオードアレイ、14は第2の半導体薄膜
層よシなるホトダイオードアレイ、15は素子分離用絶
縁膜、1Gは透明導電膜、17 、18は各取り出し電
極をそれぞれ示す。第2の半導体薄膜よりなるホトダイ
オードアレイは第1の半導体基板の一部を除去した凹部
、あるいは第1の半導体基板上に設けられる。作用効果
については第1実施例と類似である。
In the figure, 11 is a p (n) type first semiconductor substrate, 12
13 is an ohmic electrode for a substrate, 13 is a photodiode array made of a first semiconductor thin film layer, 14 is a photodiode array made of a second semiconductor thin film layer, 15 is an insulating film for element isolation, 1G is a transparent conductive film, 17, 18 indicates each extraction electrode. A photodiode array made of a second semiconductor thin film is provided in a recessed portion of the first semiconductor substrate or on the first semiconductor substrate. The operation and effect are similar to the first embodiment.

次に製造方法について述べる。よく研磨された透明又は
不透明基板に導電膜を形成し、第1のホトダイオードア
レイ用のp−1−n層を堆積する。
Next, the manufacturing method will be described. A conductive film is formed on a well-polished transparent or opaque substrate, and a p-1-n layer for the first photodiode array is deposited.

そして、不要部を除去後、第2のホトダイオードアレイ
用のp−1−n層を堆積する。さらに素子分離用絶縁膜
を堆積後、第1および第2のホトダイオードアレイ用の
各p−1−n層に電極用導電膜を堆積する。最後に取シ
出し′rM、極を設ける。
After removing unnecessary parts, a p-1-n layer for a second photodiode array is deposited. Furthermore, after depositing an insulating film for element isolation, a conductive film for electrodes is deposited on each p-1-n layer for the first and second photodiode arrays. Finally, the extraction 'rM and poles are provided.

また、第3図及び第4図で示した第2実施例の製造方法
としては、p+(n層)形の第1の半導体基板上にi 
−n層層を成長させ、第1のホトダイオードアレイ用p
+−1−n+層を形成する。そして、不要部を除去して
凹部を形成し、該凹部にWJ2のホトダイオードアレイ
用の第2の半導体薄膜よりなるp”−1−n層層を形成
する。この場合、第1の半導体のp−h層と第2の半導
体薄膜のp+層はへテロ接合となるのでオーミック性を
得るため導電膜を挿入する(図示せず)。また、素子分
離用絶縁膜を堆積後、電極用導電膜を形成し、最後に第
1の半導体のp+層にオーミック電極を設ける。第1お
よび第2の半導体薄膜はMOCVD法、MBE法、プラ
ズマCVD法、光CVD法等を用いて低温で作成できる
。シリコン窒化膜やシリコン鼓化膜で構成される素子分
離用絶縁膜の形成法としては、低温で絶縁性に秀れ、か
つ、ステップカバレッジのよいプラズマCVD法やイオ
ンプレーテング法を用いて堆積させることができる。導
電膜としては、I 、T、OやSnO□膜よυなる透明
導電膜とAt 、 NiCr/A、 、 W 、 Pj
Si21 Ag等の金属薄膜がそれぞれの用途に応じて
用いられる。導電膜の形成には真空蒸着法、イオンプレ
ーテング法、スパッタ法を用いる。ダイオードアレイを
構成するバター二/グ法としてはホトエツチング法やレ
ーザビームスクライブ法を用いる。なお、以上の実施例
の説明においては、2拙類の異なった分光感度特性を有
するホトダイオードアレイの配列よシなる光M、変換素
子について説明したが、検出波長域、検出感度の平坦性
等の目的に応じて、3種類以上の異なった分光感度特性
を有するホトダイオードアレイを配列した光電変換素子
を構成できる。
Further, as a manufacturing method of the second embodiment shown in FIGS. 3 and 4, an i
- grow an n-layer layer, p for the first photodiode array;
+-1-n+ layer is formed. Then, unnecessary parts are removed to form a recessed part, and a p''-1-n layer made of a second semiconductor thin film for the photodiode array of WJ2 is formed in the recessed part. Since the -h layer and the p+ layer of the second semiconductor thin film form a heterojunction, a conductive film is inserted to obtain ohmic properties (not shown).Also, after depositing an insulating film for element isolation, a conductive film for electrodes is inserted. Finally, an ohmic electrode is provided on the p+ layer of the first semiconductor.The first and second semiconductor thin films can be formed at low temperatures using MOCVD, MBE, plasma CVD, photo-CVD, or the like. As a method for forming an insulating film for element isolation consisting of a silicon nitride film or a silicon nitride film, it is deposited using the plasma CVD method or ion plating method, which has excellent insulation properties at low temperatures and has good step coverage. The conductive film can be a transparent conductive film such as I, T, O or SnO□ film, and At, NiCr/A, , W, Pj.
Metal thin films such as Si21Ag are used depending on the application. A vacuum evaporation method, an ion plating method, and a sputtering method are used to form the conductive film. A photoetching method or a laser beam scribing method is used as the butter diode method for constructing the diode array. In the explanation of the above embodiments, the light M and the conversion element, which are arrays of photodiode arrays having two different spectral sensitivity characteristics, have been explained. Depending on the purpose, a photoelectric conversion element can be constructed by arranging photodiode arrays having three or more different spectral sensitivity characteristics.

〔効果〕〔effect〕

次に本発明による効果を述べる。 Next, the effects of the present invention will be described.

(1)2種類以上の異なる分光感度特性を有するホトダ
イオードを複数個、交互にハニカム状に配列し、共通の
電極より検出信号を取り出す方式としたので、波長依存
性のない高感度・高速応答を示す光電変換素子を溝底す
ることができた。
(1) Multiple photodiodes with two or more different spectral sensitivity characteristics are arranged alternately in a honeycomb shape, and the detection signal is extracted from a common electrode, achieving high sensitivity and high-speed response without wavelength dependence. We were able to fabricate the photoelectric conversion element shown below.

(2)基板および導電膜に光透過性を示すものを用いる
ことによυ、被測定用光ビームの一部を吸収し、透過し
た光量既知の光ビームを取シ出すことのできる透過形光
電変換素子f、栂成できた。
(2) By using a substrate and a conductive film that exhibits optical transparency, a transmission type photoelectric device can absorb a part of the light beam to be measured and extract a light beam with a known amount of transmitted light. Conversion element f was completed.

(3)ホトエツチング技術に代表される微細加工技術を
用いることができるので、安価で高精度・高信頼性の光
電変換素子を構成できた。
(3) Since microfabrication technology represented by photoetching technology can be used, it is possible to construct a photoelectric conversion element that is inexpensive, highly accurate, and highly reliable.

(4)光企検出部に光起電力効果や光導電効果を用いて
いるので、従来の熱電変換形と比較して、高感度・高速
応答性を有し、かつ検出感度が一様な光電変換素子を構
成できた。
(4) Since the optical sensor uses a photovoltaic effect or a photoconductive effect, it has higher sensitivity and faster response than conventional thermoelectric conversion type, and has uniform detection sensitivity. The conversion element was constructed.

(5)ブe fTの検出原理として光起電力効果を用い
ているので、直流電圧を検出信号として得られるため回
路構成が容易な光量測定装量を構成することができた。
(5) Since the photovoltaic effect is used as the detection principle of fT, it is possible to obtain a direct current voltage as a detection signal, making it possible to construct a light amount measuring device with an easy circuit configuration.

以上述べたように本発明による光電変換素子は、従来の
光電変換素子と比較して幾多の利点を有しているので産
築上の利用効果は太きい。
As described above, the photoelectric conversion element according to the present invention has many advantages compared to conventional photoelectric conversion elements, and therefore has great practical effects in terms of construction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による光電変換素子の一実施
例を示す図で、第2図は第1図の線X−X′における断
面を示す図、第3図及び第4図は本発明による光電変換
素子の他の一実施例を示す図で、第4図は第3図の線x
 −x’における断面を示す図である。第5図は本発明
の第1実施例の特性を示す図である。 図中、1・11は各基板、2・6・16は各導電膜。 3・4・13 @14は各ダイオードアレイ、5・15
は素子分離用絶縁膜、7・8・17・18 は各電極。 9・19は各光電変換素子、12はオー沁り電極を  
1それぞれ示す。 特許出願人   安立電気株式会社 代理人   弁理士 小池 龍太部 115ノ防 謁3巴 ユ 第4ヅ ユ
1 and 2 are diagrams showing one embodiment of a photoelectric conversion element according to the present invention, FIG. 2 is a diagram showing a cross section taken along line X-X' in FIG. 1, and FIGS. FIG. 4 is a diagram showing another embodiment of the photoelectric conversion element according to the present invention, and FIG. 4 is a diagram showing the line x in FIG.
It is a figure which shows the cross section at -x'. FIG. 5 is a diagram showing the characteristics of the first embodiment of the present invention. In the figure, 1 and 11 are each substrate, and 2, 6, and 16 are each conductive film. 3.4.13 @14 is each diode array, 5.15
is an insulating film for element isolation, and 7, 8, 17, and 18 are each electrode. 9 and 19 are each photoelectric conversion element, and 12 is an O-hole electrode.
1 are shown respectively. Patent Applicant Anritsu Electric Co., Ltd. Agent Patent Attorney Ryuta Koike 115 Audience 3 Tomoe 4th Part

Claims (1)

【特許請求の範囲】[Claims] (1)基板(1)と; 該基板上に形成された第1の分光感度特性を有するp−
i−n層(またはn−i−p層)構造の第1のホトダイ
オードアレイ(3)と; 該第1のホトダイオードアレイと並置されて該基板上に
形成された第2の分光感度特性を有するp〜i〜n層(
またはn〜i〜p層)構造の第2のホトダイオードアレ
イ(4)と; 該第1及び第2のホトダイオードアレイ(3、4)の各
p層(またはn層)に接続された第1の導電膜(2)と
; 該第1及び第2のホトダイオードアレイ(3、4)の各
n層(またはp層)に接続された第2の導電膜(6)と
から構成され、p層またはn層を通って光をi層に導く
ようにされた光電変換素子であって、該第1及び第2の
ホトダイオードアレイ(3、4)の受光面積比が該第1
及び第2の分光感度特性比のほぼ逆数となるようにされ
ていることを特徴とする波長検出感度特性がほぼ一様な
光電変換素子。(2)前記基板が、第1および第2のホ
トダイオードアレイのp層(またはn層)と一体化され
たp^+(またはn^+)半導体基板であって、それぞ
れ形成されたi〜n層(またはi〜p層)構造の第1及
び第2のホトダイオードアレイから成ることを特徴とす
る特許請求の範囲第1項記載の光電変換素子。
(1) A substrate (1); and a p-
a first photodiode array (3) having an i-n layer (or n-i-p layer) structure; having a second spectral sensitivity characteristic formed on the substrate in juxtaposition with the first photodiode array; p~i~n layer (
a second photodiode array (4) having a structure (or n~i~p layers); A conductive film (2); and a second conductive film (6) connected to each n-layer (or p-layer) of the first and second photodiode arrays (3, 4); A photoelectric conversion element configured to guide light to an i-layer through an n-layer, wherein the light-receiving area ratio of the first and second photodiode arrays (3, 4) is
and a second spectral sensitivity characteristic ratio, the photoelectric conversion element having substantially uniform wavelength detection sensitivity characteristics. (2) The substrate is a p^+ (or n^+) semiconductor substrate integrated with the p layer (or n layer) of the first and second photodiode arrays, and each of the formed i to n 2. The photoelectric conversion element according to claim 1, comprising first and second photodiode arrays having a layer (or i to p layer) structure.
JP59175188A 1984-08-24 1984-08-24 Photoelectric conversion element Granted JPS6153767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59175188A JPS6153767A (en) 1984-08-24 1984-08-24 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59175188A JPS6153767A (en) 1984-08-24 1984-08-24 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS6153767A true JPS6153767A (en) 1986-03-17
JPH0533543B2 JPH0533543B2 (en) 1993-05-19

Family

ID=15991820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59175188A Granted JPS6153767A (en) 1984-08-24 1984-08-24 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6153767A (en)

Also Published As

Publication number Publication date
JPH0533543B2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5589704A (en) Article comprising a Si-based photodetector
CN110752268B (en) Preparation method of MSM photoelectric detector integrated with periodic light trapping structure
EP1280207B1 (en) Semiconductor energy detector
US3858233A (en) Light-receiving semiconductor device
EP0589024A1 (en) Low capacitance x-ray radiation detector
WO2014101601A1 (en) Photoelectric detector and manufacturing method therefor, and radiation detector
KR20000005121A (en) Three colour sensor with a pin or nip series of layers
JPH07221341A (en) Silicon avalanche photodiode for detecting ultraviolet ray
JP2001291853A (en) Semiconductor energy detecting element
JP2661341B2 (en) Semiconductor light receiving element
US20060213551A1 (en) Semiconductor photodetector and method for manufacturing same
JPS6153767A (en) Photoelectric conversion element
JP2931122B2 (en) One-dimensional light position detector
JPH0517492B2 (en)
SE7510418L (en) PHOTO DIODE DETECTOR AND SET FOR ITS MANUFACTURE
US4365259A (en) Radiant energy sensor with reduced optical reflection and blooming
CN113284963B (en) Interdigital guided mode photoelectric detector
JPH03202732A (en) Color sensor
JPS61277024A (en) Light spectrum detector
de Cesare et al. Adjustable threshold a-Si/SiC: H color detectors
JP2676814B2 (en) Multi-type light receiving element
RU2501116C1 (en) Method of measuring diffusion length of minority charge carriers in semiconductors and test structure for implementation thereof
Ryu et al. 24.2: A Novel Amorphous Silicon Phototransistor Array for Name Card Reading
de Cesare et al. Amorphous silicon UV photodetectors with rejection of the visible spectrum
JPH06224459A (en) Photodetector