JPS6153704B2 - - Google Patents

Info

Publication number
JPS6153704B2
JPS6153704B2 JP13545977A JP13545977A JPS6153704B2 JP S6153704 B2 JPS6153704 B2 JP S6153704B2 JP 13545977 A JP13545977 A JP 13545977A JP 13545977 A JP13545977 A JP 13545977A JP S6153704 B2 JPS6153704 B2 JP S6153704B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
crystal cell
substrate
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13545977A
Other languages
Japanese (ja)
Other versions
JPS5468654A (en
Inventor
Jun Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP13545977A priority Critical patent/JPS5468654A/en
Publication of JPS5468654A publication Critical patent/JPS5468654A/en
Publication of JPS6153704B2 publication Critical patent/JPS6153704B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は液晶セルの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a liquid crystal cell.

最近、液晶表示装置として消費電力が少なく、
低電力でも動作可能なツイストネマテイツク型
(TN型)液晶表示装置が小型電子式計算機や電子
時計等の表示装置として用いられている。
Recently, liquid crystal display devices with low power consumption,
Twisted nematic type (TN type) liquid crystal display devices, which can operate with low power, are used as display devices for small electronic calculators, electronic clocks, etc.

すなわち、TN型液晶表示装置は、所定パター
ンの電極が形成されている2枚の電極基板間に、
正の誘電異方法をもつたネマテイツク液晶を液晶
分子の長軸方向が基板面に平行にかつ液晶分子の
配列が基板間で連続的に90゜ねじれた螺旋構造と
なるように封入してなる液晶セルを偏光方向が互
いに直向する一対の偏光板で挾んだ状態で液晶セ
ルの電極に電圧を印加することにより、この電極
間の液晶分子配列方向を変化させて液晶層に光不
透過部を生じさせ、光透過部との明暗により電圧
印加電極のパターン形状に対応する文字,記号,
数字等を表示する構成となつている。
That is, in a TN liquid crystal display device, between two electrode substrates on which electrodes of a predetermined pattern are formed,
A liquid crystal made by enclosing a nematic liquid crystal with a positive dielectric anisotropy so that the long axis direction of the liquid crystal molecules is parallel to the substrate surface and the liquid crystal molecules are arranged in a spiral structure with a continuous 90° twist between the substrates. By applying voltage to the electrodes of the liquid crystal cell while the cell is sandwiched between a pair of polarizing plates whose polarization directions are perpendicular to each other, the orientation direction of liquid crystal molecules between the electrodes is changed, creating a light-opaque area in the liquid crystal layer. The characters, symbols, and symbols corresponding to the pattern shape of the voltage applying electrode are created by
It is configured to display numbers, etc.

ところで、前記液晶セルを製造する一般的な方
法として、従来は、ガラス等の透明基板に酸化ス
ズまたは酸化インジウム等で所定パターンの透明
電極を形成し、この基板の電極形成面全体に二酸
化ケイ素(SiO2)を蒸着またはCVD法により被着
し絶縁膜を形成する。この絶縁膜は液晶と電極面
との化学反応を防止すると共に直流電圧が印加さ
れた場合に抵抗となつて液晶に加わる電圧を下げ
液晶物質の破損を防止するものである。さらにこ
の絶縁膜の上に酸化ケイ素(SiO)を蒸着して配
向処理膜を形成し、その表面を綿などの布でラビ
ングして液晶分子を配向するための配向処理を施
し、こうして構成された2枚の電極基板をスペー
サを介して所定間隙存して対向するように接合固
定し、この間隙に液晶を封入する製造方法があ
る。
By the way, as a general method for manufacturing the liquid crystal cell, conventionally, a transparent electrode of a predetermined pattern is formed using tin oxide or indium oxide on a transparent substrate such as glass, and silicon dioxide ( SiO 2 ) is deposited by vapor deposition or CVD to form an insulating film. This insulating film prevents a chemical reaction between the liquid crystal and the electrode surface, and also acts as a resistance when a DC voltage is applied to reduce the voltage applied to the liquid crystal, thereby preventing damage to the liquid crystal material. Furthermore, silicon oxide (SiO) is vapor-deposited on top of this insulating film to form an alignment treatment film, and the surface is rubbed with cloth such as cotton to perform alignment treatment to align the liquid crystal molecules. There is a manufacturing method in which two electrode substrates are bonded and fixed via a spacer so as to face each other with a predetermined gap therebetween, and liquid crystal is sealed in this gap.

しかしながら、このような液晶セルの製造方法
においては、電極基板の製作において、基板の電
極形成面に蒸着またはCVD法により絶縁膜を形
成し、さらにその上に配向処理膜を蒸着によつて
形成しなければならないために、製造工程数が多
く、またその工程も複雑で作業性及び量産性に劣
り、コスト高にもなつていた。
However, in the manufacturing method of such a liquid crystal cell, in manufacturing the electrode substrate, an insulating film is formed on the electrode forming surface of the substrate by vapor deposition or CVD, and an alignment treatment film is further formed on the insulating film by vapor deposition. As a result, the number of manufacturing steps is large and the steps are complicated, resulting in poor workability and mass productivity, and high costs.

また、このような液晶セルの製造方法に対し、
最近、基板の電極形成面に、絶縁膜兼配向処理膜
として、ポリエステル,ケイ素樹脂,フエノール
樹脂,フツ素樹脂等,ポリイミド樹脂の有機高分
子物質の薄膜を被着し、この被膜を直接ラビング
して配向処理を施すことにより製造工程の簡素化
をはかることが考えられているが、上記樹脂は、
液晶分子の配向性,透明度,基板との密着性,直
流電圧が印加された場合の特性(耐直流性)等の
いずれかが悪い。特にポリイミド樹脂は、着色し
ており、透過率が低いという欠点があつた。
In addition, regarding the manufacturing method of such a liquid crystal cell,
Recently, a thin film of an organic polymer material such as polyester, silicone resin, phenol resin, fluororesin, or polyimide resin has been deposited on the electrode forming surface of the substrate as an insulating film and an alignment treatment film, and this film is directly rubbed. It is considered that the manufacturing process can be simplified by applying an orientation treatment to the resin.
Either the orientation of the liquid crystal molecules, the transparency, the adhesion with the substrate, the characteristics when a DC voltage is applied (DC resistance), etc. are poor. In particular, polyimide resins have the disadvantage of being colored and having low transmittance.

この発明は上記のような実情にかんがみてなさ
れたものであつて、その目的とするところは、着
色がわずかで透明度が高く、かつ耐直流性及び絶
縁膜と基板との密着性においても良好な信頼性の
高い液晶セルを得ることができる液晶セルの製造
方法を提供することにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to provide a material with slight coloring, high transparency, and good direct current resistance and adhesion between the insulating film and the substrate. An object of the present invention is to provide a method for manufacturing a liquid crystal cell that can obtain a highly reliable liquid crystal cell.

以下、この発明の液晶セルの製造方法について
その一実施例を図面に従い説明する。
Hereinafter, one embodiment of the method for manufacturing a liquid crystal cell of the present invention will be described with reference to the drawings.

第1図はこの製造方法により製造された液晶セ
ルを示すもので、1はガラス等の透明絶縁基板、
2はこの基板1上に形成された所定パターンの透
明電極、3は前記基板1の電極形成面全体に被着
されたアミノ系シランからなる下地被膜、4はこ
の下地被膜面に被着されたポリイミドからなる配
向処理膜兼用絶縁被膜であり、この絶縁被膜面に
は液晶分子の長軸方向を配向するための配向処理
が施されており、このように構成された2枚の電
極基板A,Bはスペーサ5を介して組立てられ、
その内部にはネマテイツク液晶が封入されてい
る。
Figure 1 shows a liquid crystal cell manufactured by this manufacturing method, where 1 indicates a transparent insulating substrate such as glass;
2 is a transparent electrode of a predetermined pattern formed on this substrate 1; 3 is a base film made of amino-based silane that is deposited on the entire electrode-forming surface of the substrate 1; and 4 is a base film that is deposited on this base film surface. This is an insulating coating that also serves as an alignment treatment film made of polyimide, and the surface of this insulating coating is subjected to an alignment treatment to align the long axis direction of liquid crystal molecules. B is assembled via spacer 5,
A nematic liquid crystal is sealed inside.

すなわち、この液晶セルは、所定パターンの電
極2が形成された基板1の電極形成面にアミノ系
シランを下地としてポリイミドからなる配向処理
膜兼用絶縁被膜4を形成し、この絶縁膜4の表面
にラビングにより配向処理を施した2枚の電極基
板A,B間に液晶6を封入してなるもので、この
液晶セルは次のような工程で製造する。
That is, in this liquid crystal cell, an insulating coating 4 which also serves as an alignment treatment film and is made of polyimide is formed using amino-based silane as a base on the electrode forming surface of a substrate 1 on which electrodes 2 of a predetermined pattern are formed, and the surface of this insulating film 4 is The liquid crystal cell is formed by sealing a liquid crystal 6 between two electrode substrates A and B that have been subjected to alignment treatment by rubbing, and is manufactured through the following steps.

まず、第2図aに示すようにガラス等の透明基
板1上に所定パターンの電極を酸化スズまたは酸
化インジム等で周知の方法により形成し、この後
この電極2が形成された基板1の上面全体に、ア
ミノ系シラン1重量%を含んだメタノール溶液を
スピンナーで塗布し、空気中において200℃で10
分間焼成して第2図bに示すような下地被膜3を
形成する。この後、前記下地被膜3の上に、東レ
株式会社、東レ電子絶縁コーテイング剤SP―510
(商品名)が樹脂濃度2.5%に稀釈されたポリイミ
ド樹脂溶液をスピンナーで塗布し、真空中または
不活性ガス中において320℃で20分間焼成して第
2図cに示すような絶縁被膜4を形成する。な
お、この絶縁被膜4を前記アミノ系シランからな
る下地被膜3の上に形成したのは、ポリイミド樹
脂は絶縁性が高く耐熱性も良い反面、ガラス等か
らなる基板1との密着性が悪い難点があり、また
一般にポリイミド樹脂は着色されているために、
これを稀釈して透明に近ずけて用いなければなら
ないが、濃度を薄くすると絶縁性及び耐直流性が
悪くなるからである。上記のように、基板1との
密着性が良くまたポリイミドとも相性の良いアミ
ノ系シランをカツプリング剤としてその下地被膜
3の上にポリイミド樹脂を塗布すればポリイミド
絶縁被膜4の密着性を良くすることができる。ま
たアミノ系シランを下地被膜4とすることにより
絶縁性及び耐直流性を高めることができるから、
ポリイミド樹脂の濃度を薄くして着色をおさえる
ことができる。また上記下地被膜3の形成にいて
塗布したアミノ系シランを空気中で焼成したの
は、アミノ系シランを真空中で焼成するとその上
に形成される絶縁被膜4の配向不良を起すからで
ある。なお、アミノ系シランは濃度が高いとそれ
自体が着色するが、この着色性は濃度を薄くする
ことにより無視することができる。さらに上記絶
縁被膜4の形成において塗布したポリイミド樹脂
を真空中または不活性ガス中で焼成したのは、ポ
リイミド樹脂を空気中で焼成すると樹脂濃度がか
なり薄くても、空気中の酸素の影響により着色す
るからであり、ポリイミド樹脂を真空中または不
活性ガス中で焼成すると、酸素の影響がないので
着色は起らない。即ち、空気中で焼成したポリイ
ミド樹脂は、膜厚が1100Åの場合に波長が550nm
以下で分光透過率が低下し、また膜厚が1350Åの
場合に短波長側で分光透過率の低下がみられる
が、これに対して真空中または不活性ガス中で焼
成したポリイミド樹脂は、膜厚1000Åの場合波長
500nm〜400nmの光に対して分光透過率が4%〜
7%以上高く、また膜厚1600Åの場合に波長が
500〜600nmの範囲で、分光透過率が最大で5%
以上高い。したがつて、波長による分光透過率の
変化が少ないので、着色がほとんど起こらず、ま
た可視光全域に対する透過率が、空気中で焼成し
たポリイミド樹脂に比べて高いので、液晶セルの
透明度が高くなる。しかも、配向に与える影響は
全くない。
First, as shown in FIG. 2a, a predetermined pattern of electrodes is formed on a transparent substrate 1 made of glass or the like using tin oxide or indium oxide by a well-known method, and then the upper surface of the substrate 1 on which the electrodes 2 are formed. Apply a methanol solution containing 1% by weight of amino-based silane to the entire surface using a spinner, and then
The substrate is baked for a minute to form a base coat 3 as shown in FIG. 2b. After this, on the base film 3, Toray Industries, Inc., Toray Electronics Insulating Coating Agent SP-510 is applied.
(Product name) is diluted to a resin concentration of 2.5% using a spinner and baked at 320°C for 20 minutes in a vacuum or inert gas to form an insulating coating 4 as shown in Figure 2c. Form. The insulating film 4 was formed on the base film 3 made of amino-based silane because polyimide resin has high insulating properties and good heat resistance, but has the disadvantage of poor adhesion to the substrate 1 made of glass or the like. Also, since polyimide resin is generally colored,
This must be diluted to make it nearly transparent before use, but diluting the concentration deteriorates the insulation and direct current resistance. As mentioned above, the adhesion of the polyimide insulating film 4 can be improved by coating the polyimide resin on the base film 3 using amino-based silane, which has good adhesion to the substrate 1 and is compatible with polyimide, as a coupling agent. I can do it. In addition, by using amino-based silane as the base film 4, insulation and direct current resistance can be improved.
Coloring can be suppressed by reducing the concentration of polyimide resin. Further, the reason why the applied amino-based silane was fired in air in forming the base film 3 is that firing amino-based silane in a vacuum would cause poor orientation of the insulating film 4 formed thereon. Note that amino-based silane itself becomes colored when the concentration is high, but this coloring property can be ignored by reducing the concentration. Furthermore, the reason why the polyimide resin applied in the formation of the insulating coating 4 was fired in a vacuum or in an inert gas is that even if the resin concentration is quite thin when polyimide resin is fired in the air, it becomes colored due to the influence of oxygen in the air. This is because when polyimide resin is fired in vacuum or in an inert gas, no coloring occurs because there is no effect of oxygen. In other words, polyimide resin fired in air has a wavelength of 550 nm when the film thickness is 1100 Å.
When the film thickness is 1350 Å, the spectral transmittance decreases on the shorter wavelength side, but on the other hand, polyimide resin fired in vacuum or inert gas Wavelength for thickness 1000Å
Spectral transmittance is 4%~ for light of 500nm~400nm
When the wavelength is 7% higher and the film thickness is 1600Å,
Spectral transmittance up to 5% in the 500-600nm range
More expensive than that. Therefore, since there is little change in spectral transmittance due to wavelength, almost no coloring occurs, and the transmittance over the entire visible light range is higher than that of polyimide resin fired in air, resulting in high transparency of the liquid crystal cell. . Moreover, it has no effect on orientation at all.

なお、上記下地被膜3及び絶縁被膜4の形成工
程は、スピンナーによる塗布及び焼成であるか
ら、極めて簡単にかつ能率的に行うことができ
る。
It should be noted that the formation process of the base film 3 and the insulating film 4 is coating and baking using a spinner, and therefore can be performed extremely easily and efficiently.

しかして、上記基板1上に下地被膜3を形成
し、さらにその上に絶縁被膜4を形成した後は、
この絶縁被膜4の表面を直接綿などの布でラビン
グして第2図dに示すような配向処理を施し、こ
のようにして製作された2枚の電極基板A,Bを
スペーサ5を介して所定の間隙を存して接合固定
し、その間隙に液晶6を注入封止して第1図に示
した液晶セルを完成する。
After forming the base film 3 on the substrate 1 and further forming the insulating film 4 thereon,
The surface of this insulating coating 4 is directly rubbed with a cloth such as cotton to perform an orientation treatment as shown in FIG. They are bonded and fixed with a predetermined gap left, and the liquid crystal 6 is injected and sealed into the gap to complete the liquid crystal cell shown in FIG.

すなわち、この液晶セルの製造方法によれば以
上のような極めて少ない工程で作業性良く液晶セ
ルを製造できるのであり、また配向処理膜兼用絶
縁被膜4とされたポリイミドは配向処理において
良好なラビングを行うことができる。また、アミ
ノ系シランの下地被膜3の上にポリイミド樹脂を
塗布することによりポリイミドの絶縁膜4と基板
1との密着性を高めることができる。更に、アミ
ノ系シランの下地被膜3を空気中で焼成して形成
し、その上にポリイミドの絶縁膜4を空気中また
は不活性ガス中で焼成して形成することにより、
ポリイミドの着色を押えることができると共にラ
ビングにより良好な配向処理を行うことができ、
かつ絶縁性も良い。従つて上記方法で製造された
液晶表示装置は液晶分子を一様に長時間安定に配
向し、また透明度も高く一様であり、かつ直流電
圧の印加による液晶物質の破損も効果的に回避で
き、高い信頼性を得ることができる。
In other words, according to this method of manufacturing a liquid crystal cell, a liquid crystal cell can be manufactured with good workability using extremely few steps as described above, and the polyimide used as the insulating coating 4 that also serves as an alignment treatment film can be rubbed well in the alignment treatment. It can be carried out. Further, by applying a polyimide resin on the amino-based silane base film 3, the adhesion between the polyimide insulating film 4 and the substrate 1 can be improved. Furthermore, by forming the base film 3 of amino-based silane by firing in air, and forming the insulating film 4 of polyimide on it by firing in air or in an inert gas,
It is possible to suppress the coloring of polyimide and to perform good alignment treatment by rubbing.
It also has good insulation properties. Therefore, the liquid crystal display device manufactured by the above method has liquid crystal molecules that are uniformly and stably aligned for a long time, has high and uniform transparency, and can effectively avoid damage to the liquid crystal material due to the application of DC voltage. , high reliability can be obtained.

なお、本実施例ではポリイミドを配向処理膜兼
用絶縁膜として用いたが、液晶分子の配向を必要
としない液晶表示装置に於てはポリイミドを絶縁
膜としてのみ用いてもよい。また、この液晶セル
の製造方法は、この発明の要旨を逸脱しない範囲
であれば上記実施例の製法のみに限られるもので
ないことはもちろんである。
In this embodiment, polyimide was used as an insulating film that also serves as an alignment treatment film, but polyimide may be used only as an insulating film in a liquid crystal display device that does not require alignment of liquid crystal molecules. Furthermore, it goes without saying that the method for manufacturing this liquid crystal cell is not limited to the method described in the above embodiments as long as it does not depart from the gist of the invention.

この発明は上記のようにしてなるものであるか
ら、アミノ系シランの下地被膜を空気中で焼成し
て形成し、その上にポリイミドの絶縁被膜を真空
中または不活性ガス中で焼成して形成することに
より、ポリイミド樹脂膜の着色を極めてわずかに
することができ、且つ透明度の高い液晶セルを製
造することができる。また、この発明は、耐直流
性にすぐれた高い信頼性をもつ液晶セルを作業性
良くかつ低コストに製造することができる。
Since this invention is made as described above, an amino-based silane base film is formed by firing in air, and an insulating film of polyimide is formed thereon by firing in vacuum or in an inert gas. By doing so, the polyimide resin film can be extremely slightly colored, and a highly transparent liquid crystal cell can be manufactured. Further, according to the present invention, a highly reliable liquid crystal cell with excellent direct current resistance can be manufactured with good workability and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明により製造された液晶セルも
断面図、第2図はこの発明の一実施例を示す各工
程時における電極基板の断面図である。 1……基板、2……電極、3……下地被膜、4
……配向処理膜兼用絶縁被膜、5……スペーサ、
6……液晶。
FIG. 1 is a cross-sectional view of a liquid crystal cell manufactured according to the present invention, and FIG. 2 is a cross-sectional view of an electrode substrate at each step showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Electrode, 3...Undercoat, 4
...Insulating coating that also serves as an alignment treatment film, 5...Spacer,
6...Liquid crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 所定パターンの電極が形成された絶縁基板に
アミノ系シランを塗布して空気中で焼成する工程
と、このアミノ系シランからなる下地被膜の上に
ポリイミドを塗布して真空中または不活性ガス中
で焼成する工程と、これらの工程によつて得られ
た2枚の電極基板を所定の間隙を存して接合固定
し、その間隙に液晶を封入する工程とをもつて液
晶セルを形成することを特徴とする液晶セルの製
造方法。
1 A process of applying amino-based silane to an insulating substrate on which a predetermined pattern of electrodes is formed and firing it in air, and applying polyimide on the base film made of this amino-based silane and then baking it in vacuum or in an inert gas. A liquid crystal cell is formed by a step of firing the two electrode substrates obtained through these steps, joining and fixing them with a predetermined gap between them, and filling the gap with liquid crystal. A method for manufacturing a liquid crystal cell characterized by:
JP13545977A 1977-11-11 1977-11-11 Production of liquid crystal cell Granted JPS5468654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13545977A JPS5468654A (en) 1977-11-11 1977-11-11 Production of liquid crystal cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13545977A JPS5468654A (en) 1977-11-11 1977-11-11 Production of liquid crystal cell

Publications (2)

Publication Number Publication Date
JPS5468654A JPS5468654A (en) 1979-06-01
JPS6153704B2 true JPS6153704B2 (en) 1986-11-19

Family

ID=15152197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13545977A Granted JPS5468654A (en) 1977-11-11 1977-11-11 Production of liquid crystal cell

Country Status (1)

Country Link
JP (1) JPS5468654A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781119B2 (en) * 1986-10-16 1995-08-30 日立化成工業株式会社 Manufacturing method of polyimide molding

Also Published As

Publication number Publication date
JPS5468654A (en) 1979-06-01

Similar Documents

Publication Publication Date Title
JPS5950043B2 (en) liquid crystal display element
JPS6153704B2 (en)
KR100277650B1 (en) Flexible liquid crystal display device using ultraviolet sealant and manufacturing method thereof
CN100355102C (en) Thin-film two-terminal elements, method of production thereof, and liquid crystal display
JPS6057572B2 (en) liquid crystal display
JPH0862591A (en) Film liquid crystal panel and base substrate used for production thereof, active matrix substrate and production of film liquid crystal panel
JP2643296B2 (en) Color liquid crystal display device
JPS58172621A (en) Liquid crystal display element
JPS5817417A (en) Liquid crystal display element
JP3037056B2 (en) Liquid crystal display
JPS5852618A (en) Liquid crystal display device
JPH08271932A (en) Liquid crystal display device
JPH019935Y2 (en)
JPS623929B2 (en)
JP3794731B2 (en) Electrode film having polarization function
JP2724838B2 (en) Liquid crystal display device
JPH09146123A (en) Two-terminal nonlinear element and its production
JP3603974B2 (en) Wiring board and display device
JPH0287117A (en) Ferroelectric liquid crystal element
JP3097948B2 (en) Manufacturing method of nonlinear element
JPS61170725A (en) Liquid crystal display device
JPS602651B2 (en) Vertically aligned electrode substrate for liquid crystal display
JPS63294536A (en) Electrochromic element having sealing structure
JPH0675249A (en) Active element substrate and display device using the substrate
JPS58223119A (en) Liquid crystal display panel