JPS6153598A - Removing system of radioactive iodine - Google Patents

Removing system of radioactive iodine

Info

Publication number
JPS6153598A
JPS6153598A JP17499684A JP17499684A JPS6153598A JP S6153598 A JPS6153598 A JP S6153598A JP 17499684 A JP17499684 A JP 17499684A JP 17499684 A JP17499684 A JP 17499684A JP S6153598 A JPS6153598 A JP S6153598A
Authority
JP
Japan
Prior art keywords
iodine
adsorption
adsorbent
tower
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17499684A
Other languages
Japanese (ja)
Other versions
JPH0567920B2 (en
Inventor
小澤 義弘
清美 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP17499684A priority Critical patent/JPS6153598A/en
Publication of JPS6153598A publication Critical patent/JPS6153598A/en
Publication of JPH0567920B2 publication Critical patent/JPH0567920B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力施設から放出される排ガス中の放射性
ヨウ素除去用フィルタに係り、特に再処理プラントなど
高濃度のヨウ素除去に好適なヨウ素除去システムに関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a filter for removing radioactive iodine from exhaust gas emitted from nuclear facilities, and in particular to an iodine removal system suitable for removing high concentrations of iodine in reprocessing plants. Regarding.

〔発明の背景〕[Background of the invention]

原子力施設では、周辺住民の放射能被曝を防止するため
、周辺環境へ放出される放射能量を低減するための種々
の対策が講じられている。このうち、放射性ヨウ素に対
しては、これが人体の甲状腺に選択的に吸収され放射能
被曝を増大させるため、特に厳格な放出放射能量の低減
対策が施されている。排ガスの低減対策としては、1〜
2mφ程度の吸着材を充填したヨウ素除去フィルタの設
置が一般的に行なわれている。原子力施設の代表的なも
のとしては原子力発電所と核燃料再処理プランドがあげ
られる。前者では古くから添着炭フィルタが使用されて
いる。一方、後者の核燃料再処理プラントでは、ヨウ素
除去フィルタとして銀添着吸着材が使用されている。同
じヨウ素除去フィルタではあるが、両者のフィルタに要
求される性能は大きく異なる。すなわち、前者の原子力
発電所では、対象とする放射性ヨウ素が短半減期の11
J(半減期8日)で、ヨウ素の濃度がo、 i I)p
bと極めて低い。一方、再処理プラントでは、対象とす
る放射性ヨウ素が長半減期のi!s r <半減期1.
7X10’年)で、ヨウ素濃度が前者の500.000
倍の約5J11と高い。以上のことから、再処理プラン
ト排ガス処理用の吸着材に対して以下の3つの事が要求
される。すなわち、(1)プラントからの放出放射能量
を低減するためにIIJを高い効率で除去できること。
At nuclear facilities, various measures are taken to reduce the amount of radioactivity released into the surrounding environment in order to prevent the surrounding residents from being exposed to radiation. Of these, radioactive iodine is selectively absorbed by the human thyroid and increases radiation exposure, so particularly strict measures are taken to reduce the amount of radioactivity released. Measures to reduce exhaust gas include 1-
An iodine removal filter filled with an adsorbent of about 2 mφ is generally installed. Representative examples of nuclear facilities include nuclear power plants and nuclear fuel reprocessing plans. In the former case, impregnated carbon filters have been used for a long time. On the other hand, in the latter nuclear fuel reprocessing plant, a silver-impregnated adsorbent is used as an iodine removal filter. Although they are the same iodine removal filter, the performance required of the two filters is significantly different. In other words, at the former nuclear power plant, the target radioactive iodine has a short half-life of 11
J (half-life 8 days), the concentration of iodine is o, i I) p
b, which is extremely low. On the other hand, in the reprocessing plant, the target radioactive iodine has a long half-life i! s r <half-life 1.
7 x 10' years), and the iodine concentration was 500.000 in the former
It is about twice as high as 5J11. From the above, the following three requirements are required for adsorbents for treating exhaust gas from reprocessing plants. That is, (1) IIJ can be removed with high efficiency in order to reduce the amount of radioactivity released from the plant.

(2)吸着材のヨウ素吸着容量が大きく廃棄物としての
使用済吸着材量が少ないこと、および(a) 11”I
を化学的に安定な化合物として半永久的に貯蔵できるこ
と、の3点である。
(2) The iodine adsorption capacity of the adsorbent is large and the amount of used adsorbent as waste is small, and (a) 11”I
These three points are that it can be stored semi-permanently as a chemically stable compound.

このような観点から、現状、3つの方式が研究開発、ま
たは実用化されている。この3つの方式の概要を第2図
、第3図、および第4図に示す。
From this point of view, three methods are currently being researched and developed or put into practical use. Outlines of these three methods are shown in FIGS. 2, 3, and 4.

第2図の方式は銀添着吸着材を充填した吸着塔1のみで
構成されるものである。この方式は、システムが単純で
あるため既に実用化されているが、使用済の銀添着吸着
材が直接廃棄されるため、高価な銀の使用量が多いとい
う問題点がある。第3図の方式は、prc、 of D
OE Nuclear Air CleanirgCo
nf errence (197B )で報告されてい
る方式で、一度銀添着吸着材でヨウ素を高い除去効率で
吸着除去した後、’H2によって当該銀添着吸着材を再
生し、再生によって吸着材から脱離したヨウ素を銀よシ
も安価な鉛添着吸着材に吸着させようとするものである
。この方式は、銀添着吸着材を充填した吸着塔1が2塔
と、鉛添着吸着材を充填した吸着塔2、Hzを加熱する
ヒータ3、クーラー4、H3循環ポンプ5とから構成さ
れる。吸着塔1の1塔は処理ガスを流しヨウ素を吸着除
去する。他方の吸着塔1は、ヒータ3によって加熱した
Hz(500C)で再生される。このとき銀添着吸着材
からHI(ヨウ化水素)としてヨウ素が脱着してくる。
The system shown in FIG. 2 consists only of an adsorption tower 1 filled with a silver-impregnated adsorbent. This method has already been put into practical use because of its simple system, but it has the problem of using a large amount of expensive silver because the used silver-impregnated adsorbent is directly disposed of. The method in Figure 3 is prc, of D
OE Nuclear Air CleanirgCo
In the method reported in Nferrence (197B), after iodine was adsorbed and removed with a high removal efficiency using a silver-impregnated adsorbent, the silver-impregnated adsorbent was regenerated with 'H2, and the iodine was desorbed from the adsorbent by regeneration. This is an attempt to adsorb iodine to an adsorbent impregnated with lead, which is cheaper than silver. This system consists of two adsorption towers 1 filled with silver-impregnated adsorbent, an adsorption tower 2 filled with lead-impregnated adsorbent, a heater 3 for heating Hz, a cooler 4, and an H3 circulation pump 5. One of the adsorption towers 1 passes the process gas and adsorbs and removes iodine. The other adsorption tower 1 is regenerated with Hz (500C) heated by a heater 3. At this time, iodine is desorbed from the silver-impregnated adsorbent as HI (hydrogen iodide).

吸着塔1を通過したヨウ素を含むHzは、クーラー4で
150Cに冷却され、循環ポンプ5を介して、鉛添着吸
着材を充填した吸着塔3に送られ、ここでヨウ素が吸着
される。再生の終了した吸着塔1は、再び処理ガス中の
ヨウ素の吸着除去に使用されるため待期状態となシ、ヨ
ウ素を吸着した鉛添看吸着材は廃棄される。したがって
、この方式では、高価な銀の消費量は、再生劣化に・ 
 伴ない発生する銀添着吸着材のみとなるため、第2図
の方式に比べ1/10〜1/20と少ない。
The iodine-containing Hz that has passed through the adsorption tower 1 is cooled to 150C by a cooler 4, and sent via a circulation pump 5 to an adsorption tower 3 filled with lead-impregnated adsorbent, where iodine is adsorbed. The adsorption tower 1 that has been regenerated is used again to adsorb and remove iodine from the process gas, so it remains in a standby state, and the lead-added adsorbent that has adsorbed iodine is discarded. Therefore, in this method, the consumption of expensive silver is reduced due to regeneration deterioration.
Since only the silver-adsorbed adsorbent is generated, the amount is reduced to 1/10 to 1/20 compared to the method shown in FIG.

しかしながら、システムが複雑となるため、初期の設備
投資が大きくなること、運転が繁雑となることなどの問
題が生ずる。第4図の方式はI8除去用の吸着材として
、金属銅もしくは金属鉛を添着した吸着材を充填した前
段吸着塔1と、残りのヨウ素(主としてCHsI)を除
去するための銀化合物を添着した吸着材を充填した後段
吸着塔2とから構成される。この方式では、前段吸着塔
に充填される金属銅もしくは金属鉛を添着した吸着材の
I!吸着量が問題になる。処理ガス中でも溶解工程のオ
フガス中には、01のみならずH2OやN Oxも含ま
れることになる。金属銅、もしくは金属鉛は上記雰囲気
中での工2吸着性能が低下するという問題がある。
However, since the system becomes complicated, problems arise such as a large initial investment in equipment and complicated operation. The system shown in Figure 4 includes a first stage adsorption tower 1 filled with an adsorbent impregnated with metallic copper or metallic lead as an adsorbent for I8 removal, and a silver compound impregnated to remove the remaining iodine (mainly CHsI). It is composed of a second stage adsorption tower 2 filled with adsorbent. In this method, the I! The amount of adsorption becomes a problem. Among the processing gases, the off-gas from the melting process contains not only 01 but also H2O and NOx. Metallic copper or metallic lead has a problem in that its adsorption performance in the above-mentioned atmosphere decreases.

そこで、銀の消費量を出来るだけ少なく、かつ再生にH
!ガスを使用しないでヨウ素を脱離し、化学的安定なヨ
ウ素化合物として固定化する除去システムが要求されて
いる。
Therefore, it is important to minimize the amount of silver consumed and to make it easier to reproduce.
! There is a need for a removal system that desorbs iodine without using gas and immobilizes it as a chemically stable iodine compound.

〔発明の目的〕 本発明の目的は、再処理プラントオフガス系において、
オフガス中の不純物の°影響を排除し、金属銅や金属鉛
を添着した安価な吸着材でヨウ素を効果的に除去するこ
とによって、システムが単純で銀の消費量の少ないヨウ
素除去システムを提供するにある。
[Object of the invention] The object of the present invention is to provide a reprocessing plant off-gas system that
By eliminating the influence of impurities in the off-gas and effectively removing iodine using an inexpensive adsorbent impregnated with metallic copper or metallic lead, we provide an iodine removal system with a simple system and low silver consumption. It is in.

〔発明の概要〕[Summary of the invention]

本発明は、発明者らの実験により、工業的に使用される
脱湿材の中で、NOxとH意○を吸着するがヨウ素を吸
着しない脱湿材を見出したこと、および金属添着吸着材
がヨウ素固定化に対し効果的な吸着条件を見出した結果
にもとづく。
The present invention is based on the fact that, through experiments conducted by the inventors, a dehumidifying material used industrially that adsorbs NOx and hydrogen but does not adsorb iodine, and a metal-impregnated adsorbent. This is based on the results of finding effective adsorption conditions for iodine immobilization.

本発明の特徴は、I2を吸着せず、NOxおよびI20
を選択的に吸着する吸着材を充填した吸着塔で、あらか
じめNOx 、H2Oを除去した後残りのヨウ素を物理
吸着を主体として可逆的に吸着除去するヨウ素濃縮塔、
および再生したヨウ素を化学吸着により化合物として安
定な状態で固定化する固定化塔とから構成されることに
ある。
The feature of the present invention is that it does not adsorb I2, and that it does not adsorb NOx and I20.
An iodine concentration tower that is filled with an adsorbent that selectively adsorbs NOx and H2O, and then reversibly adsorbs and removes the remaining iodine mainly through physical adsorption;
and an immobilization tower that immobilizes the regenerated iodine in a stable state as a compound by chemisorption.

本発明の従属する特徴は、ヨウ素濃縮塔の再生時に不活
性ガスを用いることによって、固定化塔に充填された吸
着材に対する02の影響を排除するにある。
A subordinate feature of the invention is that the influence of 02 on the adsorbent packed in the immobilization column is eliminated by using an inert gas during the regeneration of the iodine concentration column.

本発明は以下の実験結果に基づきなされたものである。The present invention was made based on the following experimental results.

第4図に、種々の細孔径をもつ脱湿材のヨウ素(I2 
)、NOx 、H2O吸着量を測定した結果を示す。本
測定は、温度50Cで濃度200騨の1!、濃度t、o
vol*のNot、および濃度λ□Vo1%のH!Oを
それぞれ、巻着が平衡となるまで、N2ガスと共に導入
し、測定したものである。細手り径、3人、4人、5人
には、それぞれ合成ゼオライト3A、4A、および5A
を使用した。また細孔径10人には、合成ゼオライ)1
3Xを使用した。この結果、H2O、NOX に対して
は、いずれの細孔径をもつ合成ゼオライトでも吸着する
が、I2に対しては極めて特異的な傾向を示した。すな
わち、3人の細孔径を有する合成ゼオライト3Aでは吸
着せず、4人、5人、10人と細孔径が大きくなるに従
い、■!吸着量は増加した。さらに細孔径の大きなシリ
カゲル(平均細孔径、約20人)、およびアルミナ(平
均細孔径約50人)でみると、逆にIs吸着量は減少し
た。
Figure 4 shows the iodine (I2
), NOx, and H2O adsorption amounts are shown. This measurement was conducted at a temperature of 50C and a concentration of 200. , concentration t, o
Not of vol*, and H of concentration λ□Vo1%! Measurements were taken by introducing O together with N2 gas until the winding reached equilibrium. Synthetic zeolite 3A, 4A, and 5A are used for narrow diameter, 3, 4, and 5 people, respectively.
It was used. In addition, if the pore size is 10, synthetic zeolite) 1
3X was used. As a result, H2O and NOX were adsorbed by synthetic zeolite with any pore size, but I2 showed a very specific tendency. That is, synthetic zeolite 3A with a pore size of 3 people does not adsorb, and as the pore size increases from 4 people to 5 people to 10 people, ■! The amount of adsorption increased. When looking at silica gel (average pore diameter, about 20 pores) and alumina (average pore diameter, about 50 pores), which have even larger pores, the amount of Is adsorbed decreased.

以上のことは次のように理解できる。合成ゼオライトへ
の工2の吸着は、主として温度に可逆的な物理吸着であ
る。したがって細孔径の小さい程、毛管凝縮による吸着
量は増加する。ただし、I2の分子径は最大長さで5.
4人なので、これよシ小       iさな細孔には
入シにくいことになる。したがって、細孔径10人程度
で吸着量が最大になったと考える。この結果、細孔径3
人の合成ゼオライトに着目してみると、NOx 、)(
toの吸着については、他の細孔径の合成ゼオライトと
大差なく、工2についてのみ吸着性能がないことがわか
る。
The above can be understood as follows. The adsorption of Process 2 onto synthetic zeolite is primarily temperature-reversible physical adsorption. Therefore, the smaller the pore diameter, the greater the amount of adsorption due to capillary condensation. However, the maximum length of the molecular diameter of I2 is 5.
Since there were four people, it would be difficult to enter the small pores. Therefore, it is considered that the adsorption amount reached the maximum when the pore diameter was about 10 pores. As a result, the pore size is 3
When we focus on human-made synthetic zeolite, NOx, )(
It can be seen that there is no significant difference in the adsorption of to from synthetic zeolites of other pore sizes, and only for No. 2 there is no adsorption performance.

細孔径3人でI2は吸着せず、細孔径5人で吸着すると
いう事実は、 定性的には公知CM、A。
The fact that I2 is not adsorbed with a pore size of 3 and is adsorbed with a pore size of 5 is qualitatively similar to the known CM, A.

Wah l gren、 W、W、 Me 1nke、
 Nuc Ieonics(1957))ではあるが、
Izの吸着特性はその分子径をHで議論できず、その立
体構造、極性によって異なシ、3人、4人、5人につい
て、NOxの吸N量とともに、系統的に比較した例はな
く、発明者らの実験によって初めて見出された事柄であ
る。
Wah l gren, W, W, Me 1nke,
Nuc Ieonics (1957)),
The adsorption characteristics of Iz cannot be discussed in terms of its molecular diameter, and there is no systematic comparison of the amount of NOx adsorbed for 3, 4, and 5 people. This was discovered for the first time through experiments conducted by the inventors.

つぎに、第1表Vc、1!Ii々の元素の中から選定し
た3種の金属について、種々の雰囲気でヨウ素の吸着量
を測定した結果を示す。本測定は、温度150Cヨウ素
濃度200Pの条件で、ヨウ素の吸着が平衡となるまで
、それぞれN2ガス、乾燥空気、およびNOx 1 v
o1%+ Hz 01v01 %含む空気とヨウ素を導
入し、測定したものである。測定試料は、活性アルミナ
担体に、Pb、Cu、Agの硝酸塩を活性アルミナ1g
当り、金属重量で0.1g添着したものを、H!雰囲気
で還元し、金属状で添着したものを用いた。この結果、
酸素の存在しないN!雰囲気では、CuHP b+ A
gすべてにヨウ素は吸着するが空気雰囲気およびNOx
とH2O含む空気雰囲気では、Cu、Pb添着吸着材で
はその吸着量が低下した。特にpbでその傾向が著しい
。この理由はAgのように貴金属と違って、Cu、Pb
では酸化雰囲気中で、I2との化学反応で、CuIやP
bInが生成すると同時に、CuO1PbO!等の酸化
物の生成が無視できないためであり、反応後の生成物の
X線回折でも、上記酸化物の存在が確認されている。こ
のように、金属の(、u、pbが、再処理プラントオフ
ガス雰囲気と比較して測定し、その影響を明らかにした
のは、発明者らの上記実験が初めてである。
Next, Table 1 Vc, 1! The results of measuring the amount of iodine adsorbed in various atmospheres are shown for three metals selected from the elements II. This measurement was carried out under the conditions of a temperature of 150C and an iodine concentration of 200P, using N2 gas, dry air, and NOx 1 v each until iodine adsorption reached equilibrium.
The measurement was conducted by introducing air containing 01% + Hz 01v01% and iodine. The measurement sample was 1 g of activated alumina containing nitrates of Pb, Cu, and Ag on an activated alumina carrier.
H! It was reduced in an atmosphere and attached in a metallic form. As a result,
N without oxygen! In the atmosphere, CuHP b+ A
Iodine is adsorbed in all g, but air atmosphere and NOx
In an air atmosphere containing H2O and Cu, the adsorption amount of the Cu- and Pb-impregnated adsorbent decreased. This tendency is particularly remarkable for PB. The reason for this is that unlike precious metals such as Ag, Cu, Pb
In an oxidizing atmosphere, a chemical reaction with I2 produces CuI and P.
At the same time as bIn is generated, CuO1PbO! This is because the formation of oxides such as oxides cannot be ignored, and the presence of oxides mentioned above has also been confirmed by X-ray diffraction of the product after the reaction. In this way, the above experiment by the inventors is the first time that the metal (, u, pb) has been measured in comparison with the reprocessing plant off-gas atmosphere and its influence has been clarified.

なぜなら、第2図に示した方式での鉛添着吸着材による
ヨウ素の吸着は、ヨウ素の化学形態がHIであり、第1
表にみられるように本発明で対象とするI2とは異なり
、かつ、雰囲気がH!雰囲気で、第1表の雰囲気条件と
異にする。ま之、1950年代には、(、u、pbを添
着した吸着材、あるいは、金属はくを用いた実験がなさ
れていたが、これらは原子力発電所を対象としたもので
あったため、ヨウ素の吸着量が少ない領域(第1表の1
/100以下)での実験であった。このように吸着量の
少ない領域では、ヨウ素がCuやpbなどと化学的に結
合しなくても吸着する現象もあり、その吸着量は実験条
件によって変動している。
This is because the chemical form of iodine is HI, and the adsorption of iodine by the lead-impregnated adsorbent in the method shown in FIG.
As shown in the table, it is different from I2, which is the target of the present invention, and the atmosphere is H! The atmosphere was different from the atmosphere conditions in Table 1. However, in the 1950s, experiments were conducted using adsorbents impregnated with (, u, pb) or metal foils, but these were aimed at nuclear power plants, so it was difficult to remove iodine. Area with low adsorption amount (1 in Table 1)
/100 or less). In such a region where the amount of adsorption is small, there is a phenomenon in which iodine is adsorbed without chemically bonding with Cu, PB, etc., and the amount of adsorption varies depending on the experimental conditions.

したがってこのような事実は、本発明の新規性を失なわ
せるものではない。
Therefore, this fact does not detract from the novelty of the present invention.

上記の実験結果にもとづき、具体的な実施態様を以下に
述べる。
Based on the above experimental results, specific embodiments will be described below.

〔発明の実施例〕[Embodiments of the invention]

本発明を実施しうるに好適な実施例を図面を用いて以下
に詳細に述べる。
Preferred embodiments for carrying out the present invention will be described in detail below with reference to the drawings.

第1図に本発明を実施しうるに好適な一実施例の基本フ
ローを示す。本実施例は、細孔径の大きさが少なくとも
4Å以下の脱湿材を充填した吸着塔7と、細孔径の大き
さが5人よりも大きく、20人よシも小さい脱湿材を充
填したヨウ素濃縮塔8と、ヒータ3、クーラー4、循環
器5および銅金属添着吸着材を充填した固定化基9とか
らなり、これらのうち、吸着塔7と、ヨウ素濃縮塔8と
は、それぞれ並列に2塔設け、1塔はNOx。
FIG. 1 shows the basic flow of a preferred embodiment of the present invention. This example uses an adsorption tower 7 filled with a dehumidifying material with a pore size of at least 4 Å or less, and a dehumidifying material with a pore size larger than 5 Å and smaller than 20 Å. It consists of an iodine concentration column 8, a heater 3, a cooler 4, a circulator 5, and an immobilization group 9 filled with a copper metal-impregnated adsorbent. Two towers are installed, one tower is for NOx.

H2O吸着、あるいはヨウ素を吸着して濃縮操作を行な
わしめ、他の1塔は、加熱等による再生操作ができるよ
うになっている。これらの構成機器は、第5図に示すよ
うに配管などで接続されておυ、それぞれの機器はバル
ブ等で各々隔離されている。I z 、 NOx 、 
H2Oを含む空気は、吸着塔7に導入され、ここでNO
x 、N20が除去される。ついで、ヨウ素濃縮塔8で
、ヨウ素(主としてI2  )を除去する。ヨウ素濃縮
塔8で除去されなかった一部のヨウ素(主として最大5
%のCH3I)  は、後段に設けた銀添着吸着材を充
填した後段吸着塔(図示せず)で完全に除去する。
Concentration operations are performed by adsorbing H2O or iodine, and the other tower is capable of regeneration operations by heating, etc. These component devices are connected by piping and the like as shown in FIG. 5, and each device is isolated by valves and the like. Iz, NOx,
The air containing H2O is introduced into the adsorption tower 7, where NO
x, N20 is removed. Iodine (mainly I2) is then removed in an iodine concentrating column 8. Some of the iodine not removed in the iodine concentrator 8 (mainly up to 5
% CH3I) is completely removed in a downstream adsorption tower (not shown) packed with a silver-impregnated adsorbent.

したがって、銀消費量は第1図の従来技術の1/20μ
下になる。N Ox 、 Hz Oの吸着は、通常、室
温から100Cの範囲で行なう。ヨウ素濃縮塔8におけ
るヨウ素吸着温度としては、室温から50tZ”が望ま
しい。第6図にヨウ素濃縮塔8内でのヨウ素の吸着を動
的に実験した結果を示す。ここでは比較のために、ヨウ
素吸着材として従来から使用されている銀化合物である
硝酸銀を添着したアルミ、す吸着材と本発明で使用する
のに適した合成ゼオライト(モレキュラーシープ13x
)を用い、それぞれ粒径が1〜2mmの吸着材をヨウ素
m縮塔8に充填し、銀−アルミナ吸着材の場合150t
l;’、合成ゼオライトの場合50Cの温度条件で、線
速度5 cm/ 8で工2を含む空気を所定時間通気し
た。■!吸着量は、両者で大差なく、吸着材層入口で飽
和となっている。その後方では未飽和の部分があり、こ
の未飽和の部分の長さく一般には吸着帯長さといわれ、
飽和吸着量の5%〜95チの吸着量を示す部分の長さを
いう)は、合成ゼオライトの場合硝酸銀を添着したアル
ミナに比べ長くなっているものの、充填層設計上は問題
にならないことがわかる。また第6図から、合成ゼオラ
イトでも除去効率は99%以上になることがわかる。
Therefore, the silver consumption is 1/20μ of the conventional technology shown in Figure 1.
Become below. Adsorption of N Ox and Hz O is usually carried out at a temperature ranging from room temperature to 100C. The iodine adsorption temperature in the iodine concentrator 8 is preferably from room temperature to 50 tZ''. Figure 6 shows the results of a dynamic experiment on the adsorption of iodine in the iodine concentrator 8. An adsorbent of aluminum impregnated with silver nitrate, a silver compound conventionally used as an adsorbent, and a synthetic zeolite (Molecular Sheep 13x) suitable for use in the present invention.
), each adsorbent with a particle size of 1 to 2 mm was packed into the iodine reduction tower 8, and in the case of silver-alumina adsorbent, 150 tons
In the case of synthetic zeolite, air containing Step 2 was passed through at a temperature of 50C and a linear velocity of 5 cm/8 for a predetermined period of time. ■! The amount of adsorption is not much different between the two, and is saturated at the entrance of the adsorbent layer. There is an unsaturated part behind it, and the length of this unsaturated part is generally called the adsorption zone length.
Although the length of the portion showing an adsorption amount of 5% to 95% of the saturated adsorption amount is longer in the case of synthetic zeolite than that of alumina impregnated with silver nitrate, this does not pose a problem in terms of packed bed design. Recognize. Moreover, from FIG. 6, it can be seen that even with synthetic zeolite, the removal efficiency is 99% or more.

つぎに、ヨウ素濃縮塔で除去したヨウ素は、温度150
C以上で、不活性ガス、ここではN2ガスを循環器の働
きでヨウ素濃縮塔に通気することで脱離し、銅金属添着
吸着材を充填した固定化基で、以下の化学反応を利用し
て、化学的に安定な状態で固定化する。
Next, the iodine removed in the iodine concentrator is heated to a temperature of 150
C or higher, the inert gas, here N2 gas, is desorbed by passing it through the iodine concentrating tower with the function of a circulator, and the following chemical reaction is used to remove the inert gas, with an immobilization group filled with a copper metal-impregnated adsorbent. , immobilize in a chemically stable state.

2Cu+Iz42CuI この場合、固定化基に、I2を含むNzガスを通気する
前に、冷却器の働きで、N2ガスをCuが工3と反応す
るに最適な温度100〜150Cにする必要がある。固
定化基を通過したN麿ガスは、循環器、加熱器をへて、
再生温度に最適な200C以上に只温した後、ヨウ素譲
縮塔に送られる。以上の操作で、ヨウ素濃縮塔で除去し
たヨウ素の99%以上が脱離し、処理ガス中で数10P
のヨウ素が、N2ガス中で、数チオーダの高濃度ヨウ素
を含むことになυ、Cu金属添着吸着材との反応が加速
され、はぼ完全にCuIとして固定化されうる。このと
き、N!ガス中にはNOx。
2Cu+Iz42CuI In this case, before passing the Nz gas containing I2 through the immobilization group, it is necessary to use a cooler to bring the N2 gas to a temperature of 100 to 150 C, which is the optimum temperature for Cu to react with Iz3. The N-maro gas that has passed through the immobilization group passes through a circulator and a heater,
After being heated to 200C or higher, which is the optimum temperature for regeneration, it is sent to an iodine concession tower. With the above operation, more than 99% of the iodine removed in the iodine concentrator is desorbed, and several tens of P are removed in the treated gas.
Since the iodine contained in the N2 gas contains a high concentration of iodine of several orders of magnitude, the reaction with the Cu metal-impregnated adsorbent is accelerated and can be almost completely immobilized as CuI. At this time, N! There is NOx in the gas.

I20不純物は、処理ガス中における1〜2チオーダの
濃度と比較し1/100以下となり、上記ヨウ素とCu
金属の反応を阻害しない。またN2ガス中のO!濃度も
低いので、Cuを最大限利用でき、結果的に廃棄物発生
量を低減できる。
The I20 impurity is 1/100 or less compared to the concentration of 1 to 2 thiords in the processing gas, and
Does not inhibit metal reactions. Also O in N2 gas! Since the concentration is low, Cu can be utilized to the maximum extent, and as a result, the amount of waste generated can be reduced.

上記第5図実施例では、吸着塔、ヨウ素濃縮塔とも2塔
ずつ示しであるが、2塔に限定されず、複数基以上設置
してあれば良く、公知の技術によって切換して運転して
も良い。なおNOx 、 H2Oの除去を目的とした吸
着塔では、その後方にたとえば露点計などの湿度計、あ
るいはN Ox計を設け、I20  、NOxのブレー
クスルーを検知して、切換運転をすることで、後段側の
ヨウ素濃縮塔へのNOx 、HtOの流入を防ぐことは
可能である。
In the example shown in FIG. 5 above, two adsorption towers and two iodine concentration towers are shown, but the number is not limited to two towers, and it is sufficient to install multiple towers or more, and they can be switched and operated using known technology. Also good. In adsorption towers intended for the removal of NOx and H2O, for example, a hygrometer such as a dew point meter or a NOx meter is installed behind the tower, and by detecting the breakthrough of I20 and NOx and performing switching operation, It is possible to prevent NOx and HtO from flowing into the iodine concentration column on the latter stage.

また、使用済の吸着塔は、通常工業的に使用される温度
200〜400Cで再生し、再使用に供する。またヨウ
素濃縮塔における運転操作も吸着塔の運転操作と同様で
ある。
In addition, the used adsorption tower is regenerated at a temperature of 200 to 400 C, which is usually used industrially, and is reused. Further, the operation of the iodine concentration tower is similar to that of the adsorption tower.

本実施例では、固定化塔9に充填する吸着材とし、銅添
着吸着材を例にあげ説明したが、鉛添着吸着材でも良い
。また、添着される銅、鉛は金属であることが必要であ
るが、これらの少なくとも1つが含まれる合金でも良い
。これらの金属を添着する担体は、活性アルミナ、シリ
カゲル、結晶性アルミノケイ酸が使用可能である。
In this embodiment, the adsorbent to be filled in the immobilization tower 9 has been described using a copper-impregnated adsorbent as an example, but a lead-impregnated adsorbent may also be used. Further, although the copper and lead attached need to be metals, an alloy containing at least one of these may be used. Activated alumina, silica gel, and crystalline aluminosilicate can be used as the carrier to which these metals are attached.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、雰囲気ガスの影響を受は易い、銅、鉛
金属添着吸着材を、比較的単純なシステムで固定化材と
して使用可能にし、銀消費量を、銀添着吸着材を充填し
た吸着塔単独除去方式の約11/20に低減できる効果
がある。また従来150Cの吸着温度を50Cまで低下
でき、処理ガスの加熱l−メタ容量1/3減少できる。
According to the present invention, adsorbents impregnated with copper and lead metals, which are easily affected by atmospheric gases, can be used as immobilizing materials with a relatively simple system, and silver consumption can be reduced by filling the adsorbents impregnated with silver. It has the effect of reducing the amount by about 11/20 compared to the adsorption tower independent removal method. Furthermore, the adsorption temperature, which was conventionally 150C, can be lowered to 50C, and the heated l-metal capacity of the processing gas can be reduced by 1/3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施しうるに好適な実施例の基本フロ
ーを示した図、第2図は従来技術の銀添着吸着材を充填
した吸着塔単独によるヨウ素除去法のフローを示した図
、第3図は、従来技術の銀添着吸着材を繰り返し使用す
る方法のフローを示した図、第4図は、銅や鉛などの金
属添着吸着材を前段吸着塔に使用する方法のフローを示
した図、第5図は、I2 、NOx 、H2Oの吸着に
及ぼす細孔後の影響を示した図、第6図は、合成ゼオラ
イトを充填した吸着塔内でのヨウ素の吸着分布の一例を
示した図である。 1・・・銀添着吸着材を充填した吸着塔、2・・・鉛添
着吸着材を充填した吸着塔、3・・・ヒータ、4・・・
クーラー、5・・・循環ポンプ、6・・・銅系溝吸着材
を充填した吸着塔、7・・・脱湿材(細孔径4Å以下)
を充填した吸着塔、8・・・脱湿材(細孔径5Å以上2
0Å以下)を充填したヨウ素濃縮塔、9・・・銅添着吸
着材を充填した固定化塔。
Fig. 1 is a diagram showing the basic flow of a preferred embodiment for carrying out the present invention, and Fig. 2 is a diagram showing the flow of a conventional iodine removal method using an adsorption tower alone filled with a silver-impregnated adsorbent. , Fig. 3 is a diagram showing the flow of a method of repeatedly using a conventional silver-impregnated adsorbent, and Fig. 4 is a flowchart of a method of using a metal-impregnated adsorbent such as copper or lead in the first stage adsorption tower. Figure 5 shows the influence of pores on the adsorption of I2, NOx, and H2O, and Figure 6 shows an example of the iodine adsorption distribution in an adsorption column filled with synthetic zeolite. FIG. 1... Adsorption tower filled with silver-impregnated adsorbent, 2... Adsorption tower filled with lead-impregnated adsorbent, 3... Heater, 4...
Cooler, 5... Circulation pump, 6... Adsorption tower filled with copper-based groove adsorbent, 7... Dehumidifying material (pore diameter 4 Å or less)
adsorption tower filled with
9. Immobilization tower filled with copper-impregnated adsorbent.

Claims (1)

【特許請求の範囲】 1、ガス中からヨウ素を除去するシステムにおいて、当
該ガス中に含まれるNOxとH_2Oを選択的に吸着す
る脱湿材を充填した前段の吸着塔と、ヨウ素を可逆的に
吸脱着する脱湿材を充填した後段のヨウ素濃縮塔、およ
び前記ヨウ素濃縮塔の再生によつて脱着するヨウ素を吸
着するための吸着材を充填した固定化塔とからなること
を特徴とする放射性ヨウ素の除去システム。 2、特許請求の範囲第1項記載の放射性ヨウ素の除去シ
ステムにおいて、吸着塔に充填した脱湿材の細孔径が4
Åよりも小さく、ヨウ素濃縮塔に充填した脱湿材の細孔
径が5〜20Åの範囲にあり、かつ固定化塔に充填した
吸着材が、少なくとも金属銅または金属鉛のいずれかを
含む金属を添着した吸着材であることを特徴とする放射
性ヨウ素の除去システム。 3、特許請求の範囲第2項記載の放射性ヨウ素の除去シ
ステムにおいて、ヨウ素濃縮塔を、不活性ガスでヨウ素
を再生することを特徴とする放射性ヨウ素の除去システ
ム。
[Scope of Claims] 1. A system for removing iodine from gas, including an adsorption tower in the first stage filled with a dehumidifying material that selectively adsorbs NOx and H_2O contained in the gas, and a system that reversibly removes iodine. A radioactive substance comprising a subsequent iodine concentrating column filled with a dehumidifying material for adsorption and desorption, and an immobilization column filled with an adsorbent for adsorbing iodine that is desorbed by regeneration of the iodine concentrating column. Iodine removal system. 2. In the radioactive iodine removal system according to claim 1, the pore size of the dehumidifying material filled in the adsorption tower is 4.
Å, the pore diameter of the dehumidifying material packed in the iodine concentration tower is in the range of 5 to 20 Å, and the adsorbent packed in the immobilization tower contains at least a metal containing either metallic copper or metallic lead. A radioactive iodine removal system characterized by an attached adsorbent. 3. The radioactive iodine removal system according to claim 2, characterized in that the iodine concentrator is used to regenerate iodine with an inert gas.
JP17499684A 1984-08-24 1984-08-24 Removing system of radioactive iodine Granted JPS6153598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17499684A JPS6153598A (en) 1984-08-24 1984-08-24 Removing system of radioactive iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17499684A JPS6153598A (en) 1984-08-24 1984-08-24 Removing system of radioactive iodine

Publications (2)

Publication Number Publication Date
JPS6153598A true JPS6153598A (en) 1986-03-17
JPH0567920B2 JPH0567920B2 (en) 1993-09-27

Family

ID=15988393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17499684A Granted JPS6153598A (en) 1984-08-24 1984-08-24 Removing system of radioactive iodine

Country Status (1)

Country Link
JP (1) JPS6153598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192380A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Gas adsorption alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192380A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Gas adsorption alloy

Also Published As

Publication number Publication date
JPH0567920B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
US4088737A (en) Dry method for recycling iodine-loaded silver zeolite
US3658467A (en) System for total iodine retention
US4382879A (en) Material for adsorbing iodine and method for preparing thereof
US4447353A (en) Method for treating a nuclear process off-gas stream
US4234456A (en) Iodine adsorbent
US3429655A (en) Method and filter for removing iodine from gases
Ianovski et al. Adsorption of noble gases on H-mordenite
JPS59112825A (en) Means separating isotope of hydrogen made contain in gas mixture
JPS6153598A (en) Removing system of radioactive iodine
JP3119755B2 (en) Offgas treatment equipment, iodine adsorbent and method for producing the same
JPS6147595A (en) Device for removing iodine
JPH0334968B2 (en)
Nishikawa et al. Catalytic oxidation of tritium in wet gas
JP3071057B2 (en) Method and apparatus for detecting leak of adsorbent-filled filter
Obruchikov et al. Method for obtaining radioactive methyliodide vapors under dynamic conditions
JPH0871368A (en) Removal of iodine in exhaust gas
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
CA2360721A1 (en) Process for the purification and concentration of radioiodide isotopes
JPS6027896A (en) Method of removing iodine
JPS6147597A (en) Method of removing radioactive iodine from exhaust gas
JPS5852199B2 (en) How to use trilithium
JPS59198395A (en) Method of processing nuclear fuel reprocessing gaseous waste
SU364033A1 (en) A METHOD FOR REMOVAL OF RADIOACTIC IODINE FROM ALKYL IODIDES
JPS59198394A (en) Method of processing nuclear fuel reprocessing gaseous waste
CN1100593C (en) Process for preparing CO oxidant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term