JP3071057B2 - Method and apparatus for detecting leak of adsorbent-filled filter - Google Patents
Method and apparatus for detecting leak of adsorbent-filled filterInfo
- Publication number
- JP3071057B2 JP3071057B2 JP5008813A JP881393A JP3071057B2 JP 3071057 B2 JP3071057 B2 JP 3071057B2 JP 5008813 A JP5008813 A JP 5008813A JP 881393 A JP881393 A JP 881393A JP 3071057 B2 JP3071057 B2 JP 3071057B2
- Authority
- JP
- Japan
- Prior art keywords
- filter
- adsorbent
- leak
- concentration
- reactive gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、吸着剤充填フィルタの
リーク検出方法及び装置に係わり、特に、原子力発電所
や再処理工場で使用される高性能なヨウ素除去フィルタ
のリーク検出方法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting leaks of an adsorbent-filled filter, and more particularly to a method and an apparatus for detecting leaks of a high-performance iodine removing filter used in a nuclear power plant or a reprocessing plant. .
【0002】[0002]
【従来の技術】原子力発電所や核燃料再処理工場などの
原子力プラントにおいては、環境保全の立場から、放射
性物質の放出防止対策が講じられている。特に、気体と
して発生する放射性ヨウ素(化学形態、単体ヨウ素:I
2 、ヨウ化メチル:CH3 Iなど)の放出防止対策が重
要視されてきた。この結果、原子力発電所や核燃料再処
理工場の排気系に、添着炭や銀添着吸着剤などのヨウ素
吸着剤を充填したヨウ素除去フィルタが設置されてい
る。2. Description of the Related Art Nuclear power plants and nuclear fuel reprocessing plants have taken measures to prevent the release of radioactive substances from the standpoint of environmental protection. In particular, radioactive iodine generated as a gas (chemical form, simple iodine: I
2, Methyl iodide: CH3 I etc.) emission prevention measures have been regarded as important. As a result, an iodine removal filter filled with an iodine adsorbent such as impregnated charcoal or a silver impregnated adsorbent is installed in an exhaust system of a nuclear power plant or a nuclear fuel reprocessing plant.
【0003】ヨウ素吸着材としては、添着炭、銀添着吸
着剤などがある。添着炭は、物理吸着によって単体ヨウ
素を、また、同位体交換反応によってヨウ化メチルなど
の有機ヨウ素を吸着するものである。銀添着吸着剤は、
単体ヨウ素やヨウ化メチルのヨウ素を、ヨウ化銀として
化学的に銀添着吸着剤上に固定化するものである。[0003] Examples of the iodine adsorbent include impregnated carbon and silver impregnated adsorbents. The impregnated carbon adsorbs simple iodine by physical adsorption and organic iodine such as methyl iodide by an isotope exchange reaction. The silver impregnated adsorbent is
In this method, simple iodine or iodine of methyl iodide is chemically immobilized on a silver-impregnated adsorbent as silver iodide.
【0004】これらの吸着剤を用いたヨウ素除去フィル
タは、その性能を維持するため、吸着剤充填層に空隙な
いし薄層部が形成されたり、フィルタ枠やガスケットな
どにバイパスリーク路が形成されることがあってはなら
ず、このような場合にはフィルタ装置全体の性能が低下
する。したがって、ヨウ素除去フィルタは、その設置
時、さらには設置後、定期的にリークを検出する必要が
ある。In order to maintain the performance of an iodine removal filter using these adsorbents, voids or thin layers are formed in the adsorbent-filled layer, and bypass leak paths are formed in filter frames, gaskets, and the like. Must not occur, and in such a case, the performance of the entire filter device is reduced. Therefore, it is necessary to detect a leak at the time of installing the iodine removing filter, and also periodically after the setting.
【0005】従来、リークを検出する方法としては、添
着炭、銀添着吸着剤に対してそれぞれ次の方法がある。Conventionally, there are the following methods for detecting leaks for impregnated charcoal and silver-impregnated adsorbents.
【0006】(1) 吸着剤を充填したフィルタに通気ガス
を供給し、これにフレオンを不純物ガスとして導入し、
フィルタ前面の不純物濃度が安定した後、出口ガス中の
不純物濃度を測定してそのリーク量を求める方法(AS
TM規格)。これは活性炭を対象として開発された方法
で、フレオンは活性炭に物理吸着される。(1) An aeration gas is supplied to a filter filled with an adsorbent, and Freon is introduced into the filter as an impurity gas.
After the impurity concentration on the front surface of the filter is stabilized, the impurity concentration in the outlet gas is measured to determine the amount of leakage (AS
TM standard). This method was developed for activated carbon, and freon is physically adsorbed on activated carbon.
【0007】(2) 前記の不純物として、ヨウ化メチルな
どの銀と化学吸着する物質を用いる方法(特開昭56-108
998 、特開昭59-37445)。この方法は、物理吸着能力の
無いため、フレオンを吸着しない銀添着吸着剤を対象と
したものである。(2) A method using a substance which chemically adsorbs silver, such as methyl iodide, as the impurity (JP-A-56-108)
998, JP-A-59-37445). This method is intended for a silver-loaded adsorbent that does not adsorb freon because it has no physical adsorption ability.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記従
来技術には次のような問題がある。フィルタのリークの
検出にあたっては、フィルタ出口での不純物ガスの流出
時期とその検出のタイミングを一致させる必要がある。
従来の吸着材の性能では、フィルタにリークがない場合
でもフィルタ出口での不純物ガス濃度は測定可能であ
り、フィルタ出口での不純物ガスの流出時期とその検出
のタイミングを一致させることは容易である。しかし、
近年の吸着剤の高性能化に伴って、フィルタ出口での不
純物ガス濃度が検出限界以下となることが多くなる。こ
のため、上記従来技術(1)(2)では、フィルタにリークが
ある場合でもフィルタ入口での不純物ガスの導入のタイ
ミングに異常が生じた場合は、フィルタにリークが無い
と判断される恐れがある。これを従来技術で対応するた
めには、フィルタ前面での不純物濃度を高める必要があ
り、従来技術(1) では地球のオゾン層破壊で近年問題と
なってきたフレオンの放出量の増大を招いたり、従来技
術(2) では不純物ガスと銀が反応してしまうなどの問題
が発生する。However, the above prior art has the following problems. In detecting the leak of the filter, it is necessary to match the outflow timing of the impurity gas at the filter outlet with the detection timing.
With the performance of the conventional adsorbent, even when there is no leak in the filter, the impurity gas concentration at the filter outlet can be measured, and it is easy to match the outflow time of the impurity gas at the filter outlet with the detection timing. . But,
As the performance of adsorbents increases in recent years, the concentration of impurity gas at the outlet of the filter often becomes lower than the detection limit. For this reason, in the above-mentioned conventional techniques (1) and (2), even if there is a leak in the filter, if there is an abnormality in the introduction timing of the impurity gas at the filter inlet, it may be determined that the filter has no leak. is there. To cope with this with the conventional technology, it is necessary to increase the impurity concentration in front of the filter, and in the conventional technology (1), the amount of released freon, which has recently become a problem due to the depletion of the ozone layer on the earth, may be increased. However, the prior art (2) has a problem that the impurity gas reacts with silver.
【0009】本発明の目的は、フィルタ出口の不純物ガ
ス濃度が検出限界以下であっても、信頼性の高いフィル
タのリーク検出を行える吸着剤充填フィルタのリーク検
出方法及び装置を提供することにある。It is an object of the present invention to provide a method and an apparatus for detecting a leak of an adsorbent-filled filter which can detect a leak of a filter with high reliability even when an impurity gas concentration at a filter outlet is below a detection limit. .
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、吸着剤充填フィルタのリーク検出方法に
おいて、前記フィルタに通気ガスを供給するとともに、
吸着剤と反応する反応性ガスをフィルタ入口から導入
し、少なくともフィルタ出口の反応性ガスと反応生成物
ガスの濃度を測定することを特徴とする吸着剤充填フィ
ルタのリーク検出方法を提供する。In order to achieve the above object, the present invention relates to a method for detecting a leak of an adsorbent-filled filter, comprising the steps of:
A leak detection method for an adsorbent-filled filter, characterized by introducing a reactive gas that reacts with an adsorbent from a filter inlet and measuring at least the concentrations of the reactive gas and the reaction product gas at the filter outlet.
【0011】上記リーク検出方法においては、 リーク率(%) =反応性ガスの出口濃度/(反応性ガスの
出口濃度+反応生成物ガス濃度)×100 にて吸着剤充填フィルタのリーク率を算出してもよし、
更にフィルタ入口の反応性ガスの濃度を測定し、従来通
り、 リーク率(%) =反応性ガスの出口濃度/反応性ガスの入
口濃度×100 にて吸着剤充填フィルタのリーク率を算出してもよい。In the above leak detection method, the leak rate of the adsorbent-filled filter is calculated by the following equation: leak rate (%) = reactive gas outlet concentration / (reactive gas outlet concentration + reaction product gas concentration) × 100. Alright,
Further, the concentration of the reactive gas at the filter inlet was measured, and the leak rate of the adsorbent-filled filter was calculated by the following equation: leak rate (%) = reactive gas outlet concentration / reactive gas inlet concentration × 100. Is also good.
【0012】また、上記目的を達成するために、本発明
は、吸着剤充填フィルタのリーク検出装置において、吸
着剤と反応する反応性ガス発生器と、少なくともフィル
タ出口の反応性ガスと反応生成物ガスの濃度を測定する
濃度測定器とを有することを特徴とする吸着剤充填フィ
ルタのリーク検出装置を提供する。According to another aspect of the present invention, there is provided a leak detecting device for an adsorbent-filled filter, comprising: a reactive gas generator that reacts with an adsorbent; A leak detecting device for an adsorbent-filled filter, comprising: a concentration measuring device for measuring a gas concentration.
【0013】[0013]
【作用】以上のように構成した本発明では、吸着剤充填
フィルタ出口の反応性ガスと反応生成物ガスの濃度の両
方に測定することによって、出口の反応性ガス濃度が検
出限界以下であっても、反応性ガスがフィルタを透過し
た時期とその検出のタイミングが一致していることが確
認でき、フィルタのリーク検出の信頼性が向上する。In the present invention constructed as described above, the concentration of the reactive gas at the outlet is below the detection limit by measuring both the concentration of the reactive gas and the concentration of the reaction product gas at the outlet of the adsorbent-filled filter. Also, it can be confirmed that the timing when the reactive gas has passed through the filter coincides with the timing of its detection, and the reliability of leak detection of the filter is improved.
【0014】[0014]
【実施例】以下、本発明の好適な実施例について図面に
より説明する。本発明によるヨウ素除去フィルタのリー
ク検出方法を適用した場合の装置構成を図1に示す。図
1において、1はヨウ素除去フィルタであり、ヨウ素除
去フィルタのケース1A内には吸着剤充填層2が固定さ
れている。吸着剤充填層2にはヨウ素吸着剤(粒径1〜
2mm)充填されている。この充填状態は、リーク検出
法での確認の対象となる。また、吸着剤充填層2はフィ
ルタケース1Aに、吸着剤充填層2を通らないガスの流
通が無いように固定される。この固定状態も、リーク検
出法での確認の対象となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus configuration when the leak detection method for an iodine removal filter according to the present invention is applied. In FIG. 1, reference numeral 1 denotes an iodine removal filter, and an adsorbent filled layer 2 is fixed in a case 1A of the iodine removal filter. An iodine adsorbent (particle size: 1 to
2 mm) filled. This filling state is to be confirmed by the leak detection method. Further, the adsorbent-filled layer 2 is fixed to the filter case 1A such that there is no gas flow that does not pass through the adsorbent-filled layer 2. This fixed state is also subject to confirmation by the leak detection method.
【0015】以上のように構成されたヨウ素除去フィル
タのリーク検出装置は吸着剤充填層2のヨウ素吸着剤と
反応する反応性ガス発生器3と、フィルタ入口の反応性
ガスの濃度及びフィルタ出口の反応性ガスと反応生成物
ガスの濃度を測定する濃度測定器4とを有している。リ
ーク検出時には、反応性ガス発生器3はヨウ素除去フィ
ルタ1の入口部に接続され、濃度測定器4はヨウ素除去
フィルタ1の入口部と出口部とに接続される。The leak detecting device for the iodine removing filter having the above-described structure includes a reactive gas generator 3 which reacts with the iodine adsorbent in the adsorbent packed layer 2, a concentration of the reactive gas at the inlet of the filter and an outlet of the filter. It has a concentration measuring device 4 for measuring the concentrations of the reactive gas and the reaction product gas. When a leak is detected, the reactive gas generator 3 is connected to the inlet of the iodine removing filter 1, and the concentration measuring device 4 is connected to the inlet and outlet of the iodine removing filter 1.
【0016】次に、リーク検出法について手順に従い詳
細に述べる。図2にヨウ素除去フィルタ1の出入口の濃
度の時間変化を示す。ここで、(a)はフィルタ入口の
反応性ガス濃度、(b)及び(c)は、それぞれ、リー
クが有る場合とリークが無い場合のフィルタ出口の反応
性ガス(実線)と反応生成物ガス濃度(破線)である。
以下、手順に従い述べる。Next, the leak detection method will be described in detail according to the procedure. FIG. 2 shows the change over time in the concentration at the entrance and exit of the iodine removal filter 1. Here, (a) is the reactive gas concentration at the filter inlet, and (b) and (c) are the reactive gas (solid line) and the reaction product gas at the filter outlet with and without leakage, respectively. The density (broken line).
The procedure will be described below.
【0017】まず、通気ガスをヨウ素除去フィルタ1に
供給する。次いで、反応性ガス発生器4より反応性ガス
を導入する。フィルタ入口の反応性ガス濃度は、図2の
(a)に示すように、配管での滞留時間のため、導入時
間より遅れて上昇する。また、フィルタ出口の反応性ガ
スと反応生成物ガス濃度は、図2の(b)及び(c)に
示すように、配管の滞留時間などのため、フィルタ入口
の反応性ガス濃度の時間変化より遅れる。First, a ventilation gas is supplied to the iodine removal filter 1. Next, a reactive gas is introduced from the reactive gas generator 4. As shown in FIG. 2A, the reactive gas concentration at the filter inlet rises later than the introduction time due to the residence time in the pipe. Further, as shown in FIGS. 2B and 2C, the concentration of the reactive gas at the outlet of the filter and the concentration of the reaction product gas are longer than the concentration of the reactive gas at the inlet of the filter due to the residence time of the pipe. Be late.
【0018】リークが有る場合と無い場合について、具
体的に述べる。リークが有る場合には、図2(b)に示
すように、反応性ガスと反応生成物ガスがあるため、フ
ィルタ入口の反応性ガスとフィルタ出口の反応性ガスを
測定すれば、その濃度比から、従来法と同様に、次式に
よってリーク率を測定できる。The case where there is a leak and the case where there is no leak will be specifically described. If there is a leak, there is a reactive gas and a reaction product gas as shown in FIG. 2 (b). Therefore, if the reactive gas at the filter inlet and the reactive gas at the filter outlet are measured, the concentration ratio is determined. Therefore, the leak rate can be measured by the following equation in the same manner as in the conventional method.
【0019】リーク率(%) =反応性ガスの出口濃度/反
応性ガスの入口濃度×100 一方、リークの無い場合には、近年の吸着剤の高性能化
に伴って、フィルタ出口での不純物ガス濃度が検出限界
以下となることが多くなる。このため、図2(c)に示
すように、反応生成物ガスのみが検出される。従来法で
は、フィルタ出口では反応性ガスのみを検出しており、
反応性ガスがフィルタを透過した時期とその検出のタイ
ミングが一致しているかどうか、すなわち測定が正確に
行われたどうかが確認できない。この場合、フィルタ入
口での不純物ガスの導入のタイミングに異常が生じた場
合は、フィルタにリークがある場合でもリークが無いと
判断される恐れがある。本実施例のリーク検出方法で
は、反応生成物ガスの濃度を測定するため、反応性ガス
が本来存在すべき時間がわかり、反応性ガス濃度を正確
に測定でき、リークの無いことが確認できる。Leakage rate (%) = Reactive gas outlet concentration / Reactive gas inlet concentration × 100 On the other hand, if there is no leak, the impurity at the filter outlet is increased due to the recent improvement in the adsorbent performance. The gas concentration often falls below the detection limit. Therefore, as shown in FIG. 2C, only the reaction product gas is detected. In the conventional method, only the reactive gas is detected at the filter outlet,
It cannot be confirmed whether the timing when the reactive gas has passed through the filter coincides with the timing of its detection, that is, whether the measurement has been performed accurately. In this case, if an abnormality occurs in the timing of introducing the impurity gas at the filter inlet, there is a possibility that it is determined that there is no leak even if the filter has a leak. In the leak detection method of the present embodiment, since the concentration of the reaction product gas is measured, the time when the reactive gas should originally exist can be known, the reactive gas concentration can be accurately measured, and it can be confirmed that there is no leak.
【0020】次に、銀添着吸着剤の場合の反応性ガスと
反応生成物ガスの具体的な例を図3に示す。銀添着吸着
剤としては、硝酸銀(AgNO3 )を添着したアルミ
ナ、シリカゲル吸着剤、金属銀(Ag)を添着したアル
ミナ、シリカゲル吸着剤、銀イオン(Ag+ )をイオン
交換によって添着したゼオライトがある。反応性ガスと
しては、有機ハロゲンを主体として示した。この時の反
応生成物ガスは、銀の化学形態によって異なり、AgN
O3 の場合には、主として硝酸エステルが反応生成物ガ
スとして発生する。また、Ag、Ag+ の場合には、主
としてアルコールが反応生成物ガスとして発生する。本
発明では、反応生成物ガスである硝酸エステル、アルコ
ールを測定するものである。Next, specific examples of the reactive gas and the reaction product gas in the case of the silver-impregnated adsorbent are shown in FIG. Examples of the silver-impregnated adsorbent include alumina impregnated with silver nitrate (AgNO 3 ), silica gel adsorbent, alumina impregnated with metallic silver (Ag), silica gel adsorbent, and zeolite impregnated with silver ions (Ag + ) by ion exchange. . As the reactive gas, organic halogen was mainly shown. The reaction product gas at this time differs depending on the chemical form of silver, and AgN
In the case of O 3 , nitrate ester is mainly generated as a reaction product gas. In the case of Ag and Ag + , alcohol is mainly generated as a reaction product gas. In the present invention, nitrate esters and alcohols, which are reaction product gases, are measured.
【0021】上記の例は、銀添着吸着剤の場合である
が、原子力発電所の排気系で使われている添着炭の場合
も、本発明を適用できる。すなわち、添着炭は、単体ヨ
ウ素の吸着能力の高い活性炭に、ヨウ化カリウム(K
I、KI3 など)を添着したもので、ヨウ化メチルなど
の有機ヨウ素の吸着性能を改良したのものである。この
時のヨウ化メチルの吸着反応は、次のような同位体交換
反応で表される。Although the above example is for a silver impregnated adsorbent, the present invention can also be applied to impregnated carbon used in the exhaust system of a nuclear power plant. That is, the impregnated carbon is activated charcoal having a high adsorption capacity for simple iodine and potassium iodide (K
I, which was impregnated and KI 3), is of improved adsorption performance of organic iodine, such as methyl iodide. The methyl iodide adsorption reaction at this time is represented by the following isotope exchange reaction.
【0022】 CH3 I* (ガス) + KI(吸着剤) → CH3 I(ガス) + KI* (吸着剤) ここで、I* は放射性ヨウ素である。以上の反応から、
図3に示した反応性ガスが使用できる。この時の反応生
成物ガスは、ヨウ化メチルやヨウ化エチルなどのヨウ化
アルキルである。CH 3 I * (gas) + KI (adsorbent) → CH 3 I (gas) + KI * (adsorbent) where I * is radioactive iodine. From the above reaction,
The reactive gas shown in FIG. 3 can be used. The reaction product gas at this time is an alkyl iodide such as methyl iodide or ethyl iodide.
【0023】上記の例では、リーク率を反応性ガスの出
入口濃度から算出したが、フィルタ出口の反応性ガスと
反応生成物ガスの濃度から、次のようにして算出するこ
ともできる。In the above example, the leak rate was calculated from the concentration of the reactive gas at the inlet and outlet, but it can also be calculated as follows from the concentrations of the reactive gas and the reaction product gas at the outlet of the filter.
【0024】 リーク率(%) =反応性ガスの出口濃度/(反応性ガスの
出口濃度+反応生成物ガス濃度)×100 この場合、反応生成物ガス量が、反応生成物ガスの吸着
剤への吸着や、副反応によって少なくなるが、リーク率
は大きめの値となり安全側の評価ができる。また、濃度
測定器4はフィルタ出口にのみ接続すればよく、構成が
簡単となる。Leak rate (%) = Reactive gas outlet concentration / (Reactive gas outlet concentration + Reaction product gas concentration) × 100 In this case, the amount of the reaction product gas is transferred to the adsorbent of the reaction product gas. Although it decreases due to adsorption and side reactions, the leak rate becomes a relatively large value and can be evaluated on the safe side. Further, the concentration measuring device 4 only needs to be connected to the filter outlet, and the configuration is simplified.
【0025】[0025]
【発明の効果】本発明によれば、反応性ガスがフィルタ
を透過した時期とその検出のタイミングが一致している
ことが確認できるので、反応性ガス濃度を正確に測定で
き、フィルタのリーク検出の信頼性が向上できる。According to the present invention, it is possible to confirm that the time when the reactive gas has passed through the filter coincides with the timing of its detection, so that the concentration of the reactive gas can be accurately measured, and the leakage of the filter can be detected. Reliability can be improved.
【図1】本発明の一実施例によるヨウ素除去フィルタの
リーク検出方法及び装置を示す図である。FIG. 1 is a diagram illustrating a method and an apparatus for detecting a leak in an iodine removal filter according to an embodiment of the present invention.
【図2】フィルタ出入口の反応性ガスと反応生成物ガス
の濃度の時間変化を示す図である。FIG. 2 is a diagram showing a change over time of the concentrations of a reactive gas and a reaction product gas at a filter inlet / outlet;
【図3】反応性ガスと反応生成物ガスの例を表形式で示
す図である。FIG. 3 is a diagram showing examples of a reactive gas and a reaction product gas in a table format.
1 ヨウ素除去フィルタ 2 吸着剤充填層 3 反応性ガス発生器 4 反応性ガス及び反応生成物ガス濃度測定器 DESCRIPTION OF SYMBOLS 1 Iodine removal filter 2 Adsorbent packed bed 3 Reactive gas generator 4 Reactive gas and reaction product gas concentration measuring device
フロントページの続き (51)Int.Cl.7 識別記号 FI G01M 3/00 B01D 53/34 ZABA // B01D 53/14 ZAB (72)発明者 三浦 襄 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 エネルギー研究 所内 (72)発明者 泉田 龍男 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭58−172548(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21F 9/02 G01N 15/08 Continuation of the front page (51) Int.Cl. 7 identification code FI G01M 3/00 B01D 53/34 ZABA // B01D 53/14 ZAB (72) Inventor Jo Miura 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Energy Research Institute (72) Inventor Tatsuo Izumida 3-1-1, Sakaimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (56) References JP-A-58-172548 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) G21F 9/02 G01N 15/08
Claims (4)
おいて、前記フィルタに通気ガスを供給するとともに、
吸着剤と反応する反応性ガスをフィルタ入口から導入
し、少なくともフィルタ出口の反応性ガスと反応生成物
ガスの濃度を測定することを特徴とする吸着剤充填フィ
ルタのリーク検出方法。1. A method for detecting a leak in an adsorbent-filled filter, comprising supplying a ventilation gas to the filter,
A method for detecting a leak in an adsorbent-filled filter, comprising introducing a reactive gas reacting with an adsorbent from a filter inlet and measuring at least the concentrations of the reactive gas and the reaction product gas at the filter outlet.
ーク検出方法において、 リーク率(%) =反応性ガスの出口濃度/(反応性ガスの
出口濃度+反応生成物ガス濃度)×100 にて吸着剤充填フィルタのリーク率を算出することを特
徴とする吸着剤充填フィルタのリーク検出方法。2. The leak detection method for an adsorbent-filled filter according to claim 1, wherein a leak rate (%) = reactive gas outlet concentration / (reactive gas outlet concentration + reaction product gas concentration) × 100. Calculating a leak rate of the adsorbent-filled filter by using a filter.
ーク検出方法において、更にフィルタ入口の反応性ガス
の濃度を測定し、 リーク率(%) =反応性ガスの出口濃度/反応性ガスの入
口濃度×100 にて吸着剤充填フィルタのリーク率を算出することを特
徴とする吸着剤充填フィルタのリーク検出方法。3. The method for detecting a leak of an adsorbent-filled filter according to claim 1, further comprising measuring a concentration of the reactive gas at the inlet of the filter, and a leak rate (%) = reactive gas outlet concentration / reactive gas concentration. A leak detection method for an adsorbent-filled filter, comprising calculating a leak rate of the adsorbent-filled filter at an inlet concentration of 100.
おいて、吸着剤と反応する反応性ガス発生器と、少なく
ともフィルタ出口の反応性ガスと反応生成物ガスの濃度
を測定する濃度測定器とを有することを特徴とする吸着
剤充填フィルタのリーク検出装置。4. A leak detector for an adsorbent-filled filter, comprising: a reactive gas generator that reacts with an adsorbent; and a concentration measuring device that measures at least the concentrations of the reactive gas and the reaction product gas at the outlet of the filter. A leak detector for an adsorbent-filled filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5008813A JP3071057B2 (en) | 1993-01-22 | 1993-01-22 | Method and apparatus for detecting leak of adsorbent-filled filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5008813A JP3071057B2 (en) | 1993-01-22 | 1993-01-22 | Method and apparatus for detecting leak of adsorbent-filled filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06222194A JPH06222194A (en) | 1994-08-12 |
JP3071057B2 true JP3071057B2 (en) | 2000-07-31 |
Family
ID=11703264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5008813A Expired - Fee Related JP3071057B2 (en) | 1993-01-22 | 1993-01-22 | Method and apparatus for detecting leak of adsorbent-filled filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3071057B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4041844B2 (en) * | 1999-03-08 | 2008-02-06 | 独立行政法人 日本原子力研究開発機構 | Iodine removal filter, iodine removal device, and composite device |
JP5595110B2 (en) | 2010-05-10 | 2014-09-24 | 三菱重工業株式会社 | Iodine filter leak test method, leak test apparatus, and fluorine-containing reagent |
DE102010053710B4 (en) * | 2010-12-07 | 2012-12-27 | Heraeus Electro-Nite International N.V. | Method and device for analyzing samples of molten metal |
JP5641912B2 (en) * | 2010-12-14 | 2014-12-17 | 株式会社日本環境調査研究所 | Removal efficiency measurement system |
JP5641913B2 (en) * | 2010-12-14 | 2014-12-17 | 株式会社日本環境調査研究所 | Removal efficiency measurement system |
-
1993
- 1993-01-22 JP JP5008813A patent/JP3071057B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06222194A (en) | 1994-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4447353A (en) | Method for treating a nuclear process off-gas stream | |
CN104157318A (en) | Treatment system for hydrogen-containing radioactive waste gas in nuclear power station | |
JP3071057B2 (en) | Method and apparatus for detecting leak of adsorbent-filled filter | |
Choi et al. | Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions | |
WO1981000413A1 (en) | Method for treating a nuclear process off-gas stream | |
Wren et al. | Methyl iodide trapping efficiency of aged charcoal samples from Bruce-A emergency filtered air discharge systems | |
JPH0475455B2 (en) | ||
Major et al. | Carbon dioxide removal from air by adsorbents | |
JPH0334968B2 (en) | ||
KR101636976B1 (en) | A iodine absorbent material containing salts and a radioactive iodine removal system using the same | |
Keller et al. | A selectiveadsorbentSft. Mpling system for differentiating airborne iodine species | |
Wren et al. | Modeling the removal and retention of radioiodine by TEDA-impregnated charcoal under reactor accident conditions | |
Kovach | History of radioiodine control | |
JPS6328655B2 (en) | ||
Hassan et al. | Adsorption of radon from a humid atmosphere on activated carbon | |
JPS5954946A (en) | Method for detecting leakage from filter filled with silver zeolite | |
JPS5937445A (en) | Leak detecting method of filter packed with absorbent impregnated with silver | |
Sakurai et al. | Application of silver-free zeolites to remove iodine from dissolver off-gases in spent fuel reprocessing plants | |
CN116243372A (en) | Portable real-time radioactive xenon monitor and monitoring method | |
Wood et al. | Nonradiometric and radiometric testing of radioiodine sorbents using methyl iodide | |
Choi et al. | Preparation and structural studies of organotin (IV) complexes formed with organic carboxylic acids | |
Underhill | Release of adsorbed krypton and xenon from spilled charcoal | |
Fernandez et al. | Methods evaluation for the continuous monitoring of carbon-14, krypton-85, and iodine-129 in nuclear fuel reprocessing and waste solidification facility off-gas | |
Wood et al. | Methyl iodide retention on charcoal sorbents at parts-per-million concentrations | |
Snellman | Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities-a literature survey |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080526 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |