JPS6153581A - Position monitor for submarine cable or the like - Google Patents

Position monitor for submarine cable or the like

Info

Publication number
JPS6153581A
JPS6153581A JP59174156A JP17415684A JPS6153581A JP S6153581 A JPS6153581 A JP S6153581A JP 59174156 A JP59174156 A JP 59174156A JP 17415684 A JP17415684 A JP 17415684A JP S6153581 A JPS6153581 A JP S6153581A
Authority
JP
Japan
Prior art keywords
cable
section
ultrasonic
submarine
corner reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59174156A
Other languages
Japanese (ja)
Inventor
Haruo Okamura
岡村 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59174156A priority Critical patent/JPS6153581A/en
Publication of JPS6153581A publication Critical patent/JPS6153581A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Abstract

PURPOSE:To achieve avoidance of damage and accurate installation of a cable, by mounting corner reflectors with a better reflection efficiency for ultrasonic waves discretely on the cable to enable the capturing of the position and attitude thereof during and after the installation thereof. CONSTITUTION:This apparatus is equipped with ultrasonic wave reflection bodies 5 mounted discretely on a submarine cable 4, an ultrasonic wave transmitter and an ultrasonic wave receiver arranged on a cable installation ship 1 or a monitor ship 2 and an analysis recorder 3 of received signals. The reflection bodies 5 are each made up of a corner reflector section 5-1 for sending reflected waves in the direction of incoming ultrasonic waves, a buoyance generating section 5-2 and a mounting section 6 for a cable. The corner reflector section 5-1 is so set that the opening thereof is vertical to the sea surface by a buoyance with the buoyance generator section 5-2 while mounted on the cable at intervals of several m - several ten m.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は海底ケーブル等の布設中又は布設後の位置を浅
海域から深海域まで確実に把握する海中超音波装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an underwater ultrasonic device that reliably determines the position of submarine cables and the like during or after installation, from shallow waters to deep waters.

(従来技術の問題点) 従来、海中の物体の位置探査には各種方法が提案されて
いる。これらは対象が大型の場合には、超音波の反射を
直接捕える方法が一般的であり、また小型の対象や深海
域、遠距離の対象に対しては、超音波発振器(所謂ビン
ガ−又はトランスポンダ)を取り付けてその信号を海上
で受信することによってその位置を知る方法が一般的で
ある。
(Problems with Prior Art) Conventionally, various methods have been proposed for location detection of underwater objects. When the target is large, the general method is to directly capture the reflection of the ultrasound, and for small targets, deep seas, or long distance targets, an ultrasonic oscillator (so-called binger or transponder) is used. ) and receive the signal at sea to determine its position.

海底ケーブルには1000〜1500m以上の深海用と
して直径25酊(海底光ケーブル)又は直径44I+J
(海底同軸ケーブル)のものが用いられ、1000m以
浅用にm−られている各種外装ケーブルも直径約100
+u以下と細径である。これらの細径ケーブルに直接超
音波を照射して、その反射波を捕えてケーブルの位置を
知るためには、ケーブル径とほぼ同等以下の短かい波長
を用い、円柱形で効率の悪い反射特性と海中の減衰特性
を考慮して充分なエネルギの超音波を照射する必要があ
るなど、多くの制約がある。現実にも、前記方法により
海底ケーブルの位置の探査がなされた例は、′ll1m
〜数十m程度の極く近距離の実験例があるに過ぎず、1
000m以上の深海底のケーブルを海面上から探査する
ことは極めて困難である。
The submarine cable has a diameter of 25cm (submarine optical cable) or a diameter of 44I+J for deep seas of 1000 to 1500m or more.
(submarine coaxial cable) is used, and various armored cables that are used for shallower applications of 1000 m or less have a diameter of approximately 100 m.
It has a small diameter of less than +u. In order to directly irradiate ultrasonic waves onto these small diameter cables and capture the reflected waves to determine the position of the cable, a short wavelength approximately equal to or less than the cable diameter is used, and the cylindrical shape and inefficient reflection characteristics are used. There are many limitations, such as the need to irradiate ultrasonic waves with sufficient energy while taking into account the attenuation characteristics of the ocean. In reality, there is an example in which the location of a submarine cable was investigated using the above method.
There are only examples of experiments at extremely short distances of ~ several tens of meters;
It is extremely difficult to explore deep seabed cables over 1,000m deep from the sea surface.

第二の方法として、ケーブルに超音波発振器をとりつけ
ることが考えられる。この方法は原理的には水深数千m
の深海域でも充分ケーブル位置の捕捉が可能である。し
かし、時には数千りにも及ぶ長距離の海底ケーブル位置
を知るためには前記超音波発振器を数多く必要とする。
A second method is to attach an ultrasonic oscillator to the cable. In principle, this method works at a depth of several thousand meters.
It is possible to sufficiently capture the cable position even in deep sea areas. However, in order to know the location of long-distance submarine cables, sometimes numbering in the thousands, a large number of the ultrasonic oscillators are required.

これらは深海域仕様で1台数子方円〜百万円以上と高価
であり、また搭載電池の寿命にも制限がある。そこで、
布設終了後に回収すれば経済的ではあるが、そのだめの
機構設計と工法の確立には多くの問題が予想される。
These are deep-sea specifications and are expensive, ranging from a few yen to over a million yen per unit, and the lifespan of the installed batteries is also limited. Therefore,
Although it would be economical to recover the waste after it has been laid, many problems can be expected in the design of the mechanism and the establishment of construction methods.

(発明の目的) 本発明はこれらの欠点を除去するため、超音波に対する
反射効率に優れ極めて安価なコーナリフレクタをケーブ
ルに離散的にとりつけ、海上の船舶に搭載した超音波送
受波装置により前記コーナリフレクタの位置を捕捉でき
るようにし7+海底ケーブル等の位置監視装置を提供す
るものである。
(Object of the Invention) In order to eliminate these drawbacks, the present invention has provided corner reflectors that are highly efficient in reflecting ultrasonic waves and are extremely inexpensive and are discretely attached to the cable, and the ultrasonic wave transmitting/receiving device mounted on a ship on the sea is used to detect the corners. The present invention provides a position monitoring device for a 7+ submarine cable, etc., which can capture the position of a reflector.

(発明の構成と作用) 以下図面により本発明の詳細な説明する。(Structure and operation of the invention) The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例の概念図であって、工は海底
ケーブル敷設船、2は監視船、3は超音波送受波装置、
4は海底ケーブル、5は超音波用コーナリフレクタ、6
は取付部、7は超音波送受波装置3からの超音波の往路
、8は同じく復路である。第2図はコーナリフレクタ部
5の一構造例であって、5−■は反射板、5−2は浮力
発生部である。
FIG. 1 is a conceptual diagram of an embodiment of the present invention, where 2 is a submarine cable laying ship, 2 is a monitoring ship, 3 is an ultrasonic transceiver,
4 is a submarine cable, 5 is an ultrasonic corner reflector, 6 is
7 is the outgoing path of the ultrasonic wave from the ultrasonic wave transmitting/receiving device 3, and 8 is the incoming path. FIG. 2 shows an example of the structure of the corner reflector section 5, where 5-■ is a reflecting plate and 5-2 is a buoyancy generating section.

このような構造になっているから、コーナリフレクタは
常に浮力の方向すなわち海面に垂直な方向に姿勢を保ち
、その結果、広範囲にわたり到来波の方向に超音波を効
率良く反射することができる。W、2図中の破線7a、
8aオ、l:び7b、8bは、コーナリフレクタに対し
入射する超音波と反射される超音波の経路を二側だけ例
示したものである。
With this structure, the corner reflector always maintains its attitude in the direction of buoyancy, that is, in the direction perpendicular to the sea surface, and as a result, it can efficiently reflect ultrasonic waves in the direction of incoming waves over a wide range. W, broken line 7a in Figure 2,
8a and 8a and 7b and 8b illustrate the paths of the ultrasonic waves incident on the corner reflector and the ultrasonic waves reflected from the corner reflector on only two sides.

このような構造であるから、コーナリフレクタは単純な
円形の平板を直角に組み合わせて極めて単純かつ安価に
製作することができる。コーナリフレクタ5の反射板5
−1を構成する材料としては、音響インピーダンス(Z
、)が、海水のそれ(Z2)より充分大きいか、充分小
さいものを使用する必要がある。超音波の反射率(R)
は、 (k7/m2・s)に対し、例えば、z+(空気)辷4
x102(kz/m2・s)  、   Zl(鋼) 
# 45 X 10’ (k7/ m’s )  。
With this structure, the corner reflector can be manufactured extremely simply and at low cost by combining simple circular plates at right angles. Reflector plate 5 of corner reflector 5
-1 is made of acoustic impedance (Z
, ) is sufficiently larger or smaller than that of seawater (Z2). Ultrasonic reflectance (R)
For (k7/m2・s), for example, z+(air)×4
x102 (kz/m2・s), Zl (steel)
#45 x 10'(k7/m's).

Z、(ゴム)’;1.3X10’(kp/m’s)であ
る。従ッテ、R(海水/空気)埃99.95係、R(海
水/鋼)ミ93.5チ、R(海水/ゴム)#乙1%など
となる。従って、反射用材料の選択にあたっては、適用
水深が浅い場合には発泡スチロール、発泡ウレタン等の
内部に気泡を有するものが有望である。適用水深が深い
ため釦、上述のような内部に気泡を有する材料が押し潰
されるおそれがある場合には鋼のような中実材料を選択
する必要がある。ここで、発泡スチロール、発泡ウレタ
ン等はそれ自体が浮力を有するので、浮力発生部を特別
に設ける必要はない。
Z, (rubber)';1.3X10'(kp/m's). R (seawater/air) dust is 99.95%, R (seawater/steel) is 93.5%, R (seawater/rubber) is 1%, etc. Therefore, when selecting a reflective material, materials with air bubbles inside, such as styrene foam and urethane foam, are promising when the water depth is shallow. If there is a risk that a button or a material with bubbles inside as described above may be crushed due to the deep water depth, it is necessary to select a solid material such as steel. Here, since styrene foam, urethane foam, etc. have buoyancy themselves, there is no need to provide a special buoyancy generating section.

金属等の中実材料を用いる場合には、第2図の5−2の
如き浮力体を必要とする。これには、微細な中空ガラス
球(20〜80μmφ)をエポキ7樹脂で固定成形した
大深度用浮力材料を用いることができる。
If a solid material such as metal is used, a buoyant body such as 5-2 in FIG. 2 is required. For this purpose, a buoyancy material for deep depths in which fine hollow glass spheres (20 to 80 μmφ) are fixed and molded with epoxy 7 resin can be used.

次に、超音波信号の発信、受信、解析、記録装置として
は、既存のソナーシステム(例えばスキャンニングノナ
ー、マルチビームソナー、サイドルノキングソナー)を
用いることができる。これらはいずれも測定視野内の物
体(例えば海底面。
Next, as an apparatus for transmitting, receiving, analyzing, and recording ultrasonic signals, an existing sonar system (for example, a scanning nonar, a multibeam sonar, and a side run king sonar) can be used. All of these are objects within the measurement field of view (for example, the seafloor surface).

海中の浮遊物他)の超音波反射強度の分布とその位置(
距離、方向)を把握する/ステムである。
Distribution of ultrasonic reflection intensity of floating objects in the sea, etc.) and its position (
(distance, direction)/stem.

従って、前記のコーナリフレクタは、背景となる海底面
等と比較して充分大きな超音波反射特性を有するので、
これらの/ステムでその位置を把握することができる。
Therefore, the corner reflector has sufficiently large ultrasonic reflection characteristics compared to the background surface of the ocean floor, etc.
Its position can be determined by these/stem.

第3図は、本発明の他の一実施例であって、5aけコー
ナリフレクタ5と隣接して例えば数m〜数十mの間隔で
とりつけられた第二のコーナリフレクタであって、これ
らは2個〜3個で一群を成し、隣接するりフレフタ群と
は例えば100m以上の如く充分に距離が隔てられてい
る。
FIG. 3 shows another embodiment of the present invention, which is a second corner reflector installed adjacent to the 5a corner reflector 5 at an interval of, for example, several meters to several tens of meters. Two or three of them form a group, and are separated by a sufficient distance, for example, 100 m or more, from an adjacent flafter group.

このような配列でリフレクタがケーブルに取りつけられ
ていると、ケーブル位置、姿態の把握に際し以下の利点
が期待できる。
When reflectors are attached to the cable in this arrangement, the following advantages can be expected when grasping the position and posture of the cable.

(1)船上監視装置の画面上にほぼ同時刻に、二箇所以
上のほぼ同一の特異的な超音波反射反応が現われること
で、リフレクタが単独で存在する場合と比較してさらに
確実にリフレクタからの反応であることを特定できる−
0即ち、偶然、岩石や沈船の破片など、リフレクタ反応
と類似した反応を示すものが捕捉されたとしてもこれを
区別することができる。
(1) By having two or more almost identical specific ultrasonic reflection reactions appear on the screen of the onboard monitoring device at almost the same time, it is possible to more reliably detect ultrasonic waves from the reflector than when a single reflector exists. It can be determined that the reaction is −
In other words, even if something that shows a reaction similar to the reflector reaction is captured by chance, such as a rock or a piece of a shipwreck, it can be distinguished.

(2)リフレクタ群内の各々のりフレフタの配置から、
ケーブルの長手方向を概略予想することができる。従っ
て、実用上、多数のりフレフタをケーブルに対し等間隔
に密にとりつけることが不要で経済的である。
(2) From the arrangement of each glue reflector in the reflector group,
The longitudinal direction of the cable can be roughly predicted. Therefore, in practice, it is unnecessary and economical to closely attach a large number of glue flapers to the cable at equal intervals.

(発明の効果) 以上説明したように、海底ケーブルの布設中あるいは布
設後の位置、姿態が捕捉できるので、以下の効果が期待
できる。
(Effects of the Invention) As explained above, since the position and posture of submarine cables can be captured during or after installation, the following effects can be expected.

(1)、一般の漁船等に装備されている漁群探知機。(1) Fishing school detectors installed on general fishing boats, etc.

測深器等で海底ケーブルの位置が把握できるので、トロ
ール漁業や投錨による海底ケーブルの損傷を回避できる
という極めて大きな利点がある。
Since the position of the submarine cable can be determined using a depth sounder, etc., it has the great advantage of avoiding damage to the submarine cable caused by trawling or anchoring.

□ (2)ケーブル布設中のケーブル沈降姿態1着底位置を
把握することにより、船上からのケーブル布設条件を明
らかにすることができる。その結果、予定ルート上にケ
ーブルを過不足なく正確に布設することができる。これ
により、(1)ケーブル長の節約、、 (itlケーブ
ル残留張力の低減、(iii)ケーブル宙吊り状態の回
避、等が可能となる。
□ (2) Cable sinking state during cable installation 1 By understanding the bottom position, the cable installation conditions from the ship can be clarified. As a result, it is possible to accurately lay the cables on the planned route without excess or deficiency. This makes it possible to (1) save cable length, (reduce residual tension in the ITL cable, and (iii) avoid cable suspension, etc.).

(3)ケーブルの着底位置が正確に把握できるので、修
理時の探線の位置精度が向上する。その結果、障害修理
のために準備するケーブルおよび中継器を最小限に留め
ることができる。更に、探線に要する時間、経費の低減
が可能である。従って、障害修理の経済性が大幅に向上
し、また修理所要時間も短縮することができる。
(3) Since the bottom position of the cable can be accurately grasped, the positional accuracy of the probe line during repair is improved. As a result, the number of cables and repeaters to be prepared for troubleshooting can be kept to a minimum. Furthermore, the time and cost required for the search line can be reduced. Therefore, the economical efficiency of fault repair can be greatly improved, and the time required for repair can also be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概念図、第2図は本発明に
用いるコーナリフレクタ部の構造例を示す斜視図、第3
図は本発明の他の実施例の概念図である。 1・・・海底ケーブル敷設船、  2・・・監視船、3
・・・超音波送受波装置、  4・・・海底ケーブル、
5・・・超音波用コーナリフレクタ、 6・・・取付部、  7・・・超音波の往路、8・・・
超音波の復路、  5−1・・・反射板、5−2・・・
浮力発生部。
FIG. 1 is a conceptual diagram of an embodiment of the present invention, FIG. 2 is a perspective view showing an example of the structure of a corner reflector used in the present invention, and FIG.
The figure is a conceptual diagram of another embodiment of the present invention. 1... Submarine cable laying ship, 2... Surveillance ship, 3
... Ultrasonic transceiver device, 4... Submarine cable,
5... Corner reflector for ultrasonic waves, 6... Mounting part, 7... Outgoing path of ultrasonic waves, 8...
Return path of ultrasonic waves, 5-1...Reflector, 5-2...
Buoyancy generating part.

Claims (2)

【特許請求の範囲】[Claims] (1)海底ケーブル等に離散的にとりつけた超音波反射
物体と、前記海底ケーブル等の敷設船又は監視船上に配
置された超音波発信装置、受信装置および受信信号の解
析記録装置を有し、前記超音波反射物体は到来超音波の
方向に反射波を送出するコーナリフレクタ部、浮力発生
部およびケーブル等への取付部により構成され、前記コ
ーナリフレクタ部は前記浮力発生部の浮力により開口方
向が海面に垂直な方向に設定されていることを特徴とす
る海底ケーブル等の位置監視装置。
(1) Having ultrasonic reflecting objects discretely attached to a submarine cable, etc., and an ultrasonic transmitting device, a receiving device, and a received signal analysis and recording device disposed on a laying ship or a monitoring ship for the submarine cable, etc., The ultrasonic reflecting object is composed of a corner reflector section that sends reflected waves in the direction of the incoming ultrasonic wave, a buoyant force generating section, and an attachment section for a cable, etc., and the corner reflector section has an opening direction that is changed by the buoyancy of the buoyant force generating section. A position monitoring device for submarine cables, etc., characterized by being set perpendicular to the sea surface.
(2)前記コーナリフレクタ部として、複数のコーナリ
フレクタがケーブルに対して数m〜数十mの間隔で近接
してとりつけられ、かつ、前記の近接してとりつけられ
た複数のコーナリフレクタで構成されるリフレクタ群が
相互に充分の長距離を隔ててケーブルに取付けられてい
ることを特徴とする特許請求の範囲第1項記載の海底ケ
ーブル等の位置監視装置。
(2) The corner reflector section includes a plurality of corner reflectors attached to the cable in close proximity to each other at intervals of several meters to several tens of meters, and is composed of the plurality of corner reflectors attached in close proximity to each other. 2. A position monitoring device for a submarine cable or the like according to claim 1, wherein the reflector groups are attached to the cable at a sufficiently long distance from each other.
JP59174156A 1984-08-23 1984-08-23 Position monitor for submarine cable or the like Pending JPS6153581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174156A JPS6153581A (en) 1984-08-23 1984-08-23 Position monitor for submarine cable or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174156A JPS6153581A (en) 1984-08-23 1984-08-23 Position monitor for submarine cable or the like

Publications (1)

Publication Number Publication Date
JPS6153581A true JPS6153581A (en) 1986-03-17

Family

ID=15973663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174156A Pending JPS6153581A (en) 1984-08-23 1984-08-23 Position monitor for submarine cable or the like

Country Status (1)

Country Link
JP (1) JPS6153581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287405U (en) * 1988-12-20 1990-07-11
US20220136513A1 (en) * 2019-04-15 2022-05-05 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287405U (en) * 1988-12-20 1990-07-11
US20220136513A1 (en) * 2019-04-15 2022-05-05 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor

Similar Documents

Publication Publication Date Title
US10234587B2 (en) Active steering for marine seismic sources
US4641290A (en) Low frequency portable lightweight sonar systems and their method of deployment for greatly increasing the efficiency of submarine surveillance over large areas
CN102016979B (en) Tunable acoustic reflector
CA1195762A (en) Submerged marine streamer locator
US7301851B1 (en) Underway hull survey system
US20170350978A1 (en) Deep water sonar imagining by multibeam echosounder
JP2002162459A (en) Positioning device of underwater moving body
US3409868A (en) System for locating underwater objects
JPS60500383A (en) Device in hydrophone cable for marine seismic exploration
US20200333787A1 (en) Marine surface drone and method for characterising an underwater environment implemented by such a drone
AU2007233119B8 (en) Swimmer detection sonar network
US4709356A (en) Seismic array positioning
JPS6153581A (en) Position monitor for submarine cable or the like
RU2576352C2 (en) Towed device for measurement of acoustic characteristics of sea ground
US3237151A (en) Underwater detection by interface coupling
AU2002328385B2 (en) Imaging sonar and a detection system using one such sonar
KR20040010828A (en) Position Seeking Device of the Underwater Object using Acoustic Transponder
KR20180015626A (en) Monitoring device of FPSO
Bjørnø Developments in sonar technologies and their applications
KR102612198B1 (en) Asv for underwater cultural asset exploration
JP2003004849A (en) Sonar device
Lopes et al. Dual-frequency acoustic lens sonar system developments for the detection of both buried objects and objects proud of the bottom
JPH10186048A (en) Measuring method and device for buried object, structure of stratum, and nature of deposit
RU27670U1 (en) SYSTEM FOR DETERMINING POSITION OF UNDERWATER PIPELINE
JP2771298B2 (en) Position measurement method for objects existing on the sea floor