JPS6153557B2 - - Google Patents

Info

Publication number
JPS6153557B2
JPS6153557B2 JP16765179A JP16765179A JPS6153557B2 JP S6153557 B2 JPS6153557 B2 JP S6153557B2 JP 16765179 A JP16765179 A JP 16765179A JP 16765179 A JP16765179 A JP 16765179A JP S6153557 B2 JPS6153557 B2 JP S6153557B2
Authority
JP
Japan
Prior art keywords
wind
intake
air
introduction chamber
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16765179A
Other languages
Japanese (ja)
Other versions
JPS5692364A (en
Inventor
Hitoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP16765179A priority Critical patent/JPS5692364A/en
Publication of JPS5692364A publication Critical patent/JPS5692364A/en
Publication of JPS6153557B2 publication Critical patent/JPS6153557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Wind Motors (AREA)

Description

【発明の詳細な説明】 本発明は波浪と風力の両方のエネルギを利用す
る発電船に係り、発電量の平均化を目差したもの
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power-generating ship that utilizes both wave and wind energy, and aims to average the amount of power generated.

従来、波発電では波浪による空気の吸排を利用
して空気タービンを回すものが提案され、また風
力発電では風力により風車を直接回すものが提案
される。ところが、これら波浪とか風力などの自
然界のエネルギは常に一様なレベルになくてむら
が大きく換言すれば大幅に脈動するため利用しに
くいという欠点があり、発電機などの機器も低エ
ネルギレベルにて効率よく働き高エネルギレベル
に対して耐えられ得るという必要を生ずる。した
がつて、発電機などの機器の最大容量を大きく最
高出力を大きくしなければならず、また大出力機
器を用いても脈動のため効率のよい発電は期待で
きない。
Conventionally, wave power generation has been proposed in which an air turbine is rotated by using the intake and exhaust of air by waves, and wind power generation has been proposed in which the wind turbine is directly rotated by wind power. However, energy in the natural world such as waves and wind power is not always at a uniform level and is highly uneven, in other words, it pulsates significantly, making it difficult to utilize. This creates a need to be able to work efficiently and withstand high energy levels. Therefore, it is necessary to increase the maximum capacity and maximum output of equipment such as generators, and even if high-output equipment is used, efficient power generation cannot be expected due to pulsation.

そこで、本発明は上述の欠点に鑑み、自然界の
エネルギの脈動を一定レベルまで保持するととも
に平均化し、効率の良い発電を可能とした波浪・
風力複合発電船の提供を目的とし、新規な着想に
基づき発明されたものである。
Therefore, in view of the above-mentioned drawbacks, the present invention maintains the pulsation of energy in the natural world to a certain level and averages it, making it possible to generate electricity efficiently using waves.
It was invented based on a novel idea for the purpose of providing a combined wind power generation ship.

かかる目的達成のため本発明としては、船体を
隔壁にて無底の複数室に分割し、この複数室それ
ぞれの天井部に吸気弁と排気弁とを設け、上記複
数室の吸気弁をおおう吸気導入室と上記複数室の
排気弁をおおう排気導入室とを上記船体上に設
け、この船体上で上記排気導入室に開口を有する
空気タービン外筒を設ける一方、上記船体上に風
向きに応じて回動する風胴を設け、この風胴は上
下2段に構成されて風上側の取風口に対し風下側
がすぼまり、上記風胴上段では上記タービン外筒
が臨みかつ取風口にわん曲した風案内を備えて風
胴上端に連通し、上記風胴下段では取風口に風案
内を備えかつ底部を有してこの底部を上記吸気導
入室に開口させたことを特徴とする。
In order to achieve this objective, the present invention divides the hull into a plurality of bottomless chambers using bulkheads, provides an intake valve and an exhaust valve on the ceiling of each of the plurality of chambers, and provides an intake valve that covers the intake valves of the plurality of chambers. An introduction chamber and an exhaust introduction chamber that covers the exhaust valves of the plurality of chambers are provided on the hull, and an air turbine outer cylinder having an opening in the exhaust introduction chamber is provided on the hull, while an air turbine outer cylinder having an opening in the exhaust introduction chamber is provided on the hull. A rotating wind cylinder is provided, and this wind cylinder is configured in two stages, upper and lower, with the leeward side narrowing in relation to the windward side air intake, and the above-mentioned turbine outer cylinder faces in the upper stage of the wind cylinder and is curved toward the air intake. The wind cylinder is characterized in that it is provided with a wind guide and communicates with the upper end of the wind cylinder, and that the lower part of the wind cylinder is provided with a wind guide at the intake port and has a bottom part that opens into the air intake introduction chamber.

ここで、図にて本発明の実施例を説明する。第
1図は本実施例の発電船の全体構造を示してい
る。第1図において、発電船の船体1には隔壁2
にて分割された無底の室3が複数個長手方向に沿
つて設けられている。そして、各室3の天井部3
aには各室3ごとに一対の吸気弁4と排気弁5と
が備えられている。この吸気弁4は室3外の空気
を室3内に入れ、排気弁5は室3内の空気を外へ
排出する役目を有する。室3の天井部3aの上方
にあつて船体1上には吸気導入室6と排気導入室
7とが隔壁8にて区画されている。この吸気導入
室6は全ての室3の吸気弁4をおおうように形成
されているとともに、排気導入室7も全ての排気
弁5をおおうように形成されている。船体1の中
央上部には空気タービン外筒9が配置されてお
り、この空気タービン外筒9の上端は排気口9a
が存在するとともに空気タービン外筒9の排気導
入室7側には空気入口9bが臨んでいる。
Here, an embodiment of the present invention will be explained with reference to the drawings. FIG. 1 shows the overall structure of the power-generating ship of this embodiment. In Figure 1, a hull 1 of a power generation ship has a bulkhead 2.
A plurality of bottomless chambers 3 are provided along the longitudinal direction. And the ceiling part 3 of each room 3
A is provided with a pair of intake valves 4 and exhaust valves 5 for each chamber 3. The intake valve 4 has the role of letting air outside the chamber 3 into the chamber 3, and the exhaust valve 5 has the role of discharging the air inside the chamber 3 to the outside. Above the ceiling 3a of the chamber 3, on the hull 1, an intake introduction chamber 6 and an exhaust introduction chamber 7 are separated by a partition wall 8. The intake air introduction chamber 6 is formed to cover the intake valves 4 of all the chambers 3, and the exhaust air introduction chamber 7 is also formed to cover all the exhaust valves 5. An air turbine outer cylinder 9 is arranged at the upper center of the hull 1, and the upper end of this air turbine outer cylinder 9 is connected to an exhaust port 9a.
is present, and an air inlet 9b faces the exhaust gas introduction chamber 7 side of the air turbine outer cylinder 9.

船体1上で吸気導入室6と排気導入室7上方に
は風胴10が備えられている。この風胴10は取
風口10aと取風口10aよりすぼまつている本
体10bを有し、上下に2段にわかれている。下
段は風案内10cを有し、底部10dは空気ター
ビン外筒9のまわりから吸気導入室6に空気が流
入するようになつており、上段はわん曲した風案
内10eを有して取風口10aからの風を旋回さ
せるものである。風胴10の上端には開口を有
し、この開口は整風管11が備えられている。そ
して、この整風管11内には整風板11aが開口
に沿い形成されている。風胴10の取風口10a
と反対側には風見12が備えられている。なお、
風胴10における10fは集風板である。
A wind barrel 10 is provided on the hull 1 above the intake air introduction chamber 6 and the exhaust air introduction chamber 7. This wind barrel 10 has an air intake 10a and a main body 10b that is narrower than the air intake 10a, and is divided into two upper and lower stages. The lower stage has a wind guide 10c, the bottom part 10d is such that air flows into the intake introduction chamber 6 from around the air turbine outer cylinder 9, and the upper stage has a curved wind guide 10e, and the bottom part 10d has a curved wind guide 10e, and the bottom part 10d has a curved wind guide 10e. It is something that makes the wind swirl. The upper end of the wind barrel 10 has an opening, and this opening is equipped with a rectifying pipe 11. A wind regulating plate 11a is formed inside this wind regulating pipe 11 along the opening. Air intake 10a of wind barrel 10
There is a weather vane 12 on the opposite side. In addition,
10f in the wind barrel 10 is a wind collecting plate.

つぎに、第1図とともに他の図を参照しながら
更に詳細に述べる。風胴10は風見12によつて
常に風上方向に取風口10aが向くように自から
旋回可能であり、風上に向いた取風口10aには
第2図に示すように風が吹き込む。取風口10a
から風胴10内に入つた風は風胴10の上段にお
いて風案内10eが第4図aに示すようにわん曲
しているので左巻きの旋回流となり、しかも風胴
10がすぼまつているので旋回速度が速くなる。
また、風胴10の下段に入つた風も風案内10c
に導びかれしかもすぼめられて速度が増す。そし
て、空気タービン外筒9が貫通している底部10
dの開口より吸気導入室6に風が入り込む。
Next, a more detailed explanation will be given with reference to FIG. 1 and other figures. The wind barrel 10 can be rotated by itself by means of a weather vane 12 so that the intake port 10a always faces upwind, and wind blows into the intake port 10a facing upwind, as shown in FIG. Air intake 10a
The wind entering the wind barrel 10 from above becomes a left-handed swirling flow because the wind guide 10e at the upper stage of the wind barrel 10 is curved as shown in Figure 4a, and the wind barrel 10 is narrowed. Therefore, the turning speed becomes faster.
In addition, the wind entering the lower stage of the wind barrel 10 is also controlled by the wind guide 10c.
The speed increases as it is guided and narrowed. and a bottom portion 10 through which the air turbine outer cylinder 9 passes.
Wind enters the intake introduction chamber 6 through the opening d.

一方、無底の室3において波浪が到来すると水
面の盛り上がりにより第3図に示す室3内の容積
が少なくなる。この結果、水面の下降時に吸気弁
4から入つた空気は排気弁5から吹き出され、空
気タービン外筒9の空気入口9bへ向う。また、
波浪の大小にかかわらず風胴10の下段に入り、
吸気導入室6に入つた風は吸気弁4を開け室3内
に入るとともに排気弁5を開け空気入口9bへ向
う。排気弁5から吹き出された空気はすべて空気
入口9bへ吹き込み、空気タービン外筒9の排気
口9a付近に備えた空気タービン13を回転させ
る。空気タービン13は軸受装置14に支承され
るとともに軸受装置14は軸15を支承してい
る。16は軸受装置14の支柱をかねたガイドベ
ーンである。軸15は室3内にまで延びており、
室3の下部にはエネルギ蓄積のためのフライホイ
ール17および発電機18が取付けられている。
そして軸15、フライホイール17、および発電
機18は防護筒19にて水密に保護されている。
On the other hand, when waves arrive in the bottomless chamber 3, the volume of the chamber 3 shown in FIG. 3 decreases due to the rise of the water surface. As a result, the air that entered through the intake valve 4 when the water surface was lowered is blown out through the exhaust valve 5 and directed toward the air inlet 9b of the air turbine outer cylinder 9. Also,
Regardless of the size of the wave, it enters the lower stage of the wind cylinder 10,
The wind that has entered the intake air introduction chamber 6 opens the intake valve 4 and enters the chamber 3, and at the same time opens the exhaust valve 5 and heads toward the air inlet 9b. All the air blown out from the exhaust valve 5 is blown into the air inlet 9b to rotate the air turbine 13 provided near the exhaust port 9a of the air turbine outer cylinder 9. The air turbine 13 is supported on a bearing arrangement 14 which supports a shaft 15 . 16 is a guide vane which also serves as a support for the bearing device 14. The shaft 15 extends into the chamber 3,
A flywheel 17 and a generator 18 for energy storage are attached to the lower part of the chamber 3.
The shaft 15, flywheel 17, and generator 18 are watertightly protected by a protective tube 19.

空気タービン外筒9の排気口9aから出た空気
流は上昇するのであるが、風胴10の上段に入り
すぼまつて旋回した空気は排気口9aからの空気
流を吸い出すこととなる。すなわち、風胴10内
にあつて第4図aのように円筒の半径Rの通風路
に絞られるため風速が大きくしかも高さが幅に比
してかなり高く構成されており風胴10の上部に
致ると下部からの旋回上昇風にさらに風が吹き込
まれて一層高速度になる。この速度がある一定以
上になると境界層を生じて旋回中心には極めて空
気圧力の小さな柱状層が形成される。そして、こ
の人工竜巻によつて排気口9aからの空気流を強
力に吸出す。この強力な吸出しは空気タービン1
3の回転速度を非常に増大させる。
The airflow coming out of the exhaust port 9a of the air turbine outer cylinder 9 rises, but the air that enters the upper stage of the wind cylinder 10 and swirls around sucks out the airflow from the exhaust port 9a. That is, as shown in FIG. 4a, inside the wind barrel 10, the airflow is narrowed to the cylindrical radius R, so the wind speed is high, and the height is considerably higher than the width, and the upper part of the wind barrel 10 is When it reaches the top, more wind is blown into the swirling upward wind from the bottom, resulting in even higher speeds. When this speed exceeds a certain level, a boundary layer is formed and a columnar layer with extremely low air pressure is formed at the center of the swirl. This artificial tornado then powerfully sucks out the airflow from the exhaust port 9a. This powerful suction is carried out by air turbine 1
3, greatly increase the rotation speed.

旋回上昇風をそのまま外部に放出させると強風
時には天然の竜巻きに成長するおそれがあり、ま
た騒音が大きくなるので風胴10の上部開口には
第4図bに示す扇形の整風管11が備えられ、こ
の整風管11内の大小の整風板11aにて旋回流
を止め整流して空気流を外部に放出している。
If the swirling rising wind is released outside as it is, there is a risk that it will grow into a natural tornado in strong winds, and the noise will also increase, so a fan-shaped wind rectifier 11 as shown in FIG. 4b is installed in the upper opening of the wind barrel 10. A large and small baffle plate 11a in the baffle tube 11 stops the swirling flow, rectifies the flow, and discharges the airflow to the outside.

第5図a、bは波浪による排気弁5と吸気弁4
との動きを示したものである。この図中船体1の
先端、後端は浮室である。この実施例では水上に
浮かぶ船を対象としたけれども岸壁などに設置し
てもよい。
Figures 5a and 5b show the exhaust valve 5 and intake valve 4 caused by waves.
This shows the movement. In this figure, the tip and rear ends of the hull 1 are floating chambers. Although this embodiment targets a ship floating on water, it may also be installed on a quay.

通常波浪の大きさピツチは変化するもので、そ
の保有エネルギもむらが多い。したがつて、発電
船は波の方向にあるピツチをおいて配列し上記む
らを緩和することが考えられる。一方、風の吹き
方もむらが大きいのであるが、本実施例ではかか
るむらは均一化できる。
The size and pitch of waves usually change, and the amount of energy they hold is also uneven. Therefore, it is conceivable to arrange the power-generating ships at certain pitches in the direction of the waves to alleviate the above-mentioned unevenness. On the other hand, the way the wind blows is also highly uneven, but in this embodiment, such unevenness can be made uniform.

以上実施例にて説明したように本発明によれ
ば、船体を隔壁にて無底の複数室に分割し、この
複数室それぞれの天井部に吸気弁と排気弁とを設
け、上記複数室の吸気弁をおおう吸気導入室と上
記複数室の排気弁をおおう排気導入室とを上記船
体上に設けるとともに、この船体上に設けた取風
口を有する風胴の底部を上記吸気導入室に開口さ
せる一方、上記船体上で上記排気導入室に開口を
有する空気タービン外筒を設け、この空気タービ
ン外筒内に発電用空気タービンを備えたことによ
り、風とか波浪による脈動は両方のエネルギが風
の吹き合わせにより平均化され、波浪と風による
エネルギが同時に最高になるチヤンスが少なく発
電機等の機器の最高容量を小さくできるため、効
率の良い発電が可能となつた。
As explained above in the embodiments, according to the present invention, the hull is divided into a plurality of bottomless chambers by bulkheads, and an intake valve and an exhaust valve are provided on the ceiling of each of the plurality of chambers. An intake introduction chamber that covers the intake valve and an exhaust introduction chamber that covers the exhaust valves of the plurality of chambers are provided on the hull, and the bottom of a wind barrel having an air intake provided on the hull opens into the intake introduction chamber. On the other hand, an air turbine outer cylinder having an opening in the exhaust introduction chamber is provided on the hull, and an air turbine for power generation is provided inside this air turbine outer cylinder, so that pulsation caused by wind or waves is absorbed by both energy sources. The blowing process averages out the energy, and there is less chance that the energy from waves and wind will reach their maximum at the same time, making it possible to reduce the maximum capacity of equipment such as generators, making it possible to generate electricity with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明による波浪・風力
複合発電船の一実施例を示し第1図は全体斜視
図、第2図は第1図の一部分を示す一部破断した
斜視図、第3図は第1図の幅方向断面図、第4図
aは風胴の断面図、第4図bは整風管の断面図、
第5図aは波浪と排気弁および第5図bは波浪と
吸気弁の関係をそれぞれ示す簡略断面図である。 図面中、1は船体、2は隔壁、3は室、3aは
天井部、4は吸気弁、5は排気弁、6は吸気導入
室、7は排気導入室、9は空気タービン外筒、9
bは空気入口、10は風胴、10dは底部、13
は空気タービンである。
1 to 5 show an embodiment of the combined wave/wind power generation ship according to the present invention, and FIG. 1 is an overall perspective view, FIG. 2 is a partially cutaway perspective view showing a part of FIG. 1, and FIG. 3 is a cross-sectional view in the width direction of FIG. 1, FIG. 4 a is a cross-sectional view of the wind barrel, and FIG. 4 b is a cross-sectional view of the wind straightening pipe.
FIG. 5a is a simplified sectional view showing the relationship between waves and the exhaust valve, and FIG. 5b is a simplified sectional view showing the relationship between the waves and the intake valve. In the drawings, 1 is the hull, 2 is a bulkhead, 3 is a chamber, 3a is a ceiling, 4 is an intake valve, 5 is an exhaust valve, 6 is an intake introduction chamber, 7 is an exhaust introduction chamber, 9 is an air turbine outer cylinder, 9
b is the air inlet, 10 is the wind barrel, 10d is the bottom, 13
is an air turbine.

Claims (1)

【特許請求の範囲】[Claims] 1 船体を隔壁にて無底の複数室に分割し、この
複数室それぞれの天井部に吸気弁と排気弁とを設
け、上記複数室の吸気弁をおおう吸気導入室と上
記複数室の排気弁をおおう排気導入室とを上記船
体上に設け、この船体上で上記排気導入室に開口
を有する空気タービン外筒を設ける一方、上記船
体上に風向きに応じて回動する風胴を設け、この
風胴は上下2段に構成されて風上側の取風口に対
し風下側がすぼまり、上記風胴上段では上記ター
ビン外筒が臨みかつ取風口にわん曲した風案内を
備えて風胴上端に連通し、上記風胴下段では取風
口に風案内を備えかつ底部を有してこの底部を上
記吸気導入室に開口させた波浪・風力複合発電
船。
1 The hull is divided into a plurality of bottomless chambers by bulkheads, and an intake valve and an exhaust valve are provided on the ceiling of each of the plurality of chambers, and an intake introduction chamber that covers the intake valves of the plurality of chambers and an exhaust valve of the plurality of chambers. An air turbine outer cylinder having an opening in the exhaust introduction chamber is provided on the hull, and a wind barrel that rotates according to the direction of the wind is provided on the hull. The wind cylinder is composed of two stages, upper and lower, and the leeward side is narrower than the windward side intake.In the upper stage of the wind cylinder, the turbine outer cylinder faces and a curved wind guide is provided at the intake. A combined wave/wind power generation vessel, in which the lower part of the wind cylinder is provided with a wind guide at the intake port, and has a bottom part that opens into the intake introduction chamber.
JP16765179A 1979-12-25 1979-12-25 Composite wave & wind power generation ship Granted JPS5692364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765179A JPS5692364A (en) 1979-12-25 1979-12-25 Composite wave & wind power generation ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765179A JPS5692364A (en) 1979-12-25 1979-12-25 Composite wave & wind power generation ship

Publications (2)

Publication Number Publication Date
JPS5692364A JPS5692364A (en) 1981-07-27
JPS6153557B2 true JPS6153557B2 (en) 1986-11-18

Family

ID=15853706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765179A Granted JPS5692364A (en) 1979-12-25 1979-12-25 Composite wave & wind power generation ship

Country Status (1)

Country Link
JP (1) JPS5692364A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200081A (en) * 1982-05-17 1983-11-21 Mitsubishi Electric Corp Wave energy converting apparatus
ES2322535B1 (en) * 2007-12-19 2010-03-17 Manuel Muñoz Saiz SYSTEM AND METHOD CONVERTER OF THE ENERGY OF THE WAVES IN ELECTRICAL, PNEUMATIC OR HYDRAULIC ENERGY, TO FEED OR PROMOTE BOATS.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098081A (en) * 1977-02-14 1978-07-04 Woodman Harvey R Tidal power plant and method of power generation
JPS53129743A (en) * 1977-04-20 1978-11-13 Shigeto Ishida Moving power device with force of wind and wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098081A (en) * 1977-02-14 1978-07-04 Woodman Harvey R Tidal power plant and method of power generation
JPS53129743A (en) * 1977-04-20 1978-11-13 Shigeto Ishida Moving power device with force of wind and wave

Also Published As

Publication number Publication date
JPS5692364A (en) 1981-07-27

Similar Documents

Publication Publication Date Title
US5770893A (en) Wave energy device
US3870893A (en) Wave operated power plant
US7400057B2 (en) Omni-directional wind turbine
US8668433B2 (en) Multi-turbine airflow amplifying generator
RU2256818C2 (en) Wind mill electric generating plant with acceleration of flow
US4414477A (en) Wind energy convertor
CN117508480A (en) Ocean hydrogen energy semi-submersible ship assembly
RO128851A0 (en) Ejector-type turbine
JP2002529629A (en) A caisson for absorbing wave energy
JPS6153557B2 (en)
WO2005095790A1 (en) Wave energy conversion apparatus
CN112302877A (en) Offshore wind power and wave power combined power generation system and working method thereof
CN114876713B (en) Pneumatic wave power generation device and double-body pneumatic wave power generation ship
JPS6218710Y2 (en)
JPS623315B2 (en)
CN221163247U (en) Ocean hydrogen energy semi-submersible ship
JPS5844277A (en) Omnidirectional wave force converter
AU2021211927B2 (en) Rotor assembly
JP2007205341A (en) Solar heat wind power generation apparatus with balloon stack
RU92015707A (en) VORTEX WELDING EQUIPMENT
CN221144670U (en) Bending-resistant wind energy collecting column of offshore wind energy collecting system
JP2000087838A (en) Valveless turbine for wave force having air injection port on guide plate
CN213574459U (en) Offshore wind power and wave energy combined power generation system
CN221257011U (en) Floating type offshore wind power foundation with negative damping inhibition function
JP2005307894A (en) Wave power generation device, and wave power generation type buoy