JPS6153526A - Microspectrophotometry - Google Patents

Microspectrophotometry

Info

Publication number
JPS6153526A
JPS6153526A JP17488584A JP17488584A JPS6153526A JP S6153526 A JPS6153526 A JP S6153526A JP 17488584 A JP17488584 A JP 17488584A JP 17488584 A JP17488584 A JP 17488584A JP S6153526 A JPS6153526 A JP S6153526A
Authority
JP
Japan
Prior art keywords
light
angle
optical axis
specimen
microspectrophotometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17488584A
Other languages
Japanese (ja)
Inventor
Saburo Nobutoki
信時 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17488584A priority Critical patent/JPS6153526A/en
Publication of JPS6153526A publication Critical patent/JPS6153526A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres

Abstract

PURPOSE:To enable microspectrophotometry with high accuracy, by reflecting incident light to the direction separating from an optical axis from a first reflective surface by an objective lens and subsequently reflecting the same to a condensing direction from a second reflective surface. CONSTITUTION:A specimen 7 being an object to be measured is arranged to a position 17 and only light in the vicinity of an optical axis among the light from the specimen 7 is reflected to the diection separating from the optical axis by a second reflective mirror 15 and subsequently reflected to a consensing direction from a first reflective mirror 14 to form an image at an image forming point 18. By this mechanism, only light, of which the incident angle to the specimen 7 is larger than an angle theta1 and smaller than the angle theta2, contributes to measurement. That is, because angles theta1, theta2 are clearly smller than respective angles theta3, theta4, when the specimen 7 is viewed from this point, light in the vicinity of the optical axis in a TV camera can take a value more approximate to an objective practical system.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は測定対象物の微小部分の分光透過特性の測定に
好適な顕微分光測光法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microspectrophotometry method suitable for measuring the spectral transmission characteristics of a minute portion of an object to be measured.

〔発明の背景〕[Background of the invention]

測定対象物の微小部分の分光透過特性を測定する顕微分
光測光法は、公知例をあげる迄もなく、広く知られてお
り、測定装置も販売きれている。
BACKGROUND ART Microspectrophotometry, which measures the spectral transmission characteristics of a minute portion of an object to be measured, is widely known, with no need to cite any known examples, and the measuring devices are sold out.

第1図はこの植の顕微分光測光法に適用さルる顕微分光
測光システムの一つの光学系を示す概念図である。同図
において、光源1から放射された光はコリメータミラー
2および分光プリズム3により分光され、単色光となっ
てコリメータミラー4によシピンホール5を照射し、投
光レンズBによ)ピンホール5の像は試料7上に結像す
る。ここで試料7を通過する際、この試料7の分光透過
率による変調を受けた後、対物レンズ8によシシャッタ
ー9.光学系10を介して光電装置11上に試料7およ
びピンホール5の像が結像される。
FIG. 1 is a conceptual diagram showing one optical system of a microspectrophotometry system applied to this microspectrophotometry method. In the figure, light emitted from a light source 1 is separated by a collimator mirror 2 and a spectroscopic prism 3, becomes monochromatic light, and illuminates a pinhole 5 by a collimator mirror 4. The image is formed on the sample 7. Here, when passing through the sample 7, after being modulated by the spectral transmittance of the sample 7, the shutter 9. Images of the sample 7 and the pinhole 5 are formed on the photoelectric device 11 via the optical system 10 .

この場合、光電装置11の出力はプリズム3により決定
さJl、る光波長と試料7の分光透過率とKよって与え
られる。このようにして試料7の分光透過率特性を知る
ことができるが、投光レンズ6および対物レンズ8は分
光測光の性格上、色収差がないことが必要とされ、その
見地から第2図に示すような反射形レンズが広く採用さ
れている。すなわち同図において、試料7上の被測定点
12からの光は、ガラス体13によシ屈折を受けること
なく、シたがって光路は光波長によって変化することな
く、第1の反射if 4 、i2の反射鏡15で反射さ
れて点1Bに結像する。
In this case, the output of the photoelectric device 11 is given by the light wavelength Jl determined by the prism 3, the spectral transmittance of the sample 7, and K. In this way, the spectral transmittance characteristics of the sample 7 can be known, but the projection lens 6 and the objective lens 8 are required to have no chromatic aberration due to the nature of spectrophotometry, and from this point of view, they are shown in Fig. 2. Reflective lenses such as these are widely used. That is, in the figure, the light from the measurement point 12 on the sample 7 is not refracted by the glass body 13, and therefore the optical path does not change depending on the wavelength of the light. It is reflected by the reflecting mirror 15 of i2 and is imaged at point 1B.

しかしながら、このように構成される反射形レンズを使
用する顕微分光測光法によると、光軸付近の光軸となす
角度が0度に近い部分、すなわち、試料7への光入射角
が90度近辺の光が測定に寄与しないという不都合な問
題があった。
However, according to microspectrophotometry using a reflective lens configured in this way, the angle near the optical axis with the optical axis is close to 0 degrees, that is, the angle of incidence of light to the sample 7 is around 90 degrees. There was an inconvenient problem in that the light did not contribute to the measurement.

すなわち、有限な厚さを有する光透過体の透過率を評価
するに当って、試料への光入射角が90度の場合、最小
厚を示し、入射角の増大とともに試料の厚ざが犬となシ
、透過率が小となってしまり。また、光干渉による着色
体、ダイクロイックフィルタ等の測定に際しては、光の
入射角が変ることは光干渉特性を決定する光学薄膜の膜
厚が実質的に変ってしまうことであシ、分光透過曲線が
波長方向に移動することを意味している。このような現
象があるためにダイクロイックフィルタの特性は常に光
入射角を指定して定義されている。
In other words, when evaluating the transmittance of a light transmitting material with a finite thickness, when the angle of incidence of light on the sample is 90 degrees, it shows the minimum thickness, and as the angle of incidence increases, the thickness of the sample increases. However, the transmittance becomes small. In addition, when measuring colored objects, dichroic filters, etc. by optical interference, changing the incident angle of light will substantially change the thickness of the optical thin film that determines the optical interference characteristics, and the spectral transmission curve This means that it moves in the wavelength direction. Because of this phenomenon, the characteristics of dichroic filters are always defined by specifying the angle of light incidence.

したがってダイクロイックフィルタへの使用法としては
、圧倒的に光入射角90度を前提とした場合が多く、こ
の場合に適する測定が従来の反射レンズ系では光入射角
90度近辺の部分が除外されているために誤差が著しく
大となり、好ましくない。
Therefore, when using a dichroic filter, it is overwhelmingly assumed that the light incidence angle is 90 degrees, and the measurement suitable for this case is that with conventional reflective lens systems, the part around the light incidence angle of 90 degrees is excluded. Because of this, the error becomes extremely large, which is not desirable.

顕微分光測光法によって測定しなければならない対象の
一例として、例えば単一撮像管式カラーテレビジョン撮
像系用のモザイク集合体の形状を有する色分解フィルタ
がある。この色分解フィルタは透明ガラス基板上に幅約
15μm程度、配列ピッチ約30μm程度の赤色光反射
ダイクロイックフィルタの群を形成し、このフィルタ群
に約20変種度の交角をもって同図形の青色光反射ダイ
クロイックフィルタ群を形成しである。この場合、分光
測定すべき部位の大きさは対辺間隔的15μm程度、一
つの頂角約20変種度のシアン、イエロー、グリーン、
ガラス基板透明部の菱形となっている。このように構成
てれるダイクロイックフィルタ部を従来の反射レンズを
有する顕微分光測光システムで測定すると、分光透過率
が50%を示す半値波長が約565nm程度を示すが、
このダイクロイックフィルタの大面積のものを通常の光
入射角が約90度を有する分光光度計で測定すると56
8〜580nm程度を示す。通常カラーテレビ撮像系の
色分解特性を設計し製造管理を行なう上で、この程度の
測定データの不確定性は製品品質維持のため、著しく不
都合でお夛、現実のテレビカメラにおける如く、光入射
角が約90fに近い光線により測定評価しておくことが
望ましい。
An example of an object that has to be measured by microspectrophotometry is a color separation filter in the form of a mosaic assembly, for example for a single tube color television imaging system. This color separation filter has a group of red light-reflecting dichroic filters with a width of about 15 μm and an arrangement pitch of about 30 μm formed on a transparent glass substrate, and a blue light-reflecting dichroic filter of the same shape with an intersection angle of about 20 degree of variation on this filter group. A filter group is formed. In this case, the size of the part to be spectroscopically measured is about 15 μm across opposite sides, and cyan, yellow, green, and yellow with one apex angle of about 20 degrees of variation.
The transparent part of the glass substrate is diamond-shaped. When the dichroic filter section configured in this manner is measured using a conventional microspectrophotometry system having a reflective lens, the half-value wavelength at which the spectral transmittance is 50% is approximately 565 nm.
When this large-area dichroic filter is measured using a spectrophotometer with a normal light incident angle of about 90 degrees, it is 56.
It shows about 8 to 580 nm. Normally, when designing the color separation characteristics of a color television imaging system and performing manufacturing control, this degree of uncertainty in measurement data is extremely inconvenient in order to maintain product quality. It is desirable to perform measurement and evaluation using a light beam whose angle is close to approximately 90 f.

〔発明の目的〕[Purpose of the invention]

したがって本発明は、前述した問題に鑑みてなされたも
のであり、その目的とするところは、測定対象物に対し
て光入射角が90度近辺の光を利用して誤差のない高精
度の分光測光をgT能にした顕微分光測光法を提供する
ことにある。
Therefore, the present invention has been made in view of the above-mentioned problems, and its purpose is to perform highly accurate spectroscopy without error by using light whose incidence angle is around 90 degrees with respect to the object to be measured. It is an object of the present invention to provide a microspectrophotometry method in which photometry has gT capability.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために本発明による顕微分光
測光法は、測定対象物を透過または反射した光を反射集
光する反射形対物レンズをuiilえ、このレンズに入
射した光が第1の反射面で光軸から離散する方向に反射
式れ、次いで第2の反射面で集束する方向に反射される
光学系を形成式せて顕微分光測光を行なうものである。
In order to achieve such an object, the microspectrophotometry method according to the present invention uses a reflective objective lens that reflects and condenses the light transmitted or reflected from the object to be measured, and the light incident on this lens is Microspectrophotometry is performed by forming an optical system in which light is reflected in a direction that is discrete from the optical axis by a reflective surface, and then reflected in a convergent direction by a second reflective surface.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第3図は本発明による顕微分光測光法の一例を説明する
ための対物レンズの要部拡大図であ)、前述の図と同一
部分は同一符号を付す。同図においては、第2図に、に
ける結像点16に対応する点17の位置に、測定対象物
とする試料7を配置する。そのとき試料7からの光のう
ち光軸付近の光のみが第2の反射鏡15で光軸から離散
する方向に反射し、次いで第1の反射鏡14で集束方向
に反射して結像点181C結像する。この場合、結像点
18は第2図の被測定点12に対応する位置に存在する
ことになる。
FIG. 3 is an enlarged view of a main part of an objective lens for explaining an example of the microspectrophotometry method according to the present invention), and the same parts as in the previous figures are given the same reference numerals. In the figure, a sample 7 to be measured is placed at a point 17 corresponding to the imaging point 16 in FIG. At this time, of the light from the sample 7, only the light near the optical axis is reflected by the second reflecting mirror 15 in a direction that diverges from the optical axis, and then reflected by the first reflecting mirror 14 in a converging direction to form an image point. 181C image is formed. In this case, the imaging point 18 will be located at a position corresponding to the measured point 12 in FIG.

このような6111光法によれば、試料7への光入射角
は、従来配置の反射対物レンズでは光軸となす角度θ8
よシも大きく角度θ4よシも小さい光線が測定に寄与し
たが、本発明では角度θlよルも大きく、角度θSより
も挙式な入射角を有する光線が測定に寄与することにな
る。すなわち角度θlは角度θ8よシ、角度θ2は角度
θ4よりも明らかに小さいので、この点から見て従来よ
シもテレビカメラにおける光軸付近の光が対象とてれる
実用系により近似した値をとることができる。この場合
、勿論測定光量が低下するという不利が伴なうが、光源
光量の増大、測定系の利得上昇などによシ充分補償でき
る程度の範囲であり、極めて有効である。また、第1図
で示したようにピンホール5の像で試料7の面を分光照
射する系においては、投光レンズ8も反射レンズを使用
することが望ましく、特に投光レンズ6についても本発
明の如き配置をとることが望ましい。また、他の顕微分
光系、例えば第1図に示した投光レンズ6に代えて単色
光の散光によって試料7を照射し、ピンホール9によっ
て微小視野を制限して測定するような系においても少な
くても対物レンズは本発明の如き逆配置の反射レンズを
使用することによって効果がある。
According to the 6111 optical method, the angle of incidence of light on the sample 7 is the angle θ8 with respect to the optical axis in the case of a conventionally arranged reflective objective lens.
Light rays with a large diameter and a small angle θ4 contributed to the measurement, but in the present invention, the angle θl is also large and a light ray having an incident angle more formal than the angle θS contributes to the measurement. In other words, the angle θl is clearly smaller than the angle θ8, and the angle θ2 is clearly smaller than the angle θ4, so from this point of view, it is better to use a value that is closer to that of a practical system where light near the optical axis of a television camera is targeted. You can take it. In this case, of course, there is a disadvantage that the amount of measurement light decreases, but this is within a range that can be sufficiently compensated for by increasing the amount of light from the light source, increasing the gain of the measurement system, etc., and is extremely effective. Furthermore, in a system in which the surface of the sample 7 is irradiated spectrally with the image of the pinhole 5 as shown in FIG. 1, it is desirable to use a reflective lens for the projection lens 8. It is desirable to adopt an arrangement similar to that of the invention. It is also possible to use other microscopic spectroscopy systems, such as a system in which the sample 7 is irradiated with monochromatic diffused light instead of the projection lens 6 shown in FIG. At least, it is effective to use an inverted reflective lens as in the present invention for the objective lens.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、測定対象物に対し
て光入射角が約90変通辺の光を有効に利用できるので
、誤差のない高h7度の分光測光ができるという極めて
優れた効果が得られる。
As explained above, according to the present invention, it is possible to effectively utilize light having an angle of incidence of about 90 degrees to the object to be measured, making it possible to perform spectrophotometry at high h7 degrees without error. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の反射レンズ系を使用した顕微分光測光光
路の概念図、第2図は第1図の反射対物レンズ部の拡大
図、第3図は本発明による顕微分光測光法の一例を説明
するための反射対物レンズの被測定物と結隙位置の関係
を示す図である。 1・−・・光源、2拳・・・コリメータミラー、361
111@分光プリズム、46assコリメータミラー、
5II・・・ピンホール、6・−・・投光レンズ、7・
・ψ・試料、8會・・・対物レンズ、8・拳時−シャッ
ター、10・・・拳光学系、11j・ ・・・・光電装置、12・・・・被測定点、13・・・
・ガラス体、14拳・@1第1の反射鏡、15−・・・
第2の反射鏡、16・・・・結像点、1了・拳・・点、
18・・11@結像点。 第1図 VAZ図 鎮3図
Fig. 1 is a conceptual diagram of a microspectrophotometric optical path using a conventional reflective lens system, Fig. 2 is an enlarged view of the reflective objective lens section of Fig. 1, and Fig. 3 is an example of the microspectrophotometric method according to the present invention. FIG. 3 is a diagram showing the relationship between the object to be measured and the gap position of the reflective objective lens for explanation. 1 - Light source, 2 fists... Collimator mirror, 361
111@spectral prism, 46ass collimator mirror,
5II...pinhole, 6...projection lens, 7.
・ψ・Sample, 8...Objective lens, 8.Fist-shutter, 10...Fist optical system, 11j...Photoelectric device, 12...Point to be measured, 13...
・Glass body, 14 fists ・@1 First reflector, 15-...
Second reflecting mirror, 16...imaging point, 1ryō, fist...point,
18...11@imaging point. Figure 1 VAZ map 3

Claims (1)

【特許請求の範囲】[Claims] 投光レンズから投光された光を測定対象物に照射し、該
測定対象物を透過もしくは反射した光を対物レンズに入
射させることにより該測定対象物の分光透過率を測定す
る顕微分光測光法において、少なくとも前記対物レンズ
が入射した光を第1の反射面で光軸から離散する方向に
反射させ次いで第2の反射面で集束する方向に反射させ
る光学系を形成することを特徴とした顕微分光測光法。
A microspectrophotometry method in which the spectral transmittance of the object is measured by irradiating the object with light projected from a projection lens and making the light transmitted or reflected by the object enter an objective lens. A microscope characterized in that at least the objective lens forms an optical system that reflects the incident light in discrete directions from the optical axis on a first reflective surface, and then reflects it in a converging direction on a second reflective surface. Spectrophotometry.
JP17488584A 1984-08-24 1984-08-24 Microspectrophotometry Pending JPS6153526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17488584A JPS6153526A (en) 1984-08-24 1984-08-24 Microspectrophotometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17488584A JPS6153526A (en) 1984-08-24 1984-08-24 Microspectrophotometry

Publications (1)

Publication Number Publication Date
JPS6153526A true JPS6153526A (en) 1986-03-17

Family

ID=15986366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17488584A Pending JPS6153526A (en) 1984-08-24 1984-08-24 Microspectrophotometry

Country Status (1)

Country Link
JP (1) JPS6153526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237882B4 (en) 2002-01-30 2018-06-28 Hitachi, Ltd. Pulse Width Modulation, Voltage Transformer and Inverter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237882B4 (en) 2002-01-30 2018-06-28 Hitachi, Ltd. Pulse Width Modulation, Voltage Transformer and Inverter

Similar Documents

Publication Publication Date Title
JP4108788B2 (en) Broadband UV imaging system using both catadioptric principles
US5009493A (en) Mirror arrangement for a beam path in a multiple-reflection measuring cell
JPH0949793A (en) Multi-reflection sample cell
JPH07128589A (en) Imagery spherical lens for wide field of view
JPH10293062A (en) Improved concentric spectrograph, method for dispersing light, and method for diffracting two beams
JP2005506556A (en) Imaging system using catadioptric and catadioptric systems
KR101922973B1 (en) Microspot spectroscopic ellipsometer with 4-reflectors
WO2023045415A1 (en) Spectral measurement device and method
US5642191A (en) Multi-channel imaging spectrophotometer
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
US10697764B2 (en) Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
WO2023116444A1 (en) Spectral apparatus and terminal device having spectral apparatus, and operating method
JPS6153526A (en) Microspectrophotometry
KR100992839B1 (en) Spectroscopic Ellipsometer with a Microspot Module
JP2007285761A (en) Half mirror, and microscopic spectrophotometer using the same
CN115128008A (en) Cylindrical lens group for semiconductor microscopic detection and semiconductor microscopic detection system
US20170102233A1 (en) Image-Forming Optical Component And Optical System Of Surveying Instrument
JPH09250966A (en) Apparatus for measuring reflectivity
JPH07113948A (en) Focus detecting device
US7327457B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths while minimizing polarization changes
JPH07120379A (en) Optical system for high-sensitivity reflection measuring apparatus
KR102229335B1 (en) Distortion Correction and Application Method For Micro Spot Spectroscopic Ellipsometer Including High Magnification Optical System
RU2179329C2 (en) Chromospheric telescope
JPS5854310A (en) Optical system for littrow spectroscope