JPS6153093B2 - - Google Patents

Info

Publication number
JPS6153093B2
JPS6153093B2 JP54075686A JP7568679A JPS6153093B2 JP S6153093 B2 JPS6153093 B2 JP S6153093B2 JP 54075686 A JP54075686 A JP 54075686A JP 7568679 A JP7568679 A JP 7568679A JP S6153093 B2 JPS6153093 B2 JP S6153093B2
Authority
JP
Japan
Prior art keywords
pipe
water
tower
filtration
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54075686A
Other languages
Japanese (ja)
Other versions
JPS55167016A (en
Inventor
Toshihiko Kanazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP7568679A priority Critical patent/JPS55167016A/en
Publication of JPS55167016A publication Critical patent/JPS55167016A/en
Publication of JPS6153093B2 publication Critical patent/JPS6153093B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は粒状材充填層を用いて被処理水の上
昇流で上向きの過層を形成させて過を行な
い、かつ過操作を続行しながら粒状材を洗浄
する連続式上昇流過装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a continuous system in which a granular material packed bed is used to form an upward overlayer with an upward flow of water to be treated, and the granular material is washed while continuing the overflow operation. This invention relates to an upflow device.

一般に過装置の性能は、被過液の性状に大
きく左右されるのは別として、過速度が早くと
れ、過量を多く採取でき、過層の汚れの洗浄
等の操作が簡便で、かつ洗浄等の処置に要する
水、空気および時間等が少ないほど優れたものと
されている。
In general, the performance of a filtration device is largely influenced by the properties of the liquid to be filtrated, and apart from that, the performance of the filtration device is greatly influenced by the properties of the liquid to be filtrated. It is said that the less water, air, time, etc. required for the treatment, the better.

過速度を早くして過量(過時間)を多く
するためには過層の過抵抗の増大を比較的緩
やかな度合いにすることと共に、過層の洗浄復
活という操作を連続的に行なうことで達成できる
ことは、過技術の分野では公知であり、代表的
な従来の連続式過装置として第1図〜第3図に
示したようなものがある。
In order to increase the overspeed and increase the overload (overtime), this can be achieved by increasing the overresistance of the overlayer to a relatively gentle degree and by continuously performing the operation of cleaning and reviving the overlayer. This capability is well known in the filtration art, and typical conventional continuous filtration systems include those shown in FIGS. 1-3.

第1図に示した装置は過塔イの横に斜めに突
き出した過相ロの中に過層ハを形成させ、
過塔イの上部より流入させた被過水ニを過層
ハに通過させて過水を取出管ホより取り出し、
一方懸濁物を多量に補捉している過層ハの最上
部の層を、過層ハの底部に設けた材押出ダイ
ヤフラムヘで押し上げるとによつて過塔イの底
部へ排出し、排出した材を流入させた被過水
ニの一部によつて過層ロの底部に立設した材
補給筒トに移送し、ここで洗浄水チによつて洗浄
し、そして洗浄排水リを材補給筒トの上部より
排出し、また前記ダイヤフラムヘが引き戻される
時に生じる過層ハの底部空間へ洗浄済みの材
を充填することを繰り返すものである。
The device shown in Fig. 1 forms a superlayer C in a superphase L protruding obliquely to the side of a superlayer A.
The overflow water (d) flowing in from the upper part of the overflow tower (A) is passed through the overflow (c), and the overflow water is taken out from the outlet pipe (h).
On the other hand, the uppermost layer of the overlayer A, which traps a large amount of suspended solids, is pushed up to the extruded material diaphragm installed at the bottom of the overlayer A, and is discharged to the bottom of the overlayer A. The recycled materials are transferred to the material supply pipe installed at the bottom of the overlayer chamber by a portion of the overflow water, where they are washed by the washing water channel, and the material is drained from the washing drainage tank. This process is repeated by discharging the material from the top of the replenishment tube and filling the bottom space of the overlayer formed when the diaphragm is pulled back with the cleaned material.

しかし第1図に示した従来装置は過塔イの横
に過槽ロを突き出した構造であるため、大容量
すなわち過面積の大きな過槽を経済的に製作
することに難点があり、また広い設置面積を必要
とするという欠点がある。
However, the conventional device shown in Fig. 1 has a structure in which the overtank B protrudes from the side of the overcoat A, so it is difficult to economically manufacture a overtank with a large capacity, that is, a large area. The disadvantage is that it requires a large installation area.

次に第2図に示した従来装置は過層ハを浮遊
状態で構成し、被過水ニを過塔イの下部より
流入し、過塔イの中間部に設けた集水口ヌより
過層ハを通して過水として取り出し、また
過水の一部を過塔イ内に上昇させて、材をさ
らに浮上せしめ、浮上させた材を過塔イの上
部に設けた掻き取り装置ルによつて一定量ずつ掻
き取つて過塔イの外へ排出し、ポン等(図示せ
ず)を用いて流入被過水に混合して再び過塔
イ内へ戻すものである。
Next, in the conventional device shown in Fig. 2, the overlayer A is configured in a floating state, and the overflow water D flows into the overlayer from the lower part of the overlayer A, and the overlayer water flows through the water collection port N provided in the middle of the overlayer A. A part of the superfluous water is raised into the over-tower A to further float the material. The water is scraped off in small quantities and discharged to the outside of the filter tower I, mixed with the inflowing overflow water using a pump (not shown), and then returned to the filter tower I.

しかし、当該装置は過層を浮遊状態で構成さ
せるので材の種類にかなりの限定を受けると共
に、集水口ヌが過塔イの側壁に設けられる結
果、過層を上方向へ圧迫する力が過塔イの横
断面中央部付近で弱くなり、中央部の材ほど上
部へ浮上しやすく、このため材の汚れに応じた
均等的な層の材を上部から取り出し難く、かつ
過層が流動化しやすい等の欠点がある。また第
3図に示した装置は過塔イに内設した供給管ヲ
より流入させる被過水の上昇流で材を上部へ
圧迫して過層イを形成せしめ、集水管ワより
過水として取り出し、集水管ワの上部にある材
カを過層の流動化や膨張を防止する支持層とし
て作用させ、また懸濁物を捕捉した材の一部を
一定周期で短時間ごとに過塔イの下部に落し、
弁ヨを通じて被過水の一部と共に洗浄塔タへ移
送し、洗浄塔タの下部管レより流入させる洗浄水
で洗浄した後、洗浄塔タの下部に連結したエゼク
タソによつて過塔イの上部へ送給するもので、
通常過時間数10分間に対し、汚れた材の取り
出し、洗浄、移送に数分間という組み合わせで連
続過を行なうものである。しかし当該装置は
過層の支持として固定された支持体がないため、
過層の流動化や過層全体の過塔上部への膨
張を避けるためにはせいぜい30m/hr程度までの
過速度が限度であり、過塔の断面積当たりの
処理量が小さいという欠点がある。
However, since this device constructs the overlayer in a floating state, there are considerable restrictions on the type of material, and as a result of the water collection port being provided on the side wall of the overlayer, the force that presses the overlayer upward is excessive. The material becomes weak near the center of the cross section of the tower, and the material in the center is more likely to float to the top, making it difficult to take out a uniform layer of material from the top depending on how dirty the material is, and the overlayer tends to fluidize. There are drawbacks such as. In addition, the device shown in Figure 3 uses the upward flow of overflow water that flows into the overflow pipe from the supply pipe installed inside the overflow tower A to press the wood upwards to form an overflow overflow, and the overflow water is discharged from the water collection pipe through the upper flow of overflow water. The material at the top of the collecting pipe is used as a support layer to prevent fluidization and expansion of the overlayer, and part of the material that has captured suspended matter is passed through the overflow tower at regular intervals for short periods of time. drop it at the bottom of the
A part of the overflow water is transferred to the washing tower through the valve holder, and after being washed with washing water flowing in from the lower pipe of the washing tower, the filtrate is removed by an ejector connected to the lower part of the washing tower. This is for feeding to the upper part.
Continuous filtration is carried out in combination with several minutes for removing, cleaning, and transporting dirty materials, compared to the usual 10 minutes. However, since this device does not have a fixed support for supporting the superlayer,
In order to avoid fluidization of the overlayer and expansion of the entire overlayer to the upper part of the overcoat, the overspeed is limited to about 30 m/hr at most, and there is a disadvantage that the throughput per cross-sectional area of the overcoat is small. .

本発明は上述した従来の連続式過装置の欠点
を解決し、断面積当たりの処理量を大とすると共
に良好な過水を得、かつ材の洗浄操作を簡便
にし、さらに洗浄に要する水および空気の量を極
力少なくすることを目的とする。
The present invention solves the drawbacks of the conventional continuous filtration equipment described above, increases the throughput per cross-sectional area, obtains good filtration, simplifies the cleaning operation of materials, and further reduces the amount of water required for cleaning. The aim is to minimize the amount of air.

すなわち本発明は過塔の上部および下部にそ
れぞれ過水の流出管および被過水の流入管を
付設し、被過水を上昇流で通水して粒状材層
を上方に圧迫させて過を行なう上昇流式過塔
において、過水の流出口の下方の過塔内に水
は通すが粒状材は通さない上部スクリーン、ま
たは粒状物を接着剤で固めた通水性の支持床を形
成させると共に、過塔内の下方に水は通すが粒
状材は通さない集水管を内設し、また過塔の
上方部にホツパーを立設して、当該ホツパーの下
端部を前記上部スクリーンまたは前記支持床の下
方の過塔内に開口させ、かつ過工程の初期に
形成した粒状材層内に粒状材の排出管を内設
し、当該排出管と前記ホツパーの上部を連通管で
接続したことを特徴とする連続式上昇流過塔に
関するものである。以下に本発明の実施態様の一
例を図面を用いて詳細に説明する。
That is, in the present invention, an outflow pipe for filtrated water and an inflow pipe for filtrated water are attached to the upper and lower parts of the filtration tower, respectively, and the filtrated water is passed through in an upward flow to press the granular material layer upward to filtrate. In an upflow type filtration tower, an upper screen that allows water to pass through but not granular material is formed in the filtration tower below the permeate outlet, or a water-permeable support bed is formed by hardening the granular material with adhesive. , a water collecting pipe is installed in the lower part of the filtration tower that allows water to pass through but not granular material, and a hopper is installed in the upper part of the filtration tower, and the lower end of the hopper is connected to the upper screen or the support bed. A granular material discharge pipe is opened into the hopper below the hopper, and a granular material discharge pipe is installed inside the granular material layer formed at the beginning of the filtration process, and the discharge pipe is connected to the upper part of the hopper by a communicating pipe. This article relates to a continuous upflow column. An example of an embodiment of the present invention will be explained in detail below using the drawings.

第4図に本発明の連続式上昇流過塔の構造説
明図を示したが、その構成を説明すると、1は
過塔、2はホツパーで下部を円錘状に縮径して
過塔1の上部に立設し、当該ホツパーの下端部に
材補給弁18を付設し、当該弁18は長い操作
軸を介して弁の開閉機構19によつて開閉させ
る。また材補給弁18の開口部を後で説明する
上部スクリーン4の下方に位置させる。なお、
材補給弁としてはボール弁、コツクまたはダイヤ
フラム弁等のように粒状材と水のスラリが通過
しやすい構造のものであればなんでもよい。3は
過層を形成させるべき粒状材(以下材とい
う)であつて、粒状物であればなんでもよいが、
比重が1.05より2.7程度までのプラスチツク粒
子、アンスラサイトまたは砂等が好適であり、そ
の大きさや均等係数等は被過水の性状および目
的とする過速度によつて選定する。なお過層
高としては全体で0.7〜2mとするとよい。4は
材は通過しないが水は通過し得る上部スクリー
ンであり、過水の流出口26の下方に設ける。
5はやはり材は通過しないが水は通過し得る集
水管であり、たとえば同管をスクリーンで覆つた
もので過塔1の下方に内設する。また6は被
過水の流入管であり、入口弁7を介して過塔1
の底部に連結する。8は排水管であつて液抜き弁
9を介して集水管5と連結する。10は過水の
流出管であり、過水出口弁11を介して過塔
1の上部に付設する。さらにホツパー2の上方部
に洗浄水排出管15および空気抜き管16を付設
し、当該それぞれの管15,16のホツパー接続
部に材の流出防止スクリーン17を設ける。2
0は材の排出管であつて、過工程の初期に形
成した過層内にその開口部が位置するように付
設し、他端を材取出弁21を介してエゼクタ2
2の吸引部27に接続する。なお材の排出管2
0の開口部の位置としては過工程の初期に形成
した全過層に対して下から1/2〜1/4の範囲にす
るとよい。一方エゼクタ22の吐出部28に連通
管24の一端を接続し、連通管24の他端をホツ
パー2の上部と接続する。さらにエゼクタ22の
駆動水流入部29に駆動水弁23を介して駆動水
管30を接続する。なお25はバツフル板であ
る。
Fig. 4 shows an explanatory diagram of the structure of the continuous upflow filtration tower of the present invention.To explain its configuration, 1 is a filtration tower, 2 is a hopper whose lower part is reduced in diameter into a conical shape, and the filtration tower 1 is A material replenishment valve 18 is attached to the lower end of the hopper, and the valve 18 is opened and closed by a valve opening/closing mechanism 19 via a long operating shaft. Further, the opening of the material replenishment valve 18 is located below the upper screen 4, which will be described later. In addition,
The material replenishment valve may be of any type, such as a ball valve, cock valve, or diaphragm valve, as long as it has a structure that allows the slurry of granular material and water to easily pass through. 3 is a granular material (hereinafter referred to as material) to form an overlayer, and any granular material may be used, but
Plastic particles, anthracite, sand, etc. having a specific gravity of about 1.05 to 2.7 are suitable, and their size, uniformity coefficient, etc. are selected depending on the properties of the overflowing water and the desired overspeed. The total height of the overstory is preferably 0.7 to 2 m. Reference numeral 4 designates an upper screen that does not allow the material to pass through, but allows water to pass through, and is provided below the overflow outlet 26.
Reference numeral 5 designates a collection pipe through which water can pass but not through which materials pass. For example, the same pipe is covered with a screen and is installed below the tower 1. Further, 6 is an inflow pipe for the filtrate water, which is passed through the inlet valve 7 to the filtrate tower 1.
Connect to the bottom of the. Reference numeral 8 denotes a drain pipe, which is connected to the water collection pipe 5 via a drain valve 9. Reference numeral 10 denotes a super water outflow pipe, which is attached to the upper part of the filter tower 1 via a super water outlet valve 11. Further, a wash water discharge pipe 15 and an air vent pipe 16 are attached to the upper part of the hopper 2, and a material outflow prevention screen 17 is provided at the hopper connection portion of each of the pipes 15 and 16. 2
Reference numeral 0 denotes a material discharge pipe, which is attached so that its opening is located within the overlayer formed at the beginning of the over-processing process, and the other end is connected to the ejector 2 through the material take-out valve 21.
It is connected to the suction section 27 of No. 2. Material discharge pipe 2
The position of the opening of 0 is preferably in the range of 1/2 to 1/4 from the bottom of the entire layer formed at the beginning of the layer process. On the other hand, one end of the communication pipe 24 is connected to the discharge part 28 of the ejector 22, and the other end of the communication pipe 24 is connected to the upper part of the hopper 2. Further, a drive water pipe 30 is connected to the drive water inlet 29 of the ejector 22 via the drive water valve 23 . Note that 25 is a full board.

なお第4図に示した上部スクリーン4は上昇流
で過を行なう際に形成される過層を支持する
ために設けるので、スクリーンに限定されること
はなく、たとえば第5図に示したように硅石など
の粒状物を接着剤で固めた通水性のある支持床3
1を過塔内の上部に固着させてもさしつかえな
い。またホツパー2と過塔1の上部の接合につ
いては、第5図に示したようにホツパー2の下端
部に接合管32の一端を連通し接合管32の他端
を過塔1内であつて上部スクリーン4あるいは
通水性のある支持床31の下方部に開口させても
さしつかえない。なおこの場合は材補給弁18
を接合管32の途中に付設するとよい。
Note that the upper screen 4 shown in FIG. 4 is provided to support the overlayer that is formed when filtration is carried out in an upward flow, so it is not limited to a screen; for example, as shown in FIG. Water-permeable support floor 3 made of granular materials such as silica stone hardened with adhesive
1 may be fixed to the upper part of the tower. Regarding the joining of the hopper 2 and the upper part of the filter tower 1, as shown in FIG. The opening may be provided at the lower part of the upper screen 4 or the water-permeable support floor 31. In this case, the material supply valve 18
It is preferable to attach it in the middle of the joint pipe 32.

次に本発明の連続上昇流過装置の操作を説明
する。まず過操作について説明すると、第4図
において入口弁7と過水出口弁11を開口し、
被過水の流入管6から被過水を流入させ、
材3を被過水の上昇流によつて過塔1の上部
スクリーン4(または通水性のある支持床31)
に押しつけ、上方に圧迫させた過層Aを形成す
る。そして被過水中の懸濁物を層Aの主に
下方部によつて捕捉し、過水は過水の流出管
10から流出させる。なお当該過層を形成し得
る上昇LVとしては、使用する材の種類にもよ
るが通常15m/H以上の流速とするとよい。過
を続行するにしたがい過層Aの圧力損失が増加
するので、一定時間経過した後そのままの状態で
材取出弁21と駆動水弁23を開口し、材の
排出管20の開口部より下方の材のスラリ状態
で取り出し、連通管24を通してホツパー2に移
送する。材の排出管20から取り出される材
3は懸濁物を捕捉しているが、エゼクタ22内に
おいて駆動水管30からの流入水によつて激しく
撹拌することにより材の表面に付着している懸
濁物が剥離し、また材の空隙に形成されていた
懸濁物の固まりが崩れ、材と濁水のスラリとな
つて連通管24を上昇する。そして材表面に付
着していた懸濁物と空隙間に存在していた懸濁物
を除去した洗浄済みの材はホツパー2の底部に
沈降し、濁水は洗浄水排出管15から流出する。
なお材の取り出しに関しては材取出弁21を
適当な開度で開放したままの状態で一定時間連続
的に排出する方法と、材取出弁21の開閉を順
に繰り返して小量ずつ段階的に排出する方法があ
るが、どちらの方法でもさしつかえない。このよ
うな操作により当該排出管20の開口部より下方
に形成した過層Aを順に過塔1の外部に取り
出して行くが、当該排出管20の開口部より上方
にも材3の過層Aを形成しているので、材
3の取り出し操作中においても過を続行させる
ことができる。ホツパー2内に洗浄済みの材が
規定量貯留したならば以下に説明する材の補給
操作を行なう。本操作は入口弁7と過水出口弁
11を閉じ、それと同時に液抜き弁9と材補給
弁18を急速に開口する操作であり、本操作を行
なうと集水管5から大量の水を一時的に排出する
ので、過塔1内に下降流のピストンフローが生
じ、過塔内に形成していた過層Aがそのまま
の状態で層状を呈して過塔1の下部に落下し、
それと同時にホツパー2内の洗浄済みの材を
過層Aの落下により生じる過塔1の上部空間に
移送する。
Next, the operation of the continuous upflow device of the present invention will be explained. First, to explain over-operation, in FIG. 4, the inlet valve 7 and the over-water outlet valve 11 are opened,
Allowing the overflow water to flow in from the overflow water inflow pipe 6,
The upper screen 4 (or water-permeable support bed 31) of the filter tower 1
to form a superlayer A that is pressed upward. Suspended matter in the overflow water is captured mainly by the lower part of the layer A, and overwater is discharged from the overflow pipe 10. Although it depends on the type of material used, the flow rate at which the overlayer can be formed is usually 15 m/H or more. As the process continues, the pressure loss in the overlayer A increases, so after a certain period of time, the material take-out valve 21 and drive water valve 23 are opened, and the material is discharged from the bottom of the material discharge pipe 20 below the opening. The material is taken out in a slurry state and transferred to the hopper 2 through the communication pipe 24. The material 3 taken out from the material discharge pipe 20 captures suspended matter, but the suspended matter adhering to the surface of the material is removed by vigorous stirring in the ejector 22 by the inflow water from the driving water pipe 30. The material peels off, and the mass of suspended matter formed in the voids of the material collapses, becoming a slurry of material and turbid water that ascends the communication pipe 24. The washed material, from which the suspended matter adhering to the surface of the material and the suspended matter present in the voids have been removed, settles to the bottom of the hopper 2, and the turbid water flows out from the washing water discharge pipe 15.
Regarding the removal of the material, there are two methods: one method is to leave the material take-off valve 21 open at an appropriate opening and discharge it continuously for a certain period of time, and another is to discharge the material in small amounts step by step by repeating opening and closing of the material take-out valve 21 in order. There are ways to do this, but either way is fine. Through this operation, the overlayer A formed below the opening of the discharge pipe 20 is taken out of the tower 1 in order, but the overlayer A of the material 3 is also formed above the opening of the discharge pipe 20. , it is possible to continue the process even during the operation of taking out the material 3. Once a specified amount of cleaned material is stored in the hopper 2, the following material replenishment operation is performed. This operation is an operation that closes the inlet valve 7 and the excess water outlet valve 11, and at the same time rapidly opens the liquid drain valve 9 and material replenishment valve 18. When this operation is performed, a large amount of water is temporarily removed from the water collection pipe 5. As a result, a downward piston flow is generated in the filter tower 1, and the superlayer A that had formed in the filter tower remains in a layered state and falls to the bottom of the filter tower 1.
At the same time, the cleaned material in the hopper 2 is transferred to the upper space of the sieve tower 1 created by the fall of the sieve layer A.

上記の補給操作が終了したならば、液抜き弁9
と材補給弁18を閉じ、再び入口弁7と過水
出口弁11を開けて前述した過工程を続行す
る。
When the above replenishment operation is completed, drain valve 9
Then, the material replenishment valve 18 is closed, and the inlet valve 7 and overwater outlet valve 11 are opened again to continue the above-mentioned overflow process.

以上説明したように、本発明の連続式上昇流
過塔においては過塔1の上方部に上部スクリー
ン4(または通水性のある支持床31)を形成さ
せることにより、たとえ被過水を高流速の上昇
流で供給しても過層Aが流動することがなく、
また過塔1の下方部に集水管5を設置すること
により、材の補給操作時において大容量の水を
過塔の断面に対して均等に抜くことができ、こ
れによつて過塔内に下降流のピストンフローを
生じせしめることが可能となり、過層Aを崩す
ことなく過塔1内の下方に移動させることがで
き、過層Aが崩れることによる過水の一時的
な濁りを防止することができ、かつ短時間内でホ
ツパー内の材を補給することが可能となる。さ
らに過工程の初期に形成した過層内の下方の
材を排出管20を開口させることにより、過
操作を中断することなく過塔内から取り出すこ
とが可能となり、またエゼクタ22の撹拌作用に
より材の移送中に材の洗浄を行なうことがで
きるので、材の洗浄塔を設置する必要がない。
なお材の排出管20に接続する材の撹拌装置
として、第4図、第5図に示した実施態様ではエ
ゼクタを用いたが、エゼクタに限られることな
く、たとえばスラリポンプ等を用いてもさしつか
えない。また場合によつては単なるT字管でもさ
しつかえないが、経済性および撹拌効果等を考慮
するとエゼクタを用いることがもつとも好まし
い。
As explained above, in the continuous upflow filtration tower of the present invention, by forming the upper screen 4 (or the water-permeable support bed 31) in the upper part of the filtration tower 1, even if the filtrate water is transferred at a high flow rate. Even if it is supplied with an upward flow of , superlayer A does not flow,
In addition, by installing a water collection pipe 5 at the lower part of the overcoat 1, a large amount of water can be drained evenly across the cross section of the overcoat during material replenishment operations. It becomes possible to generate a downward piston flow, and it is possible to move the overlayer A downward in the overcoat 1 without collapsing it, thereby preventing temporary turbidity of overwater caused by the collapse of the overlayer A. This makes it possible to replenish the material in the hopper within a short time. Furthermore, by opening the discharge pipe 20, the material from the lower part of the overlayer formed at the beginning of the overstep can be taken out from the inside of the overlayer without interrupting the overoperation. Since the material can be washed during transport, there is no need to install a material washing tower.
Although an ejector is used as the material stirring device connected to the material discharge pipe 20 in the embodiments shown in FIGS. 4 and 5, it is not limited to the ejector; for example, a slurry pump or the like may be used. do not have. Although a simple T-tube may be used in some cases, it is preferable to use an ejector in consideration of economical efficiency and stirring effect.

次に過工程中における材の排出について、
さらに詳しく説明すると、材の排出は第6図の
斜線部に示したように、材の排出管20の開口
部に近い方から順に、開口部を中心頂点とする浅
い円錘形もしくは角錘形状に取り出されるが、前
述したごとく懸濁物は過層Aの下方部によつて
捕捉されるので、場合によつては懸濁物を捕捉す
る能力をまだ十分に有している過層が過塔外
に排出されることもある。したがつて材の排出
管20を段階的に上下差をつけて複数設けること
がより好ましい。たとえば第7図に示したよう
に、3本の材の排出管20a,20b,20c
を段階的に上下差をつけて設置し、まず材取出
弁21aを開口して斜線部Aaの材を排出し、
続いて材取出弁21bを開口して斜線部Abの
材を排出し、最後に材取出弁21cを開口し
て斜線部Acの材を排出するようにすれば、懸
濁物を捕捉した材を過操作を中断することな
く下から順に排出できるので、過層の利用効率
をさらに高めることができる。なお段階的に上下
差をつけて設置する排出管の数については過層
の厚み、被過水の懸濁物の量、過速度等を考
慮して適宜決定するとよい。
Next, regarding the discharge of material during over-processing,
To explain in more detail, as shown in the shaded area in FIG. However, as mentioned above, suspended matter is captured by the lower part of superlayer A, so in some cases the superlayer, which still has sufficient ability to capture suspended matter, may Sometimes it is discharged outside the tower. Therefore, it is more preferable to provide a plurality of material discharge pipes 20 with vertical differences in stages. For example, as shown in FIG. 7, three material discharge pipes 20a, 20b, 20c
are installed in stages with vertical differences, first open the material take-out valve 21a and discharge the material in the shaded area Aa,
Then, by opening the material take-off valve 21b to discharge the material in the shaded area Ab, and finally by opening the material take-out valve 21c to discharge the material in the shaded area Ac, the material with trapped suspended matter can be removed. Since the overlayer can be discharged sequentially from the bottom without interrupting the overflow operation, the utilization efficiency of the overlayer can be further increased. The number of discharge pipes to be installed in stages with vertical differences may be appropriately determined in consideration of the thickness of the overlayer, the amount of suspended matter in the overflowing water, the overspeed, etc.

次に前述したごとく、当該排出管20から排出
された懸濁物を捕捉した材をエゼクタ内におい
て駆動水によつて激しく撹拌し、材の表面に付
着していた懸濁物を剥離し、また材の空隙に形
成していた懸濁物の固まりを崩し、懸濁物を濁水
としてポツパー2の上部に付設した洗浄水排出管
15より流出するが、ホツパー2の底部に沈降し
た洗浄済みの材を過塔内に補給する際に、こ
の濁水の一部を過塔内に流入し、過工程の再
開時に一時的に過水の水質が低下することがあ
る。したがつてこれを防止するために、第8図に
示したように過水の流出管10に置換水導入管
12の一端を接続し、置換水導入管12の他端を
ホツパー2の下方内部に開口し、ホツパー2内の
材を過塔に補給する前に置換水弁13を開け
て過水をホツパー内の下部より逆流させるとよ
い。置換水導入管12の他端にはスリツトが多数
切つてあるノズル14を付設し、このノズル14
から過水を均等にホツパー底部に流出すること
によりホツパー内に滞留していた濁水を洗浄水排
出管15から流出し、ホツパー内の材と共存す
る水を過水に置換することができるので、この
操作を行なうことによつて材の補給時における
過塔内への濁水の流入を効果的に防止すること
ができる。なお、ホツパー2の径が小さい場合は
置換水導入管の他端を単に開口したままでも、先
端にノズル14を付設したのとほぼ同一の効果を
達成することができるので、場合によつてはノズ
ル14を省略してもさしつかえない。
Next, as described above, the material discharged from the discharge pipe 20 that has captured the suspended matter is vigorously stirred in the ejector by driving water to peel off the suspended matter adhering to the surface of the material, and The suspended solids that have formed in the voids of the material are broken up, and the suspended matter flows out as turbid water through the wash water discharge pipe 15 attached to the top of the hopper 2, but the washed material that has settled at the bottom of the hopper 2 is removed. When replenishing the filtrate into the filtration tower, a portion of this turbid water may flow into the filtration tower, and the quality of the filtrate may temporarily decrease when the filtration process is restarted. Therefore, in order to prevent this, as shown in FIG. It is preferable to open the displacement water valve 13 to allow excess water to flow back from the lower part of the hopper before replenishing the material in the hopper 2 to the overcoat. A nozzle 14 with many slits is attached to the other end of the replacement water introduction pipe 12.
By uniformly discharging superfluous water from the hopper to the bottom of the hopper, the turbid water that had accumulated in the hopper can flow out from the washing water discharge pipe 15, and the water that coexists with the material in the hopper can be replaced with superfluous water. By performing this operation, it is possible to effectively prevent turbid water from flowing into the tower during replenishment of materials. In addition, if the diameter of the hopper 2 is small, even if the other end of the replacement water introduction pipe is left open, almost the same effect as attaching the nozzle 14 to the tip can be achieved, so depending on the case, There is no problem even if the nozzle 14 is omitted.

また前述したごとく材の排出管20から取り
出した材をエゼクタ22の撹拌効果によつて洗
浄するが、被処理水中に含まれている懸濁物が粘
着性であつたり、または材層内で比較的強く固
まりやすい性質がある場合はエゼクタ22のみの
洗浄では不足する場合がある。このような時は、
第8図に示したように連通管24の一部分を太く
して材をある程度滞留させることにより駆動水
との接触時間を延長させたり、また一部分を太く
した連通管24′の下端に空気の流入管33を付
設し、空気弁34の開閉によつて適時空気を流入
させて連通管24′内をバブリングしたりすると
材の洗浄を完全に行なうことができる。したが
つて被処理水中に含まれる懸濁物の種類により連
通管の形状を適宜決定するとよい。
Further, as described above, the material taken out from the material discharge pipe 20 is cleaned by the stirring effect of the ejector 22, but if the suspended matter contained in the water to be treated is sticky or If the ejector 22 has a tendency to harden easily, cleaning only the ejector 22 may not be sufficient. At times like this,
As shown in FIG. 8, a portion of the communication pipe 24 is made thicker to allow the material to stagnate to a certain extent, thereby extending the contact time with the driving water, and air is allowed to flow into the lower end of the communication pipe 24', which is made partially thicker. By attaching a pipe 33 and opening and closing an air valve 34 to allow air to flow in at appropriate times to create bubbling inside the communication pipe 24', the material can be completely cleaned. Therefore, the shape of the communication pipe may be appropriately determined depending on the type of suspended matter contained in the water to be treated.

以上説明したごとく、本発明の連続式上昇流
過塔においては高流速で過を行なつても過層
が流動することがなく、また過を続行しつつ使
用済みの材を塔外に排出でき、かつ特に逆洗塔
を設置することなく材の洗浄ができ、そして短
時間で洗浄済みの材を過塔を充填することが
できるので、過塔の設置面積を小さくすると共
に建設費を廉価とすることができ、また洗浄に要
する水および空気の量を少なくすることができ、
ランニングコストも大幅に低下させることが可能
であり、産業に与える利益は大きい。
As explained above, in the continuous upward flow filtration tower of the present invention, the overlayer does not flow even when filtration is carried out at a high flow rate, and used materials can be discharged from the tower while filtration continues. In addition, the material can be washed without installing a backwashing tower, and the washed material can be filled into the tower in a short time, reducing the installation area of the tower and reducing construction costs. The amount of water and air required for cleaning can be reduced.
It is also possible to significantly reduce running costs, which brings great benefits to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来の連続式過装
置のフローの説明図であり、第4図〜第8図はい
ずれも本発明の連続式上昇流過塔の実施態様の
一例の構造説明図であり、第4図は全体構造説明
図、第5図、第8図は過塔上部の他の実施態様
を示した一部構造説明図、第6図、第7図は材
の排出状態を示した説明図である。 1……過塔、2……ホツパー、3……材、
4……上部スクリーン、5……集水管、6……被
過水の流入管、10……過水の流出管、12
……置換水導入管、20……材の排出管、22
……エゼクタ、24……連通管、31……通水性
のある支持床、33……空気の流入管、A……
過層。
Figures 1, 2, and 3 are explanatory diagrams of the flow of a conventional continuous filtration device, and Figures 4 to 8 are examples of embodiments of the continuous upflow filtration tower of the present invention. FIG. 4 is an explanatory diagram of the overall structure, FIGS. 5 and 8 are partial structural explanatory diagrams showing other embodiments of the upper part of the tower, and FIGS. 6 and 7 are illustrations of the material. FIG. 2 is an explanatory diagram showing a state of discharge. 1...Toto, 2...Hopper, 3...Material,
4...Upper screen, 5...Water collection pipe, 6...Inflow pipe for overflow water, 10...Outflow pipe for excess water, 12
...Displacement water introduction pipe, 20...Material discharge pipe, 22
... Ejector, 24 ... Communication pipe, 31 ... Water-permeable support bed, 33 ... Air inflow pipe, A ...
Overlayer.

Claims (1)

【特許請求の範囲】 1 過塔の上部および下部にそれぞれ過水の
流出管および被過水の流入管を付設し、被過
水を上昇流で通水して粒状材層を上方に圧迫さ
せて過を行なう上昇流式過塔において、過
水の流出口の下方の過塔内に水は通すが粒状
材は通さない上部スクリーン、または粒状物を接
着剤で固めた通水性の支持床を形成させるととも
に、過塔内の下方に水は通すが粒状材は通さ
ない集水管を内設し、また過塔の上方部にホツ
パーを立設して、当該ホツパーの下端部を前記上
部スクリーンまたは前記支持床の下方の過塔内
に開口させ、かつ過工程の初期に形成した粒状
材層内に粒状材の排出管を内設し、当該排出
管と前記ホツパーの上部を連通管で接続したこと
を特徴とする連続式上昇流過塔。 2 連通管の途中に材の撹拌装置を付設した特
許請求の範囲第1項記載の連続式上昇流過塔。 3 粒状材の排出管を段階的に上下差をつけて
複数設けることを特徴とする特許請求の範囲第1
項または第2項記載の連続式上昇流過塔。 4 過水の流出管に置換水導入管の一端を接続
し、置換水導入管の他端をホツパーの下方内部に
開口することを特徴とする特許請求の範囲第1
項、第2項または第3項記載の連続式上昇流過
塔。 5 連通管の一部分を太くすることを特徴とする
特許請求の範囲第1項、第2項、第3項または第
4項記載の連続式上昇流過塔。 6 一部分を太くした連通管の下端に空気の流入
管を付設したことを特徴とする特許請求の範囲第
5項記載の連続式上昇流過塔。
[Claims] 1. An overwater outflow pipe and an overflow water inflow pipe are attached to the upper and lower parts of the filtration tower, respectively, and the overflow water is passed through in an upward flow to compress the granular material layer upward. In an upflow filtration tower that performs filtration, an upper screen that allows water to pass through but not granular material, or a water-permeable support bed made of granular material bound with adhesive, is installed in the filtration tower below the filtration outlet. At the same time, a water collection pipe is installed below the filter tower to allow water to pass through but not to pass through the granular material, and a hopper is installed in the upper part of the filter tower, and the lower end of the hopper is connected to the upper screen or A granular material discharge pipe was opened into the hopper below the supporting bed, and a granular material discharge pipe was installed inside the granular material layer formed at the beginning of the filtration process, and the discharge pipe and the upper part of the hopper were connected by a communicating pipe. A continuous upflow tower characterized by: 2. The continuous upward flow tower according to claim 1, which is provided with a material stirring device in the middle of the communication pipe. 3. Claim 1, characterized in that a plurality of granular material discharge pipes are provided with vertical differences in stages.
2. A continuous upflow column according to item 2 or item 2. 4. Claim 1, characterized in that one end of the replacement water introduction pipe is connected to the overwater outflow pipe, and the other end of the replacement water introduction pipe is opened inside the hopper below.
3. The continuous upflow column according to item 1, 2 or 3. 5. The continuous upflow tower according to claim 1, 2, 3, or 4, wherein a portion of the communicating pipe is thickened. 6. The continuous upward flow filtration tower according to claim 5, characterized in that an air inlet pipe is attached to the lower end of the communicating pipe which is partially thickened.
JP7568679A 1979-06-18 1979-06-18 Continuous ascending current type filtration tower Granted JPS55167016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7568679A JPS55167016A (en) 1979-06-18 1979-06-18 Continuous ascending current type filtration tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7568679A JPS55167016A (en) 1979-06-18 1979-06-18 Continuous ascending current type filtration tower

Publications (2)

Publication Number Publication Date
JPS55167016A JPS55167016A (en) 1980-12-26
JPS6153093B2 true JPS6153093B2 (en) 1986-11-15

Family

ID=13583317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7568679A Granted JPS55167016A (en) 1979-06-18 1979-06-18 Continuous ascending current type filtration tower

Country Status (1)

Country Link
JP (1) JPS55167016A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636010U (en) * 1986-06-30 1988-01-16
JPH044805Y2 (en) * 1986-10-27 1992-02-12
CN104623957B (en) * 2013-11-13 2016-03-02 阿力甫江·阿不里米提 8 cun of torpedo desanding net formula full-automatic flushing filters
CN104623956B (en) * 2013-11-13 2016-04-20 阿力甫江·阿不里米提 6 cun of torpedo desanding net formula full-automatic flushing filters

Also Published As

Publication number Publication date
JPS55167016A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
JP3734227B2 (en) Upflow type high-speed filter
AU657925B2 (en) Method of washing an upflow filter and filter bed employed in said filter
JPH0318483B2 (en)
US5238560A (en) Washable filter
JP3524447B2 (en) Filtration device
JPS6153093B2 (en)
JPH0217908A (en) Method for washing solid-liquid separation apparatus
EP0785911B1 (en) Biological waste fluid cleaner
JPH0810523A (en) Method for washing floating filter medium
AU610323B2 (en) Backwash system for filter-thickeners
JP4420488B2 (en) Mud draining device
JP3518060B2 (en) Filtration device
JP2706080B2 (en) Filtration device and its cleaning method
GB2080696A (en) Upflow water filtration with buoyant filter media
GB2124921A (en) Filtering method and apparatus
JP2003220305A (en) Mobile filter bed-type filter
JPS6313776Y2 (en)
RU1825643C (en) Contact clarifier
JP3458186B2 (en) Pellet filter material washing device
SU1114439A1 (en) Method of regenerating filtering layer made of elastic porous material
JPS6221286Y2 (en)
JPH0312323Y2 (en)
JPS6316010A (en) Method for washing filter layer
JPS5920334Y2 (en) Continuous "filtration" device
SU1560266A1 (en) Filter for purifying liquid