JPS6152973A - Method for predicting breakout in continuous casting - Google Patents
Method for predicting breakout in continuous castingInfo
- Publication number
- JPS6152973A JPS6152973A JP17524884A JP17524884A JPS6152973A JP S6152973 A JPS6152973 A JP S6152973A JP 17524884 A JP17524884 A JP 17524884A JP 17524884 A JP17524884 A JP 17524884A JP S6152973 A JPS6152973 A JP S6152973A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- breakout
- push
- oil pressure
- back side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、鋼の連続鋳造において、ブレークアウトの
発生を未然に検知することができる、連続m造における
ブレークアウト予知方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for predicting breakouts in continuous steel casting, which can detect the occurrence of breakouts in advance.
連続鋳造の操業において、生産性の向上のために、鋳造
速度の高速化が要求されている。しかるに、高速で連続
鋳造を行なうと、鋳型直下の未凝固鋳片にブレークアウ
トが生じやすくなるため、このブレークアウトの発生が
鋳造速度の高速化の大きな技術的障害となっている。In continuous casting operations, higher casting speeds are required to improve productivity. However, when continuous casting is performed at high speeds, breakouts tend to occur in the unsolidified slab directly under the mold, and the occurrence of breakouts is a major technical obstacle to increasing the casting speed.
ブレークアウトには、一般に、鋳型内のシェルの成長遅
れに起因するものと、未凝固鋳片と鋳型間の摩擦力が未
凝固鋳片の高温強度以上となることに起因するものとが
ある。Generally, breakouts are caused by delayed growth of the shell within the mold, and breakouts are caused by the frictional force between the unsolidified slab and the mold exceeding the high-temperature strength of the unsolidified slab.
連続鋳造では、周知の如く、鋳型内の溶鋼の湯面上に鋳
型パウダーが添加されている。このパウダーは、溶融し
て鋳型と未凝固鋳片間に均一に流入し、これによって未
凝固鋳片の下方への引抜きが容易となるような潤滑作用
を果たしているものである。In continuous casting, as is well known, mold powder is added to the surface of molten steel in a mold. This powder melts and flows uniformly between the mold and the unsolidified slab, thereby providing a lubricating effect that facilitates the downward drawing of the unsolidified slab.
しかしながら、溶融したパウダーの鋳型と未凝固鋳片間
への流入が不均一となったり、その流入量が減少した場
合には、鋳型と未凝固鋳片間の摩擦力が上昇するので、
その摩擦力が未凝固鋳片の高温強度以上となることによ
るブレークアウトが発生する。However, if the flow of molten powder between the mold and the unsolidified slab becomes uneven or the amount of the inflow decreases, the frictional force between the mold and the unsolidified slab increases.
Breakout occurs when the frictional force exceeds the high temperature strength of the unsolidified slab.
そこで、この種のブレークアウトの防止のために、種々
の対策がとられているが、未だ充分な効果が得られてい
ないのが現状でちる。Therefore, various measures have been taken to prevent this type of breakout, but at present, sufficient effects have not yet been obtained.
この発明は、上述の現状に鑑み、鋳型から引抜かれる未
凝固鋳片のブレークアウトを予知して、ブレークアウト
の発生を未然に防ぐことを可能とする。連続鋳造におけ
るブレークアウト予知方法を提供することを目的とする
。In view of the above-mentioned current situation, the present invention makes it possible to predict the breakout of unsolidified slabs pulled from the mold and prevent the breakout from occurring. The purpose of this paper is to provide a method for predicting breakout in continuous casting.
この発明の連続鋳造におけるブレークアウト予知方法は
、鋳型を振動させるだめの油圧シリンダーの、押し側と
押し戻し側との間の油圧の差を連続的に測定することに
よって、その油圧の差の変化から、前記鋳型内に注入さ
れた溶鋼の凝固シェルと前記鋳型との間の潤滑状態を知
り、かくして、前記鋳型から引抜かれる未凝固鋳片のブ
レークアウトの発生を予知することに特徴を有する。The breakout prediction method in continuous casting of this invention continuously measures the difference in oil pressure between the pushing side and the pushing back side of the hydraulic cylinder used to vibrate the mold, and detects changes in the oil pressure difference. , is characterized in that it knows the lubrication state between the solidified shell of molten steel injected into the mold and the mold, and thus predicts the occurrence of breakout of the unsolidified slab to be pulled out from the mold.
本発明者等は、上述した未凝固鋳片と鋳型間の摩擦力が
、未凝固鋳片の高温強度以上となって発生するブレーク
アウトを防止すべく、鋭意研究を重ねた。その結果、油
圧力によって振動される鋳型では、鋳型に振動を与える
ための油圧ンリンダーの押し側と押し戻し側との間の油
圧の差が、鋳型と未凝固鋳片間の摩擦力が上昇すると、
鋳型の振幅および振動数を一定に保とうとするために、
大きくなること、従って、この油圧の差を測定すれば、
その油圧の差の変化から、鋳型と未凝固鋳片間の潤滑状
態が判り、ブレークアウトの発生を 〉予知することが
できることを見い出した。この発明は、上記知見により
なされたものである。The present inventors have conducted extensive research in order to prevent the breakout that occurs when the above-mentioned frictional force between the unsolidified slab and the mold exceeds the high temperature strength of the unsolidified slab. As a result, in a mold that is vibrated by hydraulic pressure, the difference in hydraulic pressure between the pushing side and the pushing back side of the hydraulic cylinder that gives vibration to the mold increases, as the frictional force between the mold and the unsolidified slab increases.
In order to try to keep the amplitude and frequency of the mold constant,
If you measure the difference in this oil pressure, therefore, it increases.
It was discovered that the lubrication state between the mold and the unsolidified slab can be determined from changes in the oil pressure difference, and the occurrence of breakout can be predicted. This invention was made based on the above findings.
次に、この発明を図面に基づいて説明する。Next, the present invention will be explained based on the drawings.
第1図は、この発明の一実施態様を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.
第1図において、1は水冷鋳型2の水箱、3は鋳型2の
鋳型フレーム、4は鋳型2を支持するための鋳型支持フ
レーム、5は鋳型2を振動するためのオシレーションフ
レームである。オシレーションフレーム5の一端には、
第2図に示すように、往復動油圧シリンダー6が取付け
られ、この油圧シリンダー6の押し側6aと押し戻し側
6bに接続され几作動油が通る配管7a、7bには、押
し側6a、押し戻し側6bの油圧を測定するための油圧
計8a、8bが設けられている。振動する鋳型2内に注
入された溶鋼9は、鋳型2内で凝固シェル10を生成し
て未凝固鋳片11とな9、鋳片支持ロール12に支持さ
れながら、鋳型2から引抜かれる。In FIG. 1, 1 is a water box for a water-cooled mold 2, 3 is a mold frame for the mold 2, 4 is a mold support frame for supporting the mold 2, and 5 is an oscillation frame for vibrating the mold 2. At one end of the oscillation frame 5,
As shown in FIG. 2, a reciprocating hydraulic cylinder 6 is attached, and piping 7a, 7b connected to the push side 6a and push-back side 6b of this hydraulic cylinder 6 and through which hydraulic oil passes are connected to the push-side 6a and the push-back side. Oil pressure gauges 8a and 8b are provided for measuring the oil pressure of oil pressure 6b. The molten steel 9 injected into the vibrating mold 2 generates a solidified shell 10 in the mold 2, becomes an unsolidified slab 11, and is pulled out from the mold 2 while being supported by slab support rolls 12.
この発明においては、油圧シリンダー6の押し側6aと
押し戻し側6bとの間の油圧の差の変化を監視し、これ
ばよって鋳型2と凝固シェル10との間の潤滑状態を知
り、未凝固鋳片11のブレークアウトヲ予知するもので
ちる。In this invention, changes in the difference in oil pressure between the pushing side 6a and the pushing back side 6b of the hydraulic cylinder 6 are monitored, and thereby the lubrication state between the mold 2 and the solidified shell 10 is known, and the unsolidified cast This is because it predicts the breakout in piece 11.
すなわち、鋳型2と鋳型2内の凝固シェル10との間の
潤滑状態が良好で、未凝固鋳片11が鋳型2から正常に
引抜かれている場合には、油圧計8aで測定される押し
側6aの油圧と、8bで測定される押し戻し側6bの油
圧との差ΔPは、はとんど変化しない。一方、鋳型2と
凝固シェル10との間の潤滑状態が悪化して、鋳型2と
未凝固鋳片11との間の摩擦力が上昇すると、前記油圧
の差ΔPは増大する。この油圧の差ΔPの定常値ΔPo
に対する変動量△(△P)=ΔP−ΔPoは、鋳型2と
未凝固鋳片11との間の摩擦力の大小によって決まるか
ら、この変動量△(△P)から鋳型2と凝固シェル10
との間の潤滑状態を知ることができ、未凝固鋳片11の
ブレークアウトを未然に検出することができる。That is, when the lubrication state between the mold 2 and the solidified shell 10 in the mold 2 is good and the unsolidified slab 11 is normally pulled out from the mold 2, the push side measured by the oil pressure gauge 8a The difference ΔP between the oil pressure at 6a and the oil pressure at the push-back side 6b measured at 8b hardly changes. On the other hand, when the lubrication state between the mold 2 and the solidified shell 10 deteriorates and the frictional force between the mold 2 and the unsolidified slab 11 increases, the oil pressure difference ΔP increases. Steady value ΔPo of this oil pressure difference ΔP
The amount of variation Δ(ΔP)=ΔP−ΔPo is determined by the magnitude of the frictional force between the mold 2 and the unsolidified slab 11. Therefore, from this amount of variation Δ(ΔP),
It is possible to know the lubrication state between the two, and to detect breakout of the unsolidified slab 11 in advance.
摩擦力が未凝固鋳片11にブレークアウトの危険を生ず
るときの、油圧ンリンダー6の前記油圧の差△Pは、連
続鋳造機の機種および鋳造条件によっても異なるが、実
操業上の経験によれば、定常値△P、の120〜130
%に選択すれば良いことが確認されている。従って、油
圧の差ΔPの上限として、定常値ΔPaの120〜13
0%の圧力を設定しておけば、未凝固鋳片11がブレー
クアウトを生ずる危険状態だけを、選択的に取9出すこ
とができる。The difference ΔP in the hydraulic pressure of the hydraulic cylinder 6 when the frictional force causes a risk of breakout in the unsolidified slab 11 varies depending on the model of the continuous casting machine and the casting conditions, but it is determined based on experience in actual operation. For example, the steady value △P is 120 to 130
It has been confirmed that it is sufficient to select %. Therefore, the upper limit of the oil pressure difference ΔP is 120 to 13 of the steady value ΔPa.
By setting the pressure to 0%, it is possible to selectively remove only the dangerous situation in which the unsolidified slab 11 breaks out.
上記により、油圧シリンダー6の押し側と押し戻し側と
の間の油圧の差の変化から、未凝固鋳片11のブレーク
アウトの発生が予知されたときには、この予知からブレ
ークアウトの発生までに、1〜2分間程度の時間的余裕
があるので、この間に、鋳型2内への溶鋼9の注入停止
、注入速度の低下、パウダーの変更などの処置を採れば
、フ゛レークアウトの発生を未然に防止することができ
る。As described above, when the occurrence of a breakout in the unsolidified slab 11 is predicted from the change in the difference in oil pressure between the pushing side and the pushing back side of the hydraulic cylinder 6, the time from this prediction to the occurrence of the breakout is 1. There is a time margin of about 2 minutes, so if measures such as stopping the injection of molten steel 9 into the mold 2, lowering the injection speed, and changing the powder are taken during this time, the occurrence of breakout can be prevented. be able to.
次に、この発明を実施例により説明する。 Next, the present invention will be explained with reference to examples.
第1表に示す成分組成の厚さ250u、幅1750朋の
厚板用40キロ級スラブを、10.5mHの湾曲型連続
鋳造機により鋳造し、その間の油圧シリンダーの、押し
側と押し戻し側との間の油圧の差圧ΔPを連続的に測定
した。A 40 kg class slab with a thickness of 250 μm and a width of 1750 mm having the composition shown in Table 1 was cast using a 10.5 mH curved continuous casting machine, and the push side and push back side of the hydraulic cylinder in between were cast. The hydraulic pressure difference ΔP between the two was continuously measured.
第 1 表 (wt、%) 第3図に差圧△Pの測定結果を図示して示す。Table 1 (wt, %) FIG. 3 graphically shows the measurement results of the differential pressure ΔP.
第3図かられかるように、差圧ΔPはa、a’に過ぎる
ところから徐々に上昇して、b点で定常値へP。As can be seen from FIG. 3, the differential pressure ΔP gradually increases from points a and a' and reaches a steady value P at point b.
0120〜130%になった。この時点で、鋳造速度を
1.4 frL/minから0.4m/m1nに下げた
ところ、差圧△Pは減少し、2分後には定常値(0点)
に戻ったJ
鋳造終了後に鋳片を観察したところ、差圧△Pの増大し
た時期に鋳型内で凝固シェルが破断していたことが確認
された。It became 0.120-130%. At this point, when the casting speed was lowered from 1.4 frL/min to 0.4 m/m1n, the differential pressure △P decreased and reached a steady value (0 point) after 2 minutes.
When the slab was observed after the completion of casting, it was confirmed that the solidified shell had fractured in the mold at the time when the differential pressure ΔP increased.
以上説明したように、この発明によれば、鋳型を振動さ
せる油圧シリンダーの押し側と押し戻し 5側との
間の油圧の差圧を測定することによって。As explained above, according to the present invention, the hydraulic pressure difference between the pushing side and the pushing back side of the hydraulic cylinder that vibrates the mold is measured.
その差圧の変化から鋳型と凝固シェルとの間の潤滑状態
を知るので、鋳型から引抜かれる未凝固鋳片のブレーク
アウトを確実に予知することができ、ブレークアウトの
発生を未然に防止することができる。従って、ブレーク
アウトの発生が障害となっていた鋳造速度の高速化を可
能にするなど、工業上優れた効果がもたらされる。Since the lubrication state between the mold and the solidified shell is known from changes in the differential pressure, it is possible to reliably predict the breakout of unsolidified slabs pulled from the mold, and prevent the occurrence of breakouts. Can be done. Therefore, excellent industrial effects are brought about, such as making it possible to increase the casting speed, which has been hampered by the occurrence of breakouts.
第1図はこの発明の方法の一実施態様を示す説明図、第
2図は第1図の方法において鋳型を振動する油圧シリン
ダーの油圧の差を測定するところを示す説明図、第3図
はこの発明の方法において油圧シリンダーの油圧の差像
を測定したときの測定値の一例を示すグラフである。図
面において、1・・・水箱、 2・・・鋳型
、3・・・t18m7V−ム、 4・・鋳型支持フレ
ーム、5・・・オンレーションフレーム、
6・・・油圧シリンダー、 6a・・・押し側、6b・
・・押し戻し側、 7a、7b・・・配管、8a、8
b・・・油圧計、 9・・・溶鋼、10・・・凝固
シェル、 11・・・未凝固鋳片。Fig. 1 is an explanatory diagram showing one embodiment of the method of the present invention, Fig. 2 is an explanatory diagram showing the method of Fig. 1, in which the difference in oil pressure of the hydraulic cylinder that vibrates the mold is measured, and Fig. 3 is an explanatory diagram showing the method of Fig. 1. It is a graph which shows an example of the measured value when the difference image of the oil pressure of a hydraulic cylinder is measured in the method of this invention. In the drawings, 1...Water box, 2...Mold, 3...T18m7V-m, 4...Mold support frame, 5...Onration frame, 6...Hydraulic cylinder, 6a...Press side, 6b・
...Push back side, 7a, 7b...Piping, 8a, 8
b... Oil pressure gauge, 9... Molten steel, 10... Solidified shell, 11... Unsolidified slab.
Claims (1)
リンダーの、押し側と押し戻し側との間の油圧の差を連
続的に測定することによつて、その油圧の差の変化から
、前記鋳型内に注入された溶鋼の凝固シェルと前記鋳型
との間の潤滑状態を知り、かくして、前記鋳型から引抜
かれる未凝固鋳片のブレークアウトの発生を予知するこ
とを特徴とする、連続鋳造におけるブレークアウト予知
方法。In continuous casting of steel, by continuously measuring the difference in oil pressure between the pushing side and the pushing back side of a hydraulic cylinder used to vibrate the mold, changes in the oil pressure difference can be used to determine the inside of the mold. Breakout in continuous casting, characterized by knowing the lubrication state between the solidified shell of molten steel injected into the mold and the mold, and thus predicting the occurrence of breakout in the unsolidified slab drawn from the mold. Prediction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17524884A JPH0235622B2 (en) | 1984-08-24 | 1984-08-24 | RENZOKUCHUZONIOKERUBUREEKUAUTOYOCHIHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17524884A JPH0235622B2 (en) | 1984-08-24 | 1984-08-24 | RENZOKUCHUZONIOKERUBUREEKUAUTOYOCHIHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6152973A true JPS6152973A (en) | 1986-03-15 |
JPH0235622B2 JPH0235622B2 (en) | 1990-08-13 |
Family
ID=15992848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17524884A Expired - Lifetime JPH0235622B2 (en) | 1984-08-24 | 1984-08-24 | RENZOKUCHUZONIOKERUBUREEKUAUTOYOCHIHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0235622B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997036706A1 (en) * | 1996-04-02 | 1997-10-09 | Mannesmann Aktiengesellschaft | Process for optimising surface quality of continuous castings |
EP1043096A1 (en) * | 1999-04-03 | 2000-10-11 | Sms Schloemann-Siemag Aktiengesellschaft | Process of measuring the frictional force between the strand and the mould at continuous casting |
EP2868405A4 (en) * | 2012-06-28 | 2016-02-24 | Hyundai Steel Co | Breakout prevention method in continuous casting |
CN108620546A (en) * | 2017-03-24 | 2018-10-09 | 宝山钢铁股份有限公司 | A kind of insert arrangement and its application method preventing continuous casting billet tail base surge |
-
1984
- 1984-08-24 JP JP17524884A patent/JPH0235622B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997036706A1 (en) * | 1996-04-02 | 1997-10-09 | Mannesmann Aktiengesellschaft | Process for optimising surface quality of continuous castings |
EP1043096A1 (en) * | 1999-04-03 | 2000-10-11 | Sms Schloemann-Siemag Aktiengesellschaft | Process of measuring the frictional force between the strand and the mould at continuous casting |
US6487504B1 (en) | 1999-04-03 | 2002-11-26 | Sms Schloemann-Siemag Aktiengesellschaft | Method of determining the friction between strand shell and mold during continuous casting |
EP2868405A4 (en) * | 2012-06-28 | 2016-02-24 | Hyundai Steel Co | Breakout prevention method in continuous casting |
CN108620546A (en) * | 2017-03-24 | 2018-10-09 | 宝山钢铁股份有限公司 | A kind of insert arrangement and its application method preventing continuous casting billet tail base surge |
CN108620546B (en) * | 2017-03-24 | 2020-03-06 | 宝山钢铁股份有限公司 | Plug-in device for preventing continuous casting billet tail billet from rising and using method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0235622B2 (en) | 1990-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN208879655U (en) | A kind of continuous cast mold Yarn feeding device | |
US4883114A (en) | Oscillation method and apparatus for a continuous casting mold | |
CA2004841C (en) | Method for oscillation of mold of vertical continuous caster | |
JP6354673B2 (en) | Steel continuous casting method | |
KR101477117B1 (en) | Method for preventing breakout in continuous casting | |
JPS6152973A (en) | Method for predicting breakout in continuous casting | |
JPS6152974A (en) | Method for predicting breakout in continuous casting | |
JPS6152972A (en) | Method for predicting breakout in continuous casting | |
JP5348390B2 (en) | Vibration method of continuous casting mold | |
JP3130053B2 (en) | How to optimize the surface quality of continuous castings | |
JPH08318359A (en) | Pressure-casting method and apparatus thereof | |
JPH059188B2 (en) | ||
JPH02200362A (en) | Method for predicting and restraining nozzle clogging in continuous casting apparatus | |
JPH0479744B2 (en) | ||
Xinyang et al. | The shell surface force caused by mould friction during slab continuous casting | |
JPH0124592B2 (en) | ||
JPH0259154A (en) | Method for detecting clogging of submerged nozzle in continuous casting | |
JP6787235B2 (en) | Continuous steel casting method | |
US5823245A (en) | Strand casting process | |
JP2000271705A (en) | Continuous casting method | |
KR101466358B1 (en) | Evaluation method for validation of cracks in piece by using friction | |
KR200260645Y1 (en) | Mold having round lower edges for reducing surface defects and break-out of slab | |
JPS5916540B2 (en) | Haganeno Renzokuchiyuuzouhouhou | |
JPH0919751A (en) | Continuous casting method | |
JPS6138763A (en) | Method for predicting breakout in continuous casting |