JPS6152883B2 - - Google Patents

Info

Publication number
JPS6152883B2
JPS6152883B2 JP54054603A JP5460379A JPS6152883B2 JP S6152883 B2 JPS6152883 B2 JP S6152883B2 JP 54054603 A JP54054603 A JP 54054603A JP 5460379 A JP5460379 A JP 5460379A JP S6152883 B2 JPS6152883 B2 JP S6152883B2
Authority
JP
Japan
Prior art keywords
sludge
pipe
exhaust gas
incinerator
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54054603A
Other languages
Japanese (ja)
Other versions
JPS55146316A (en
Inventor
Shoji Furuya
Koichi Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP5460379A priority Critical patent/JPS55146316A/en
Publication of JPS55146316A publication Critical patent/JPS55146316A/en
Publication of JPS6152883B2 publication Critical patent/JPS6152883B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、下水汚泥および産業廃水汚泥の乾燥
固化、焼却、溶融等の操作を各々単独にしかも有
機的に組合わせることにより、二次公害の発生を
防止し、且つ各設備における熱源を有効に利用し
て、前記処理に必要な熱エネルギー量を最少にす
ることを目的としてなしたものである。
Detailed Description of the Invention The present invention prevents the occurrence of secondary pollution by organically combining operations such as drying, solidifying, incinerating, and melting sewage sludge and industrial wastewater sludge. This was done with the aim of minimizing the amount of thermal energy required for the processing by effectively utilizing the heat sources in each facility.

下水汚泥或いは産業廃水汚泥の焼却炉として従
来第1図に示すような流動層式のものがある。図
示するように、焼却炉aの上部から投入された汚
泥bが空気cにより流動状態にあり、高温の砂d
の流動層内において解砕、加熱され、該流動層上
部において自燃焼する。その際、汚泥中に含まれ
る水分は蒸発し、汚泥中の有機物が燃焼して発生
する排ガスと共に焼却炉aの上部より排出eされ
る。この上部より排出される高温の排ガスeに
は、灰となつた微細な無機物が同伴される。上記
した焼却炉aによれば(イ)高負荷処理ができるため
装置容積が小さい、(ロ)排ガス温度が高いため臭気
による二次公害の発生がない、(ハ)排ガスを焼却脱
臭する場合に比し燃料消費量が少ない、等のメリ
ツトがある反面、乾燥行程を経ない高含水率(70
%以上)の汚泥を投入するため入熱のかなりの量
が汚泥中の水分の蒸発潜熱にとられ、従つて自燃
させるためには燃料燃焼等による熱fの導入を必
要とし、そのための燃料を必要とする。また高温
の排ガスはこのままでは回収することができず大
変不経済であり、しかも重金属等の有害成分が不
燃無機物と共に外気に排出される問題がある。
As a conventional incinerator for sewage sludge or industrial wastewater sludge, there is a fluidized bed type incinerator as shown in FIG. As shown in the figure, sludge b introduced from the top of the incinerator a is in a fluidized state due to air c, and high-temperature sand d
It is crushed and heated in the fluidized bed, and self-combusts in the upper part of the fluidized bed. At this time, the water contained in the sludge evaporates and is discharged from the upper part of the incinerator a together with the exhaust gas generated by combustion of the organic matter in the sludge. The high-temperature exhaust gas e discharged from the upper part is accompanied by fine inorganic substances that have turned into ash. According to the above-mentioned incinerator a, (a) the capacity of the device is small because it can perform high-load processing, (b) there is no secondary pollution due to odor because the exhaust gas temperature is high, and (c) it is suitable for deodorizing exhaust gas by incineration. Although it has advantages such as lower fuel consumption compared to
% or more), a considerable amount of the heat input is taken up by the latent heat of vaporization of the water in the sludge. Therefore, in order to achieve self-combustion, it is necessary to introduce heat f through fuel combustion, etc. I need. In addition, high-temperature exhaust gas cannot be recovered as it is, which is very uneconomical, and there is also the problem that harmful components such as heavy metals are discharged into the outside air together with non-flammable inorganic substances.

上記問題点を解決するために、第2図に示す方
式が考えられている。即ち、流動焼却炉aの上部
に高温排ガスeの一部の排ガスgを利用して乾燥
する予備乾燥機hを取付け、汚泥bを乾燥汚泥i
として処理することで燃料の低減を図り、また予
備乾燥機hで乾燥を行つた後の排ガスjは脱臭の
ため再び流動層へ循環する。更に前記排ガスeは
サイクロンkによつてガスlと灰mに分離され、
分離されたガスlは熱交換器nによつて燃料fの
燃焼用空気oを予熱した後、ガス処理工程pにま
わされるようになつている。しかし上記した方式
においては、乾燥処理後の蒸気を含んだ排ガスj
を再び流動層に戻すため、汚泥の乾燥に限界があ
り、それ以上乾燥させるためには、燃料fを増加
しなければならない。又予備乾燥機hを上部にと
りつけるため、設備の高さが増大する問題があ
り、しかも二次公害発生源となる焼却灰mの処理
が問題として残されている。即ち、上記焼却灰の
処分を埋立、海洋投棄などで完了させることは、
用地難や二次公害発生の面で制約されている。
In order to solve the above problems, a method shown in FIG. 2 has been considered. That is, a pre-dryer h is installed in the upper part of the fluidized incinerator a to dry the sludge b using part of the high-temperature exhaust gas g, and the sludge b is dried as the dried sludge i.
In addition, the exhaust gas j after being dried in the pre-dryer h is circulated to the fluidized bed again for deodorization. Further, the exhaust gas e is separated into gas l and ash m by a cyclone k,
After the separated gas l preheats the combustion air o of the fuel f by a heat exchanger n, it is sent to a gas treatment step p. However, in the above method, the exhaust gas containing steam after drying treatment
Since the sludge is returned to the fluidized bed, there is a limit to the drying of the sludge, and to further dry the sludge, the amount of fuel f must be increased. Furthermore, since the pre-dryer h is mounted on the top, there is a problem in that the height of the equipment increases, and furthermore, the disposal of incinerated ash m, which is a source of secondary pollution, remains a problem. In other words, it is not possible to complete the disposal of the incinerated ash by landfilling, ocean dumping, etc.
It is constrained by land shortages and secondary pollution.

上記問題を解決するために、現在は溶融によつ
て最終処理する試みがなされている。例えば第3
図に示す如く、密閉電気炉又はガス溶融炉等qに
乾燥汚泥又は焼却灰rを投入する。乾燥汚泥の場
合は、有機物は熱分解又は燃焼してガス化されて
排ガスs処理にまわされ、無機物はスラグtとし
て溶融化する。このとき密閉電気炉を使うと、有
機物が分解したガスによつて炉内は還元雰囲気に
保たれ、重金属のスラグ中への溶出を容易にす
る。一方前記焼却灰の場合は、炉内を還元雰囲気
に保つために投入物rに炭素分等を含有して炉内
に投入し、還元雰囲気を作るなどの方法がある。
このようにしてできたスラグtは定期的に炉外へ
排出uされ、水砕処理等をして資源化される。し
かし上記いずれの溶融炉においても炉内でのダス
トの発生が多く、有害成分がダストと共に排ガス
s中に含まれて飛散していく可能性が強い。また
電気あるいは燃料として処理に必要とされるエネ
ルギーが大きく、特に密閉電気炉等においてはラ
ンニングコストが最も高くなるという問題があ
る。
In order to solve the above problems, attempts are currently being made to finalize the material by melting. For example, the third
As shown in the figure, dried sludge or incinerated ash r is put into a closed electric furnace or gas melting furnace q. In the case of dry sludge, organic matter is thermally decomposed or burned to be gasified and sent to exhaust gas treatment, and inorganic matter is melted as slag t. If a closed electric furnace is used at this time, the inside of the furnace is maintained in a reducing atmosphere by the gas generated by the decomposition of organic matter, which facilitates the elution of heavy metals into the slag. On the other hand, in the case of the incineration ash, there is a method in which the input material r contains carbon and the like and is charged into the furnace to create a reducing atmosphere in order to maintain the inside of the furnace in a reducing atmosphere.
The slag t produced in this way is periodically discharged out of the furnace and is recycled through granulation treatment or the like. However, in any of the above melting furnaces, a lot of dust is generated in the furnace, and there is a strong possibility that harmful components are included in the exhaust gas s together with the dust and scattered. Further, there is a problem in that the energy required for processing in the form of electricity or fuel is large, and the running cost is the highest, especially in closed electric furnaces and the like.

本発明は、上記各従来方式のもつ問題点を解決
すべくなしたもので、脱水処理後の汚泥を乾燥処
理する装置と、乾燥後の汚泥を焼却処理する流動
層式焼却装置と、焼却後の焼却灰を還元雰囲気下
で密閉溶融処理する装置を備え、前記流動層式焼
却装置上部に排ガス及び焼却灰用配管を設け、該
配管後部にサイクロンを連結し、該サイクロンの
排ガス用配管を前記乾燥装置に連結し、更に前記
サイクロンの焼却灰用配管を前記密閉溶融処理す
る装置に連結し、且つ乾燥装置に設けた排気管を
2つに分岐せしめてその一方を前記排ガス用配管
に連結し、他方を前記焼却装置に連結しているこ
とを特徴とする下水汚泥および産業廃水汚泥の処
理装置、に係るものである。
The present invention was made to solve the problems of the above-mentioned conventional methods, and includes a device for drying sludge after dewatering, a fluidized bed incinerator for incinerating the sludge after drying, and a fluidized bed incinerator for incinerating the sludge after drying. The apparatus is equipped with a device for sealing and melting incinerated ash in a reducing atmosphere, and pipes for exhaust gas and incinerated ash are provided at the top of the fluidized bed incinerator, a cyclone is connected to the rear of the pipe, and the exhaust gas pipe of the cyclone is connected to the connected to a drying device, further connecting the incinerated ash pipe of the cyclone to the device for sealing and melting processing, and branching the exhaust pipe provided in the drying device into two, one of which is connected to the exhaust gas pipe. The present invention relates to a treatment device for sewage sludge and industrial wastewater sludge, characterized in that the other end is connected to the incinerator.

以下本発明の実施例を図面を参照しつつ説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第4図中1は乾燥機であり、該乾燥機1には、
脱水汚泥の投入口2、乾燥処理後の汚泥粒の排出
口3があり、また後述する乾燥熱源用ガスを導入
する給気管4と乾燥処理後の排ガスを排出する排
気管5が接続されている。前記排出口3は貯留ホ
ツパー6に汚泥粒を運ぶ汚泥輸送装置7に連結さ
れており、該汚泥輸送装置7の途中には前記排気
管5からの排気を導いてダストの分離を行う上部
に配管8を備えたサイクロン9の下部配管10が
接続されている。前記貯留ホツパー6は、汚泥投
入移送装置11を介して流動層式汚泥焼却装置1
2に接続されており、該焼却装置12には流動層
流動用及び汚泥燃焼用の給気支管13が接続され
ている。更に前記焼却装置12は、その上部に設
けた排ガス用排管14を介して焼却灰を分離する
サイクロン15に接続されている。サイクロン1
5は、上部に配管16がまた下部にホツパー17
が設けられている。前記配管16には、前記サイ
クロン9の上部の配管8を途中に吸引ブロワー1
8を配してその後2方向に分岐してなるその一方
の配管19が接続されており、またその他方の配
管20は途中に調整弁21を介して前記焼却装置
12の給気支管13に接続されている。更に配管
16は、途中に高温ブロワー22を備えた前記給
気管4ともう1つの配管23に分岐されており、
該配管23は熱交換器24、電気集塵器25、吸
引ブロワー26を順次介してガス吸収塔27に接
続されている。前記給気管4の途中には熱電対等
の温度検出器28が設けられ、該検出器28の検
出値に基づいて前記調整弁21の開度調整が行わ
れるようになつている。また前記熱交換器24に
対し、ブロワー29を介して空気を送り、加熱後
の空気を給気本管30を介して前記焼却装置12
の給気支管13に送給するように構成している。
1 in FIG. 4 is a dryer, and the dryer 1 includes:
There is an inlet 2 for dehydrated sludge and an outlet 3 for sludge particles after drying treatment, and an air supply pipe 4 for introducing drying heat source gas, which will be described later, and an exhaust pipe 5 for discharging exhaust gas after drying treatment are connected. . The discharge port 3 is connected to a sludge transport device 7 that transports sludge particles to a storage hopper 6, and in the middle of the sludge transport device 7 there is a pipe installed at the upper part that guides the exhaust air from the exhaust pipe 5 and separates dust. A lower pipe 10 of a cyclone 9 with a cyclone 8 is connected thereto. The storage hopper 6 is connected to the fluidized bed sludge incinerator 1 via a sludge input and transfer device 11.
2, and an air supply branch pipe 13 for fluidized bed flow and sludge combustion is connected to the incinerator 12. Further, the incinerator 12 is connected to a cyclone 15 that separates incinerated ash via an exhaust gas exhaust pipe 14 provided at its upper part. cyclone 1
5 has a pipe 16 at the top and a hopper 17 at the bottom.
is provided. A suction blower 1 is connected to the pipe 16 in the middle of the pipe 8 above the cyclone 9.
8 and then branched into two directions, one of which is connected to a pipe 19, and the other pipe 20 is connected to the air supply branch pipe 13 of the incinerator 12 via a regulating valve 21 in the middle. has been done. Further, the pipe 16 is branched into the air supply pipe 4 and another pipe 23, which is equipped with a high temperature blower 22 in the middle.
The pipe 23 is connected to a gas absorption tower 27 via a heat exchanger 24, an electrostatic precipitator 25, and a suction blower 26 in this order. A temperature detector 28 such as a thermocouple is provided in the middle of the air supply pipe 4, and the opening degree of the regulating valve 21 is adjusted based on the detected value of the detector 28. Further, air is sent to the heat exchanger 24 via a blower 29, and the heated air is sent to the incinerator 12 via the air supply main pipe 30.
It is configured so that the air is fed to the air supply branch pipe 13 of.

また前記サイクロン15下部のホツパー17に
は、前記電気集塵器25からの配管31が接続さ
れており、更に前記ホツパー17は焼却灰移送装
置32を介して密閉式溶融炉33に接続されてい
る。また前記溶融炉33には還元ガス導入配管3
4を介して消化ホルダー35が接続されている。
Further, a pipe 31 from the electrostatic precipitator 25 is connected to the hopper 17 at the bottom of the cyclone 15, and the hopper 17 is further connected to a closed melting furnace 33 via an incinerated ash transfer device 32. . Further, the melting furnace 33 has a reducing gas introduction pipe 3.
A digestion holder 35 is connected via 4.

次に本発明の作用について説明する。 Next, the operation of the present invention will be explained.

脱水処理をうけた汚泥(含水率70〜80%程度)
は、投入口2より乾燥機1に投入され、給気管4
より導入される高温ガス(約700℃程度)によつ
て乾燥され、乾燥汚泥粒となつて排出口3より排
出される。乾燥後の蒸気に富んだ排ガス(約200
℃程度)は、排気管5を介してサイクロン9に排
出され、該サイクロン9においてダストを分離さ
れた後、吸引ブロワー18により配管8に吸引さ
れる。排出口3から排出された汚泥は汚泥輸送装
置7により輸送されて貯留ホツパー6に一時貯留
され、またこのホツパー6には前記サイクロン9
にて分離されたダストも貯留される。
Sludge that has undergone dewatering treatment (moisture content approximately 70-80%)
is fed into the dryer 1 from the input port 2, and the air supply pipe 4
The sludge is dried by the high-temperature gas (approximately 700°C) introduced from the sludge, and is discharged from the discharge port 3 as dried sludge particles. After drying, the steam-rich exhaust gas (approximately 200
degree Celsius) is discharged to the cyclone 9 through the exhaust pipe 5, and after the dust is separated in the cyclone 9, it is sucked into the pipe 8 by the suction blower 18. The sludge discharged from the discharge port 3 is transported by a sludge transport device 7 and temporarily stored in a storage hopper 6, and this hopper 6 is also equipped with the cyclone 9.
The separated dust is also stored.

貯留ホツパー6の汚泥は、汚泥投入移送装置1
1によつて定量的に切出されて焼却装置12に投
入される。焼却装置12に投入された汚泥は、給
気本管30及び支管13を介して供給される加熱
空気によつて流動せしめられ、あらかじめ加熱さ
れた媒体砂(図示せず)によつて解砕をうけ、前
記加熱空気により汚泥中の有機分を燃焼せしめら
れて800〜900℃程度の高温排ガスとなり、焼却灰
を微細ダストとして混入した状態で排ガス用配管
14に吸引される。上記排ガスは、サイクロン1
5において、ガスは配管16に導かれ、焼却灰は
ホツパー17に電気集塵器25からのダストと共
に一時貯留される。
The sludge in the storage hopper 6 is transferred to the sludge input and transfer device 1.
1 is quantitatively cut out and put into the incinerator 12. The sludge introduced into the incinerator 12 is made to flow by heated air supplied through the main air supply pipe 30 and the branch pipe 13, and is crushed by preheated media sand (not shown). Then, the organic content in the sludge is combusted by the heated air, resulting in high-temperature exhaust gas of about 800 to 900°C, which is sucked into the exhaust gas pipe 14 with incinerated ash mixed in as fine dust. The above exhaust gas is cyclone 1
5, the gas is led to the pipe 16, and the incinerated ash is temporarily stored in the hopper 17 together with the dust from the electrostatic precipitator 25.

サイクロン15にて分離された排ガスは、前記
サイクロン9によつて分離され配管19を介して
送られてくる乾燥後の排ガスと混合し、その高温
を利用して乾燥後の排ガスの臭気を分解する。ま
た前記配管8より導かれる乾燥後の排ガスの一部
は、配管20を介して焼却装置12に送られて脱
臭処理される。この量はわずかであるので、焼却
装置12の熱的損失にはならない。また前記乾燥
機1に導入する高温ガスの温度が一定となるよう
に、給気管4に設けた温度検出器28の信号で調
整弁21を操作し、配管16に配管19を介して
混入するガス量を調整している。前記配管16に
おける混合後のガスは、一部は高温ブロワー22
によつて乾燥機1の熱源として吸引され、他は吸
引ブロワー26の吸引によりまず熱交換器24に
て焼却装置12に導入して流動及び燃焼を行う空
気の加熱を行い、続いて電気集塵器25、ガス吸
収塔27等により処理された後、排ガスとなつて
大気中に排出される。この排ガスの白煙化を防止
するためには、熱交換器24通過後のガス温度を
高めて排出させるか、従来の如く前記熱交換器2
4の後に更に別の熱交換器(図示せず)を設け、
該通過の熱交換器で加熱された空気をガス吸収塔
27の上部へ導いて排出することもできる。前記
ホツパー17に一時貯留された焼却灰は、移送装
置32によつて密閉式溶融炉33に投入される。
溶融炉33内部は還元ガス導入配管34を介して
導入される還元ガスによつて還元雰囲気に保たれ
ており、重金属の分離を容易にしている。前記還
元ガスとしては消化ガスホルダー35で発生した
消化ガスを使用している。この様に本発明におい
ては焼却灰の溶融中に従来のように炉内をガスが
通過していくことがほとんどないので、有害成分
の飛散を防止することができる。
The exhaust gas separated by the cyclone 15 is mixed with the dried exhaust gas separated by the cyclone 9 and sent through the pipe 19, and the high temperature is used to decompose the odor of the dried exhaust gas. . Further, a part of the dried exhaust gas led from the pipe 8 is sent to the incinerator 12 via the pipe 20 and is deodorized. Since this amount is small, it does not result in a thermal loss of the incinerator 12. Further, in order to keep the temperature of the high-temperature gas introduced into the dryer 1 constant, the regulating valve 21 is operated by a signal from a temperature detector 28 provided in the air supply pipe 4, and the gas mixed into the pipe 16 via the pipe 19 is The amount is being adjusted. A part of the mixed gas in the pipe 16 is passed through the high temperature blower 22.
The air is sucked in as a heat source for the dryer 1 by the suction blower 26, and the air is first introduced into the incinerator 12 by the heat exchanger 24 to be heated for flow and combustion, and then the air is heated by the electrostatic precipitator. After being processed by the gas absorption tower 27 and the like, it is discharged into the atmosphere as exhaust gas. In order to prevent this exhaust gas from turning into white smoke, either the temperature of the gas after passing through the heat exchanger 24 is raised and the gas is discharged, or the heat exchanger 2
After 4, another heat exchanger (not shown) is provided,
The air heated by the passing heat exchanger can also be led to the upper part of the gas absorption tower 27 and discharged. The incinerated ash temporarily stored in the hopper 17 is transferred to a closed melting furnace 33 by a transfer device 32.
The interior of the melting furnace 33 is maintained in a reducing atmosphere by the reducing gas introduced through the reducing gas introduction pipe 34, thereby facilitating the separation of heavy metals. Digestion gas generated in the digestion gas holder 35 is used as the reducing gas. As described above, in the present invention, gas hardly passes through the furnace while the incinerated ash is melted, unlike in the conventional method, so that it is possible to prevent harmful components from scattering.

尚、本発明は上記実施例にのみ限定されるもの
ではなく本発明の要旨を逸脱しない範囲内におい
て種々の変更を加え得るものである。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but may be modified in various ways without departing from the gist of the present invention.

上述した本発明の下水汚泥および産業廃水汚泥
の処理装置によれば、次のような優れた効果を発
揮する。
According to the sewage sludge and industrial wastewater sludge treatment apparatus of the present invention described above, the following excellent effects are exhibited.

(i) 乾燥機によつて乾燥された汚泥を焼却処理す
るようしているため、焼却装置の効率を高める
ことができ、通常運転時は汚泥が燃焼するため
の予備燃料が不要となる。
(i) Since the sludge dried by the dryer is incinerated, the efficiency of the incinerator can be increased, and preliminary fuel for sludge combustion is not required during normal operation.

(ii) 乾燥機の熱源は焼却装置の排ガスを利用する
ようにしているため、スタートアツプ時以外は
乾燥用としての別熱源を全く必要としない。
(ii) Since the heat source of the dryer uses the exhaust gas from the incinerator, there is no need for any separate heat source for drying except during startup.

(iii) 乾燥機からの排ガス脱臭処理に、焼却装置の
出口排ガスの熱が利用でき、また部分循環させ
て前記焼却装置に導入している乾燥後の排ガス
はわずかであるので焼却装置の効率に影響を及
ぼすようなことはない。即ち、脱臭のために前
記乾燥機の排ガスをすべて焼却装置に導入した
場合にはその排ガス量が大きいために熱的損失
量が増大するが、そのような心配がない。
(iii) The heat of the exhaust gas at the outlet of the incinerator can be used to deodorize the exhaust gas from the dryer, and since only a small amount of the exhaust gas after drying is partially circulated and introduced into the incinerator, the efficiency of the incinerator is improved. There is no impact. That is, if all the exhaust gas from the dryer were introduced into the incinerator for deodorization, the amount of exhaust gas would be large and the amount of heat loss would increase, but there is no such concern.

(iv) 密閉式溶融炉で処理するのは焼却灰だけなの
で、処理に必要なエネルギー投入量が低減でき
る。即ち、従来のように有機分を一緒に処理す
るとその排ガス顕熱分だけエネルギー投入量が
増加するが、そのようなことがない。
(iv) Since only incineration ash is processed in the closed melting furnace, the amount of energy input required for processing can be reduced. That is, when organic components are treated together as in the past, the amount of energy input increases by the sensible heat of the exhaust gas, but this is not the case.

(v) 溶融炉に導入する還元ガスとして、消化そう
発生ガスを使えば、特に還元ガス発生装置を必
要とせず、しかも消化そう発生ガスの有効利用
も図れる。
(v) If the gas generated from digestion is used as the reducing gas introduced into the melting furnace, no particular reducing gas generator is required, and moreover, the gas generated from digestion can be used effectively.

(vi) 上記により、汚泥の処理に必要な総合的なエ
ネルギーを大幅に低減することができる。
(vi) As a result of the above, the overall energy required for sludge treatment can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は夫々従来の技術の例
を示す概略説明図、第4図は本発明の方法を実施
する場合の一例を示すフローチヤートである。 1は乾燥機、4は給気管、5は排気管、12は
流動層式汚泥焼却装置、16,19,20は配
管、21は調整弁、23は配管、24は熱交換
器、25は電気集塵器、27はガス吸収塔、28
は温度検出器、30は給気本管、33は密閉式溶
融炉、35は消化ガスホルダーを示す。
FIG. 1, FIG. 2, and FIG. 3 are schematic explanatory diagrams showing examples of conventional techniques, respectively, and FIG. 4 is a flowchart showing an example of implementing the method of the present invention. 1 is a dryer, 4 is an air supply pipe, 5 is an exhaust pipe, 12 is a fluidized bed sludge incinerator, 16, 19, 20 are piping, 21 is a regulating valve, 23 is piping, 24 is a heat exchanger, 25 is electricity Dust collector, 27, gas absorption tower, 28
30 is a temperature detector, 30 is an air supply main pipe, 33 is a closed melting furnace, and 35 is a digestion gas holder.

Claims (1)

【特許請求の範囲】[Claims] 1 脱水処理後の汚泥を乾燥処理する装置と、乾
燥後の汚泥を焼却処理する流動層式焼却装置と、
焼却後の焼却灰を還元雰囲気下で密閉溶融処理す
る装置を備え、前記流動層式焼却装置上部に排ガ
ス及び焼却灰用配管を設け、該配管後部にサイク
ロンを連結し、該サイクロンの排ガス用配管を前
記乾燥装置に連結し、更に前記サイクロンの焼却
灰用配管を前記密閉溶融処理する装置に連結し、
且つ乾燥装置に設けた排気管を2つに分岐せしめ
てその一方を前記排ガス用配管に連結し、他方を
前記焼却装置に連結していることを特徴とする下
水汚泥および産業廃水汚泥の処理装置。
1. A device for drying sludge after dewatering treatment, a fluidized bed incinerator for incinerating sludge after drying,
Equipped with a device for sealing and melting the incinerated ash after incineration in a reducing atmosphere, pipes for exhaust gas and incinerated ash are provided at the top of the fluidized bed incinerator, a cyclone is connected to the rear of the pipe, and a pipe for the exhaust gas of the cyclone is provided. is connected to the drying device, further connecting the incinerated ash piping of the cyclone to the device for sealing and melting processing,
A treatment device for sewage sludge and industrial wastewater sludge, characterized in that an exhaust pipe provided in the drying device is branched into two, one of which is connected to the exhaust gas pipe and the other connected to the incinerator. .
JP5460379A 1979-05-02 1979-05-02 Treatment device for sewage sludge and industrial waste water sludge Granted JPS55146316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5460379A JPS55146316A (en) 1979-05-02 1979-05-02 Treatment device for sewage sludge and industrial waste water sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5460379A JPS55146316A (en) 1979-05-02 1979-05-02 Treatment device for sewage sludge and industrial waste water sludge

Publications (2)

Publication Number Publication Date
JPS55146316A JPS55146316A (en) 1980-11-14
JPS6152883B2 true JPS6152883B2 (en) 1986-11-15

Family

ID=12975303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5460379A Granted JPS55146316A (en) 1979-05-02 1979-05-02 Treatment device for sewage sludge and industrial waste water sludge

Country Status (1)

Country Link
JP (1) JPS55146316A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK148368C (en) * 1979-03-26 1985-11-04 Henrik Have PROCEDURE FOR THE EXTRACTION OF HEAT FROM STAINLESS STEEL, WASTEWATER SLAM AND OTHER WASTE WASTE IN COMBUSTION
JPS57101215A (en) * 1980-12-15 1982-06-23 Okawara Mfg Co Ltd Low nox combustion in fluidized bed type incinerator
JPS58184416A (en) * 1982-04-22 1983-10-27 Hitachi Zosen Corp Method for preventing explosion in drying system for organic waste
KR100389652B1 (en) * 2000-12-04 2003-06-27 주식회사 한국카본 waste water treatment method for wet type special fiber paper manufacturing process and apparatus thereof
JP5048573B2 (en) * 2008-04-09 2012-10-17 三菱重工環境・化学エンジニアリング株式会社 Sludge treatment method and treatment system
JP4927973B2 (en) * 2009-12-18 2012-05-09 本田技研工業株式会社 Body front ventilation structure
JP6586252B1 (en) * 2018-10-29 2019-10-02 株式会社タクマ Sludge drying carrier gas treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114631U (en) * 1974-07-20 1976-02-03
JPS5249674A (en) * 1975-10-16 1977-04-20 Kobe Steel Ltd Wastes incinerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114631U (en) * 1974-07-20 1976-02-03
JPS5249674A (en) * 1975-10-16 1977-04-20 Kobe Steel Ltd Wastes incinerator

Also Published As

Publication number Publication date
JPS55146316A (en) 1980-11-14

Similar Documents

Publication Publication Date Title
CA1146813A (en) Apparatus and method for treating sewage sludge
US3670669A (en) Process for disposal of combustible waste
US4159682A (en) Fluid bed combustion with predrying of moist feed using bed sand
KR100847058B1 (en) Purifying system for contaminated ground
JP2008132409A (en) Gasification melting method and apparatus of sludge
KR20020085480A (en) Apparatus for processing the sludge of sewage
JPS6152883B2 (en)
KR101252289B1 (en) Livestock wastewater sludge treatment apparatus
JP2001327950A (en) Incineration method and apparatus for solid waste
KR20000003303A (en) Treatment method of sewage sludge
JP4155365B2 (en) Waste pyrolysis gasification melting equipment
JP4358095B2 (en) Method for treating combustible waste and water-containing organic sludge
CN104329676B (en) Fluid bed sludge incinerating system and processing method
JP2005265273A (en) Sludge gasifying and melting method and device therefor
JP4362428B2 (en) Treatment method of sludge and incineration ash
JP2011068824A (en) Carbonization facility for organic water-containing waste
JPS6157964B2 (en)
JPH11337040A (en) Sludge incineration method
JPS6322874B2 (en)
JP3343328B2 (en) Apparatus and method for melting wet ash
JPH04327706A (en) Drying and incinerating method for water-containing solid
JPS6096823A (en) Disposal of burning unsuitable refuse
JP3769204B2 (en) Combustion treatment method of waste including organic waste
JPH01208610A (en) Method for burning combustibles with high water content and apparatus therefor
JPS6317518B2 (en)