JPS6152800A - Optical fiber measuring apparatus - Google Patents

Optical fiber measuring apparatus

Info

Publication number
JPS6152800A
JPS6152800A JP17559384A JP17559384A JPS6152800A JP S6152800 A JPS6152800 A JP S6152800A JP 17559384 A JP17559384 A JP 17559384A JP 17559384 A JP17559384 A JP 17559384A JP S6152800 A JPS6152800 A JP S6152800A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
electro
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17559384A
Other languages
Japanese (ja)
Inventor
永尾 俊繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17559384A priority Critical patent/JPS6152800A/en
Publication of JPS6152800A publication Critical patent/JPS6152800A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光の偏光を応用して物理量を測定する装置に
おいて光信号の伝送のために光ファイバーを使用した光
ファイバー計測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber measuring device that uses optical fibers for transmitting optical signals in a device that measures physical quantities by applying polarization of light.

〔従来、の技術〕[Conventional technology]

−第3図は従来の装置を示すブロック図で光弾性素子に
より圧力センサを構成した例を示す。図において、(1
)は光源、(2)は光ファイバー、(31はマイクロレ
ンズ、(41は偏光子、(5)は光弾性素子、(6)は
A波長板、(7)は検光子、181 、 +91はそれ
ぞれマイクロレンズ、+101 、旧)はそれぞれ光フ
ァイバ、eta 、 (131はそれぞれ先受1き器、
C119は加算器、9日は減算器、←Qは割算器である
- FIG. 3 is a block diagram showing a conventional device, showing an example in which a pressure sensor is constructed using a photoelastic element. In the figure, (1
) is a light source, (2) is an optical fiber, (31 is a microlens, (41 is a polarizer, (5) is a photoelastic element, (6) is an A wavelength plate, (7) is an analyzer, 181 and +91 are respectively Microlens, +101, old) is an optical fiber, eta, (131 is a pre-receiver, respectively)
C119 is an adder, 9th is a subtracter, and ←Q is a divider.

光源il+から出射された光は光ファイバー(21ヲ伝
達シ、マイクロレンズ(31でコリメートされ、偏光子
(41で直線偏向に変換され光弾性素子+51に入射さ
れる。光弾性素子(5)はその−面に被測定圧力が加え
られるようになっており、その加えらルた圧力により複
屈折現象が生ずる。911えは光弾性素子(5]1が等
方性媒体であるとすると、圧力方向の屈折率と、それに
垂直な2方向の屈折率が異なる(すなわち光の速度が異
なる)ようになる。したがって圧力方向に電界成分をも
つ光と、それに垂直な電界成分金もつ光が光弾性素子(
5)に同時に入射すると、庵の出力端では位相差を生ず
る。例えば偏光子(41の出力の直線偏光された光が、
それらの軸(すなわち光弾性素子(51に圧力が加′見
られる方向を示す軸と、この輔に垂直七光の進行方向に
直角な平面内にある@I)に対して45°の角度の偏光
方向で光デIL性素子(5)に入射されると、この光弾
゛性素子(51の出力光は圧力に応じた楕円傭光菱なる
。この全円偏光となった光がA波長板(6]で更に90
’の位相差が与えられて先幕的なバイアスがかけられ、
検光子(71で互いに垂直な偏向2成分に分岐し、それ
ぞれの成分光をマイクロレンズt8i : (91でそ
れぞれ集光し、光ファイバーno+ 、 i’uによっ
て伝送して光受信器aa 、 Oでそれぞれ光電嫉換す
る。これら光受信機α2.α3)の出力の和と差金加算
器α4と減算器αυで算出し、両者の比を割算器αQで
算出することによって、光臨の光パワーの一動ならびに
光源′@II光ファイバー(21の中の損失の変vJめ
影響ヲ受けることなく、光弾性素子(5)に加えられる
圧力に比例した出力を得ることができる。
The light emitted from the light source il+ is transmitted through an optical fiber (21), collimated by a microlens (31), converted into linear polarization by a polarizer (41), and input to a photoelastic element (51). - The pressure to be measured is applied to the surface, and the applied pressure causes a birefringence phenomenon.If the photoelastic element (5) 1 is an isotropic medium, then the pressure direction The refractive index of , and the refractive index of the two directions perpendicular to it are different (that is, the speed of light is different).Therefore, light with an electric field component in the pressure direction and light with an electric field component perpendicular to it are photoelastic elements. (
5), a phase difference will occur at the output end of the hermitage. For example, if the linearly polarized light output from a polarizer (41) is
at an angle of 45° with respect to their axes (i.e., the axis indicating the direction in which pressure is applied to the photoelastic element (51) and @I in the plane perpendicular to the traveling direction of the seven lights perpendicular to this When the light is incident on the photoelastic element (5) in the polarization direction, the output light of the photoelastic element (51 becomes an elliptical polarized light according to the pressure. This fully circularly polarized light has wavelength A. Another 90 on board (6)
A phase difference of ' is given and a leading bias is applied.
The analyzer (71 splits the light into two polarized components perpendicular to each other, and each component light is focused by a microlens t8i (91), transmitted through optical fibers no+ and i'u, and sent to optical receivers aa and O, respectively. By calculating the sum of the outputs of these optical receivers α2 and α3) with a difference adder α4 and a subtractor αυ, and calculating the ratio of the two with a divider αQ, the fluctuation of the optical power of the coming light is calculated. In addition, an output proportional to the pressure applied to the photoelastic element (5) can be obtained without being affected by the change in loss in the light source '@II optical fiber (21).

なお、以上は感知素子として光弾性素子を用いて圧力を
計測する場合について述べたが、感知素子としてファラ
デー素子やポッケルス素子を用いて磁界や電界を計測す
る場合も同様である。
Although the above description has been made regarding the case where pressure is measured using a photoelastic element as a sensing element, the same applies to the case where a magnetic field or an electric field is measured using a Faraday element or a Pockels element as a sensing element.

〔発明が解決し二うとする問題点〕[Problems that the invention attempts to solve]

従来の装置nは以上のように構成されてい為ので光ファ
イバーtlOi +、:’(tυにおける光の伝送損失
が同一でない場合には、これが測定誤差の原因となると
いう問題点があった。
Since the conventional device n was constructed as described above, there was a problem that if the optical transmission losses in the optical fibers tlOi +, :'(tυ were not the same, this would cause measurement errors.

この発明はかかる問題点を解決するためになされたもの
で、光源及び光の伝送系における変動が測定誤差の原因
となることのない光ファイバー計測装置全提供すること
を目的とする。
The present invention was made to solve these problems, and an object of the present invention is to provide an optical fiber measuring device in which fluctuations in the light source and the light transmission system do not cause measurement errors.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、基準となる光信号と被測定物理量を表す
光信号とを同一の光ファイバーにより伝送するようにし
て光の伝送系における変動が測定誤差の原因とならない
ようにした。
In this invention, an optical signal serving as a reference and an optical signal representing a physical quantity to be measured are transmitted through the same optical fiber to prevent fluctuations in the optical transmission system from causing measurement errors.

更に又、この出願による別の発明では、単一の光ファイ
バー伝送装置を光の往路伝送と復路伝送とに利用するこ
とによって装置の部品点数全減縮した。
Furthermore, in another invention according to this application, the number of parts of the device is completely reduced by using a single optical fiber transmission device for both forward and backward transmission of light.

〔作用〕[Effect]

すなわち、直線偏光した光を光弾性素子のような光学変
調素子に入力する前に通気光学効果素子を通過させ、こ
の通気光学効果素子に一定振幅一定周波数の変調信号全
卵えておくと、この変調信号と上記光学変調素子による
変調信号とを同時に搬送する光信号が同一の光ファイバ
ー伝送装置により伝送されることになる。この伝送され
た光信号全電気信号に変換した上で上記一定周波数の1
5号だけ全抽出し、この一定周波数の信号の振幅を基準
にして光学変調素子による変調信号を表すことにより、
光源や光の伝送系における変動が測定誤差の原因になら
ないようにした。
In other words, if linearly polarized light is passed through a ventilation optical effect element before being input to an optical modulation element such as a photoelastic element, and a modulation signal with a constant amplitude and constant frequency is provided to the ventilation optical effect element, this modulation An optical signal carrying a signal and a modulated signal by the optical modulation element at the same time is transmitted by the same optical fiber transmission device. After converting this transmitted optical signal into a total electrical signal,
By fully extracting only No. 5 and expressing the modulated signal by the optical modulation element based on the amplitude of this constant frequency signal,
This prevents fluctuations in the light source and light transmission system from causing measurement errors.

また、別の発明では光0スと電気光学素子との間に偏光
ビームスプリッタ−を入れ、また、光弾性素子のような
光学変調素子の終端に反射膜を設けて光を反射させるこ
とにより、単一の元ファイバー伝送装置を光の往路伝送
と復路伝送とに利用できるようにした。
In another invention, a polarizing beam splitter is inserted between the optical beam and the electro-optical element, and a reflective film is provided at the end of an optical modulation element such as a photoelastic element to reflect the light. A single source fiber transmission device can be used for optical outbound and inbound transmission.

〔実施例〕〔Example〕

第1図はこの発明の一実施例金示すブロック図であって
、第3図と同一符号は相当部分全売し、(3a)、(3
b)、(3c)、(3d)はそれぞれマイクロレンズ、
鰭は一定電圧一定周波数の交流電圧源、(181は通気
光学効果素子% (1!J 、 +21J)はそれぞれ
偏波面保存形光ファイバー、(21)は検光子、  (
22)は光電変換器、(23)はフィルタ、(24ンは
整流器、(25)は増幅器である。
FIG. 1 is a block diagram showing one embodiment of the present invention, in which the same reference numerals as in FIG.
b), (3c), and (3d) are microlenses, respectively;
The fin is an AC voltage source with a constant voltage and constant frequency, (181 is a ventilation optical effect element % (1!J, +21J) are polarization preserving optical fibers, (21) is an analyzer, (
22) is a photoelectric converter, (23) is a filter, (24) is a rectifier, and (25) is an amplifier.

次に第1図に示す装置の動作について説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained.

光源(1)からの光は偏光子(41によって直線偏光さ
れて通気光学効果素子(181に入力する。この場合偏
光子(4)による直線偏光の方向を電気光学素子素子賭
の電界方向に対して45°の角度に設定しておく。
The light from the light source (1) is linearly polarized by a polarizer (41) and input to the ventilation optical effect element (181. In this case, the direction of the linearly polarized light by the polarizer (4) is set relative to the electric field direction of the electro-optic element. and set it at an angle of 45°.

′″L気光学効:ti+u111Kl’;を交iAt、
蔦1“1”゛ら−0”   1幅、一定周波数の交流電
圧が印加されており、通過光はこの電圧による電界方向
の偏光成分とそれに直角な方向の偏光成分とによってそ
れぞれ異なる位相差が与えられる。偏光子(41による
直線偏光の方向が通気光学効果素子(18)の電界方向
に対して45°の角度上しているので、上記偏光の2成
分はとなる。ここに(IJQは光の角周波数、Eiは偏
光子(41からの出力光の電界の振幅である。
'''L optical effect: ti+u111Kl';
An alternating current voltage with a width and a constant frequency is applied, and the passing light has different phase differences depending on the polarization component in the direction of the electric field due to this voltage and the polarization component in the direction perpendicular to it. Since the direction of the linearly polarized light by the polarizer (41) is at an angle of 45° with respect to the electric field direction of the ventilation optical effect element (18), the two components of the polarized light are as follows.Here, (IJQ is The angular frequency of light, Ei, is the amplitude of the electric field of the output light from the polarizer (41).

通気光学効果素子(181の印加電圧t’ Vrsin
 (ωt)とすれば、電気光学素子素子囮を通過後のe
z酸成分ey酸成分の位相をex酸成分位相を基準にし
て表わすと であり、Vπはez (!: eyの位相差をπとする
ため通気光学効果素子(1&に加えるべき電圧(半波長
電圧という)である。
Applied voltage t' Vrsin of ventilation optical effect element (181)
(ωt), then e after passing through the electro-optical element decoy
The phase of z acid component ey acid component is expressed based on the phase of ex acid component, and Vπ is ez (!: In order to set the phase difference of ey to π, the voltage (half wavelength voltage).

式(2)に示す光が磁波長板(6)全通過すると、通過
後の光は となる。この光をマイクロレンズ(3a)で集光し、偏
波面保存形光ファイバー(1!J k ;nl して伝
送し、マイクロレンズ(3b)でコリメート(coll
i rnate )して光弾性素子(5)に入射する。
When the light represented by equation (2) passes through the entire magnetic wave plate (6), the light after passing through the magnetic wave plate (6) becomes. This light is collected by a microlens (3a), transmitted through a polarization preserving optical fiber (1!J k ;nl), and collimated by a microlens (3b).
i rnate ) and enters the photoelastic element (5).

光ファイバー鰺とマイクロレンズ(3a)、(3b) 
f含んで光ファイバー伝送装置ということにし、その伝
送効率(光パワー比で表す)fcβ1とする。
Optical fiber mackerel and microlens (3a), (3b)
The term "optical fiber transmission device" includes f, and its transmission efficiency (expressed as an optical power ratio) is defined as fcβ1.

β1 は光ファイバー(i値の機械的変形によって変化
する。光弾性素子(51では印加された圧力Pに比レリ
した位相差a、が生ずる。
β1 changes due to mechanical deformation of the optical fiber (i value). In the photoelastic element (51), a phase difference a relative to the applied pressure P is generated.

ここにP7rFi位相差πを生じさせる圧力の値で半波
長圧力という。
Here, the value of the pressure that causes the P7rFi phase difference π is called the half-wavelength pressure.

光弾性素子+51 k出た光はマイクロレンズ(3c)
で集光されて偏波面保存形光ファイバーのを通して伝送
され、マイクロレンズ(3d)でコリメートされて検光
子(21) K入射される。(3c)、(20)、(3
d)で+1・T成される光ファイバー伝送装置の伝送効
率全β2とする。
Photoelastic element +51k The emitted light is a microlens (3c)
The light is condensed and transmitted through a polarization-maintaining optical fiber, collimated by a microlens (3d), and incident on an analyzer (21). (3c), (20), (3
Let the total transmission efficiency of the optical fiber transmission device be β2, which is +1·T in d).

偏波面保存形光ファイバー(Ll 、 +201は偏光
成分へ。
Polarization preserving optical fiber (Ll, +201 is for polarization component.

ey  ’、1それぞれ独立に伝送するので、検光子(
21)の入射点で、ex酸成分位相全基準にするととな
る。検光子(21)の偏光面金偏光子(4)の偏光面と
同じ角度に設置すると、検光子(21)全通過した光パ
ワー10はa全定数として となる。但し1.=aE1  である。
Since each of ey' and 1 is transmitted independently, an analyzer (
At the incident point of 21), the phase of the ex acid component is set as the entire reference. When the polarization plane of the analyzer (21) is installed at the same angle as the polarization plane of the gold polarizer (4), the optical power 10 that has completely passed through the analyzer (21) becomes a total constant. However, 1. =aE1.

θくくπの領域では5inaキθであるから、式(7)
から を得、これに式+31 、 +51 全代入するとを得
る。
In the region of θ x π, 5 ina x θ, so Equation (7)
By substituting all the expressions +31 and +51 into this, we obtain.

式(9)で表される光パワーが光電変換器(22)に入
力して電気信号に変換されるのであるが、光電変換器(
22)では、入力した元パワーに比例する電圧が出力さ
れるとし、その比測定’&1. kηとす′rLば、出
力電圧V。は 電圧V。の中には角周波数ωの成分V。l とそれ以外
の成分V。2とがおるので、これをフィルター(23)
によって分離すると となる。vo1’を整流器(24)によりピーク検波す
るとその出力Vo 1p  は となる。
The optical power expressed by equation (9) is input to the photoelectric converter (22) and converted into an electrical signal.
In 22), it is assumed that a voltage proportional to the input power is output, and the ratio is measured '&1. kη and 'rL, output voltage V. is the voltage V. Inside is the component V of angular frequency ω. l and other components V. 2, so filter this (23)
Separated by . When vo1' is peak detected by the rectifier (24), the output Vo 1p is as follows.

割算器(IQにおいてV。2//Vo1pの割り算全行
えば、その藺v3  は ら 式住囚から によジv3  からPを算出することができる。
If you perform all the divisions of V.2//Vo1p using a divider (IQ), you can calculate P from that v3.

増幅器(25)は割算器αQからV3 k入力して式α
→の演算をアナログ演算回路で行いPの値を出力する。
The amplifier (25) inputs V3k from the divider αQ and uses the formula α
The calculation of → is performed by the analog calculation circuit and the value of P is output.

以上説明したように、この発明によれば、光ファイバー
の伝送効率β□、β2の変動が出力に現われないので、
圧力Pk梢度よく測定することができる。
As explained above, according to the present invention, fluctuations in the transmission efficiency β□ and β2 of optical fibers do not appear in the output.
Pressure Pk pressure can be measured well.

第2図はこの出願゛の他の発明の一災施例を示すブロッ
ク図であって第1図と同一符号は同−又は相当する部分
を示し、同様に動作するので、その説明全省略する。(
26)は偏光ビームスプリッタ−1(27)は3波長板
であり、(50)は牙1図の光弾性素子(5)に相当す
る光弾性素子であるがその端面に反射膜(51)が取付
けられており、光はここで反射されて再び光弾性素子(
50)内及び(3b)、(19)、(3a)で構成する
光ファイバー伝送装置、ならびにイ波長板(27)及び
電気光学素子(18iを経て偏光ビームスプリッタ−(
26)に入るので、寛気光学効果累子(18)1、)8
波長板(27)、光弾性素子(50)では往復路ンこお
いて偏光面の回転作用全骨け、端波長板(27)は第1
図の%波長板(6)と同様の作用金する。
FIG. 2 is a block diagram showing another embodiment of the invention of this application. The same reference numerals as those in FIG. . (
26) is a polarizing beam splitter 1 (27) is a three-wavelength plate, and (50) is a photoelastic element corresponding to the photoelastic element (5) in Fig. 1, but a reflective film (51) is provided on the end surface. The light is reflected here and sent back to the photoelastic element (
50) and an optical fiber transmission device consisting of (3b), (19), and (3a), as well as a polarizing beam splitter (27) and an electro-optical element (18i).
26), so the Kanki Optical Effect (18) 1, ) 8
The wave plate (27) and the photoelastic element (50) rotate the plane of polarization during the reciprocating path, and the end wave plate (27) is the first
The same function as the wavelength plate (6) shown in the figure is used.

また、偏光ビームスプリッタ−(26)は光源(1)か
らの光に対して’t’i (Iiii光子として作用す
るので、第1図の偏光子(4)に相当し、反射膜(51
)で反射されて偏光面保存形光ファイバーf191経て
入射される復路光に対しては検光子として働き、それま
でに生じた位相差が光電変換器(22)の入力光として
反射する光の強度に変換されるので、第1図について説
明したと同1.;p、、式(1→によって示される圧力
P全算出することができる。
In addition, since the polarizing beam splitter (26) acts as 't'i (III) photons on the light from the light source (1), it corresponds to the polarizer (4) in FIG.
) acts as an analyzer for the return light that is reflected by the polarization preserving optical fiber F191, and the phase difference that has occurred up to that point changes the intensity of the light that is reflected as input light to the photoelectric converter (22). 1. is converted, so the same 1. as explained in FIG. ;p, , the pressure P shown by the equation (1→) can be totally calculated.

第2図に示す装置は第1図に示す装置に比し、同一のフ
ァイバー全往復路に用いるため、部品点数が少くなり、
また、光弾性素子、通気光学効果素子全2回通すので斐
調1比が大きくなるという利点がある、 〔発明の効果〕 この発明は以上説明したとおり、通気光学効果素子によ
り一定周波数、一定振幅の交流%圧で偏光面回転を行い
、これ定基準信号として光ファイバーの機械的変動によ
る伝送効率の変動の影響を除去することができるので、
測定対象の物理−Nkを正確に測定することができ、ま
た、光受信器が1個ですむという利点があり、更にこの
出願の第2の発明によれば、部品点数全一層減少し装置
を小形に構成することができる。
Compared to the device shown in FIG. 1, the device shown in FIG. 2 uses the same fiber for all the reciprocating paths, so it has fewer parts.
In addition, since the photoelastic element and the vented optical effect element are passed through twice, there is an advantage that the Hi-tonic ratio becomes large. The plane of polarization is rotated at an AC% pressure of
It has the advantage of being able to accurately measure the physical Nk of the measurement target and requiring only one optical receiver.Furthermore, according to the second invention of this application, the total number of parts can be further reduced and the equipment can be simplified. It can be configured in a small size.

なお、この発明の実施例として測定対象の物理量が圧力
である場合金示したが、ポッケルス効果全利用した電圧
測定やファラデー効果全利用した磁界測定にも適用可能
である。
Although the embodiment of the present invention has been described in which the physical quantity to be measured is pressure, it is also applicable to voltage measurement making full use of the Pockels effect and magnetic field measurement making full use of the Faraday effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
はこの出願の他の発明の一冥施す1]全示すフロック図
、第3図は従来の装置金示すブロック図である。 図において、111は光妹、(41は偏光子、i51 
、 (50)はそれぞれ光弾性素子、(6)はA波長板
、tleは割算器、(17)は交流電圧源、(1&は通
気光学効果素子、(1!J) 、    y(2olは
それぞれ偏波面保存形光ファイバー、(21)は検光子
、(22)は光電変換器、(23)はフィルター、(2
4)は整流器、(25)は増幅器、(26)は1扁ブ0
ビームスプリツタ、(27)は4波長板、(51)は反
射膜である。 尚、各図中同一符号は同−又は相当部分金示す。
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram showing the entire structure of another invention of this application, and FIG. 3 is a block diagram showing a conventional device. In the figure, 111 is a light sister, (41 is a polarizer, i51
, (50) are photoelastic elements, (6) is an A wavelength plate, tle is a divider, (17) is an AC voltage source, (1& is a ventilation optical effect element, (1!J), y(2ol is Each is a polarization preserving optical fiber, (21) is an analyzer, (22) is a photoelectric converter, (23) is a filter, and (2) is a polarization preserving optical fiber.
4) is a rectifier, (25) is an amplifier, (26) is 1 flat 0
The beam splitter (27) is a four-wavelength plate, and (51) is a reflective film. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)光を発生する光源、この光源からの光を直線偏光
に変換する偏光子、この偏光子の出力光を位相変調する
電気光学効果素子、この電気光学効果素子に変調信号と
して一定振幅一定周波数の交流電圧を印加する手段、上
記電気光学効果素子からの出力光に光学的バイアスを与
える1/4波長板、この1/4波長板からの出力光を伝
送する偏波面保存形光ファイバーを有する光ファイバー
伝送装置、この光ファイバー伝送装置で伝送された光が
入射され、この入射された光に対し、被測定物理量に応
じた複屈折変化によって位相変調を与える光学変調素子
、この光学変調素子を通過した光を伝送する偏波面保存
形光ファイバーを有する光ファイバー伝送装置、この光
ファイバー伝送装置で伝送された光が入射される検光子
、この検光子を通過した光をその光の強さに比例する電
気信号に変換する光電変換器、この光電変換器の出力の
電気信号を上記通気光学効果素子の変調信号の周波数で
ある上記一定周波数の信号成分とそれ以外の信号成分と
に分離するフィルター、このフィルターの出力のうち上
記一定周波数の信号成分の大きさに対する上記それ以外
の信号成分の大きさの比を求める処理回路を備えた光フ
ァイバー計測装置。
(1) A light source that generates light, a polarizer that converts the light from this light source into linearly polarized light, an electro-optic effect element that modulates the phase of the output light of this polarizer, and a constant amplitude constant as a modulation signal to this electro-optic effect element. A means for applying an alternating current voltage at a certain frequency, a quarter-wave plate for applying an optical bias to the output light from the electro-optic effect element, and a polarization-maintaining optical fiber for transmitting the output light from the quarter-wave plate. An optical fiber transmission device, into which the light transmitted by the optical fiber transmission device is incident, an optical modulation element that modulates the phase of the incident light by a change in birefringence according to the physical quantity to be measured, and a An optical fiber transmission device that has a polarization preserving optical fiber that transmits light, an analyzer into which the light transmitted by this optical fiber transmission device is incident, and converts the light that has passed through this analyzer into an electrical signal proportional to the intensity of the light. a photoelectric converter for converting, a filter for separating the electrical signal output from the photoelectric converter into a signal component having the constant frequency, which is the frequency of the modulation signal of the ventilation optical effect element, and other signal components; and an output of the filter. An optical fiber measuring device comprising a processing circuit that calculates a ratio of the magnitude of the other signal components to the magnitude of the signal component of the constant frequency.
(2)光を発生する光源、この光源からの光を直線偏光
にして透過しかつこの光源からの光の方向に反対の方向
から入射する直線偏向の光を反射する偏光ビームスプリ
ッター、この偏光ビームスプリッターを透過した光を位
相変調する電気光学効果素子、この電気光学効果素子に
変調信号として一定振幅一定周波数の交流電圧を印加す
る手段、上記電気光学効果素子からの出力光に光学的バ
イアスを与える1/8波長板、この1/8波長板からの
出力光を伝送する偏光面保存形光ファイバーを有する光
ファイバー伝送装置、この光ファイバー伝送装置で伝送
された光が入射され、この入射された光に対し、被測定
物理量に応じた複屈折変化によって位相変調を与える光
学変調素子、この光学変調素子を通過した光を反射して
この光学変調素子内を逆に通過し上記光ファイバ伝送装
置、上記1/8波長板、上記電気光学効果素子をそれぞ
れ逆に通過して上記偏光ビームスプリッターに入射して
反射させる手段、上記偏光ビームスプリッターの反射光
が入射されその入射光の強さに比例する電気信号に変換
する光電変換器、この光電変換器の出力の電気信号を上
記電気光学効果素子の変調信号の周波数である上記一定
周波数の信号成分とそれ以外の信号成分とに分離するフ
ィルター、このフィルターの出力のうち上記一定周波数
の信号成分の大きさに対する上記それ以外の信号成分の
大きさの比を求める処理回路を備えた光ファイバー計測
装置。
(2) A light source that generates light, a polarizing beam splitter that transmits the light from this light source as linearly polarized light and reflects the linearly polarized light incident from the direction opposite to the direction of the light from this light source, and this polarized beam An electro-optic effect element that phase-modulates the light transmitted through the splitter, means for applying an alternating current voltage of constant amplitude and constant frequency as a modulation signal to the electro-optic effect element, and applying an optical bias to the output light from the electro-optic effect element. A 1/8 wavelength plate, an optical fiber transmission device having a polarization preserving optical fiber that transmits the output light from this 1/8 wavelength plate, the light transmitted by this optical fiber transmission device is incident, and the light transmitted by this optical fiber transmission device is , an optical modulation element that provides phase modulation by birefringence change according to a physical quantity to be measured; the optical fiber transmission device that reflects light that has passed through the optical modulation element and passes it through the optical modulation element in reverse; an 8-wavelength plate, a means for passing through the electro-optic effect element in reverse and entering the polarizing beam splitter for reflection, and a means for receiving reflected light from the polarizing beam splitter and converting it into an electrical signal proportional to the intensity of the incident light. a photoelectric converter for converting, a filter for separating the electrical signal output from the photoelectric converter into a signal component having the constant frequency, which is the frequency of the modulation signal of the electro-optic effect element, and other signal components; and an output of the filter. An optical fiber measuring device comprising a processing circuit that calculates a ratio of the magnitude of the other signal components to the magnitude of the signal component of the constant frequency.
JP17559384A 1984-08-21 1984-08-21 Optical fiber measuring apparatus Pending JPS6152800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17559384A JPS6152800A (en) 1984-08-21 1984-08-21 Optical fiber measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17559384A JPS6152800A (en) 1984-08-21 1984-08-21 Optical fiber measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6152800A true JPS6152800A (en) 1986-03-15

Family

ID=15998790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17559384A Pending JPS6152800A (en) 1984-08-21 1984-08-21 Optical fiber measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6152800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308624B1 (en) 1998-09-14 2001-10-30 Sumitomo Rubbers Industries, Limited Method of producing a compressible layer for a printing blanket
JP2007139740A (en) * 2005-10-20 2007-06-07 Furukawa Electric Co Ltd:The Detection device for polarization fluctuation in optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308624B1 (en) 1998-09-14 2001-10-30 Sumitomo Rubbers Industries, Limited Method of producing a compressible layer for a printing blanket
JP2007139740A (en) * 2005-10-20 2007-06-07 Furukawa Electric Co Ltd:The Detection device for polarization fluctuation in optical fiber

Similar Documents

Publication Publication Date Title
JP2818300B2 (en) Optical AC measurement method with temperature compensation and apparatus for implementing the method
JPH0123067B2 (en)
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
JPH0670651B2 (en) Method and device for measuring electric and magnetic quantities by light
CN1157656A (en) Process and device for measuring alternating electric current with temperature compensation
US4644153A (en) Optical sensing equipment
JP2000501841A (en) Optical measuring method and optical measuring device for alternating current with normalized intensity
JP2015230163A (en) Optical voltage measurement device
JPS6152800A (en) Optical fiber measuring apparatus
US5698847A (en) Optical-modulation-type sensor and process instrumentation apparatus employing the same
JPS59669A (en) Optical fiber magnetic field sensor
JP2004020348A (en) Measuring instrument of measuring photoelectric voltage, method of measuring electric power or electric energy, and protection system for electric equipment
JP2509692B2 (en) Optical measuring device
JPH02143173A (en) Optical dc transformer
JPS59159076A (en) Optical type magnetic field sensor
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
JPS61223821A (en) Optical measuring instrument
SU1019343A1 (en) Optical electronic measuring device
KR0177874B1 (en) Nonsinusoidal High Frequency Large Current Measuring Device Using Photocurrent Sensor
JPS58146858A (en) Optical current and magnetic field measuring device
JPS60243573A (en) Optical measuring device
JPS59670A (en) Optical fiber magnetic field sensor
SU1262392A1 (en) Magnetooptical method for measuring current and device for effecting same
JPS61223822A (en) Optical measuring instrument
JPH063375A (en) Electric field distribution measuring instrument utilizing electro-optic effect