JPS6152616A - Glass fiber for optical transmission - Google Patents

Glass fiber for optical transmission

Info

Publication number
JPS6152616A
JPS6152616A JP59173343A JP17334384A JPS6152616A JP S6152616 A JPS6152616 A JP S6152616A JP 59173343 A JP59173343 A JP 59173343A JP 17334384 A JP17334384 A JP 17334384A JP S6152616 A JPS6152616 A JP S6152616A
Authority
JP
Japan
Prior art keywords
fiber
platinum
silicone resin
transmission loss
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59173343A
Other languages
Japanese (ja)
Inventor
Kazunori Matsui
和則 松井
Nobuyuki Yoshizawa
吉沢 信幸
Hiroshi Ishihara
石原 浩志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59173343A priority Critical patent/JPS6152616A/en
Publication of JPS6152616A publication Critical patent/JPS6152616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical fiber which is free from an increase in transmission loss over a long period of time by coating an Si resin compsn. consisting of diorganopolysiloxane, organohydrogene polysiloxane and platinum on said fiber thereby decreasing the amt. of the H2 to be generated. CONSTITUTION:The Si resin compsn. which consists of (a) diorganopolysiloxane, (b) organohydrogene polysiloxane having at least three Si atom-bonded H2 atoms in one molecule and (c) platinum or plainum compd., has 0.7-1.5 molar ratio of the Si atom-bonded vinyl group in the component (b) and in which the component (c) is 20-200ppm of the total amt. of both components (a) and (b) is coated on the fiber. The initial transmission loss characteritic and strength characteristic are thus provided to the fiber; in addition, the amt. of the H2 to be generated from the Si resin is decreased even at ordinary and high temp. and the fiber which is free from an increase in the transmission loss on a long period of time and has excellent long-term stability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光伝送用ガラスファイバ(以下、元ファイバと
称す)に関するも・ので、常温および高温におけるH2
  発生量を改良して、特に光ファイバの長期安定性を
保証できる熱硬化被覆を施した光ファイバに関する。本
発明は光通信用ファイバその他の光ファイバを用いる分
野において非常に有利に応用できる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a glass fiber for optical transmission (hereinafter referred to as the original fiber).
The present invention relates to an optical fiber provided with a thermosetting coating that improves the amount of generation and in particular guarantees the long-term stability of the optical fiber. The present invention can be very advantageously applied in fields using optical communication fibers and other optical fibers.

(従来技術) 光通信用ファイバとして、コア・クラッドよりなる石英
系ガラス繊維の表面に熱硬化型のシリコーン樹脂を被覆
する構造は周知であシ、広く実用に供されている。しか
しながら一部のケーブル構造においては、赤外部の伝送
損失が経時的に増加する現象が起こるという欠点を有す
ることか見出され、該現象はH2がガラス中の欠陥と反
応するために生ずること[E大tron、 /Lett
、、 19巻(1984)762〜764頁〕、H2発
生源は熱硬化型シリコーンが主であること、[” Co
nference on 0ptical Fiber
(iommunication 、 Po5t Dea
dline Papers ’ Wr5−1〜WI3−
4頁、(1984)〕等が明らかにされてきた。した゛
がって光通信システムの長期安定性を保証するためには
、H2発生量を低減した被暖材料を使用することが必須
である。
(Prior Art) As an optical communication fiber, a structure in which the surface of a quartz-based glass fiber consisting of a core and a cladding is coated with a thermosetting silicone resin is well known and is widely used in practical use. However, some cable structures have been found to have the disadvantage of increasing infrared transmission loss over time, which occurs due to H2 reacting with defects in the glass [ E Daitron, /Lett
, Volume 19 (1984) pp. 762-764], the main source of H2 generation is thermosetting silicone, ["Co
nference on optical fiber
(iommunication, Po5t Dea
dline Papers' Wr5-1~WI3-
4, (1984)], etc. have been clarified. Therefore, in order to guarantee the long-term stability of the optical communication system, it is essential to use heated materials that generate less H2.

ここで光ファイバの被覆に使用されている熱硬化型シリ
コーン樹脂は、一般的K、■ベースオイル、■架橋剤(
3官能性以上のシラン1.またはシロキサン)、■硬化
触媒、を主成分としている。
The thermosetting silicone resin used to coat the optical fiber here consists of general K, ■base oil, ■crosslinking agent (
Trifunctional or higher functional silane 1. or siloxane) and ■curing catalyst.

■のペースオイルは一般には末端のみに官能を有するジ
オルガノポリシロキサンで一般式(1)で表されるもの
でRとしては、メチル、エチル、グロビル等のアルキル
基、フェニル、トリル等のアリール基、シクロヘキシル
、シクロヘゲチル等のシクロアルキル基および上記の炭
化水素基の炭素原子に結合する水素原子が部分的にハ四
ゲン原子、シアノ基等で置換されたものが挙げられる。
The pace oil (2) is generally a diorganopolysiloxane having functionality only at the terminal and is represented by the general formula (1), where R is an alkyl group such as methyl, ethyl, globil, or an aryl group such as phenyl or tolyl. , cyclohexyl, cyclohegetyl, and other cycloalkyl groups; and those in which the hydrogen atom bonded to the carbon atom of the above-mentioned hydrocarbon group is partially substituted with a hydrogen atom, a cyano group, or the like.

中でもRがすべてメチル基のもの、またはメチル基とフ
ェニル基からなるものが、実用に供されることが多い。
Among these, those in which all R's are methyl groups, or those consisting of methyl groups and phenyl groups, are often put to practical use.

■の架橋剤は3官能性以上のシラン、またはシロキサン
であって、ペースオイル一般式(2)のビニル基との反
応によって架橋結合を形成し、組成物を硬化させるだめ
のもので、1分子中ケイ素原子に直接結合した水素原子
を3個以上有するものである。
The crosslinking agent (2) is a trifunctional or higher-functional silane or siloxane that forms a crosslinking bond by reaction with the vinyl group of the general formula (2) of the pace oil and cures the composition. It has three or more hydrogen atoms directly bonded to a silicon atom.

■の触媒は、前記のペースオイルと架橋剤の間の架橋結
合生成を促進するためのもので、粉末状白金、これを保
持担体に吸着させたもの。
The catalyst (2) is for promoting the formation of cross-linking bonds between the above-mentioned pace oil and cross-linking agent, and is powdered platinum, which is adsorbed on a holding carrier.

塩化白金酸、塩化白金酸カリ、塩化白金酸ナトリウム、
アルコール変性塩化白金酸、塩化白金酸とオレフィンと
の錯体等が例として挙げられる。
Chloroplatinic acid, potassium chloroplatinate, sodium chloroplatinate,
Examples include alcohol-modified chloroplatinic acid, a complex of chloroplatinic acid and an olefin, and the like.

ペースオイルと架橋剤は例えば白金触媒の存在下、下記
(2)式のように付加反応する。
The pace oil and the crosslinking agent undergo an addition reaction as shown in the following formula (2), for example, in the presence of a platinum catalyst.

pt触媒゛ ミ5i(iH= CH2+ H81ミー−→ミSヱCR
2CH251ミ・・・(2)この時のSiHaとビニル
基のモル比は0.7〜3.0が通常である。その理由は
、SiH基の量が少ないと充分な架橋密度が得られず硬
化不充分になる一方、SiH基の量が多すぎると架橋反
応呵関与しない■の架橋剤の成分が樹脂中に残存し硬化
組成物の物性を低下させるからである。
pt catalyst Mi5i (iH= CH2+ H81 Mi-→ MiSECR
2CH251mi... (2) At this time, the molar ratio of SiHa to vinyl group is usually 0.7 to 3.0. The reason for this is that if the amount of SiH groups is small, sufficient crosslinking density cannot be obtained and curing is insufficient, while if the amount of SiH groups is too large, the crosslinking agent component (2), which does not participate in the crosslinking reaction, remains in the resin. This is because the physical properties of the cured composition are deteriorated.

■の白金触媒は、■〜■の総重量中5〜10ppm含ま
れるのが普通である。
The platinum catalyst in (1) is usually contained in an amount of 5 to 10 ppm in the total weight of (2) to (2).

上記のような従来のシリコーン樹脂は、光フアイバ用被
覆材料として粘度、ポットライフ、硬化速度、等の加工
性及び光フアイバ強度、初期伝送損失等の光フアイバ特
性の面で極めて優れたものであり恋。しかしながら前述
のように現状の樹脂組成では光ファイバに被覆した後H
2が発生し伝送損失の劣化をもたらすという、光フアイ
バ被覆材料として重大な欠陥を有していることが判明し
た。
Conventional silicone resins as mentioned above are extremely excellent as coating materials for optical fibers in terms of processability such as viscosity, pot life, curing speed, etc., as well as optical fiber properties such as optical fiber strength and initial transmission loss. love. However, as mentioned above, with the current resin composition, H
It was found that the optical fiber coating material had a serious defect in that 2 was generated and the transmission loss deteriorated.

(発明の解決しようとする間妓点) 本発明は上述の欠点を解決すること、すなわち、初期伝
送損失、強度等の点で優れた特徴を有する熱硬化型シリ
コーンのH2発生量を低減させ、長期にわたって伝送損
失の増加することのない光ファイバを提供することを目
的としている。
(Disadvantages to be Solved by the Invention) The present invention solves the above-mentioned drawbacks, that is, reduces the amount of H2 generated by thermosetting silicone, which has excellent characteristics in terms of initial transmission loss, strength, etc. The objective is to provide an optical fiber that does not have increased transmission loss over a long period of time.

(問題点を解決する手段) 本発明者らは、H2発生量を低減させ、長期にわたって
伝送損失の増加することのないシリコーン樹脂組成につ
いて種々検討の結果、樹脂の加工性、被覆された光ファ
イバの初期特性が従来の水準を満足し、かつH2発生量
がゼロで、加速劣化試験で伝送損失増を生じない光ファ
イバを実現しfc0 すなわち本発明は、光伝送用ガラスファイバーに、 (イ)一般式 (式中Rは脂肪族不飽和結合を有しない置換もしくは非
置換の一価炭化水素基であシ、nは正の整数を示す)に
て表されるジオルガノポリシロキサン、 (ロフ 1分子中に少なくとも3個のけ^素原子結合水
素原子を有するオルガノハイドロジエンポリシロキサン
、 (/−1白金または白金化合物、 の上記3成分からなシ、上記(ロ)成分中のけい素原子
結合水素原子と上記(イ)成分中のけい素原子結合ビニ
ル基のモル比が0,7〜1.5の範囲にあシ、かつ、上
記0i成分が上記(イλ、(ロ)両成分の合計量の20
〜200 ppmである、シリコン樹脂組成物を被覆し
てなる光伝送用ガラスファイバを提供するものである。
(Means for Solving the Problems) As a result of various studies on silicone resin compositions that reduce the amount of H2 generated and do not increase transmission loss over a long period of time, the inventors found that the processability of the resin, the coated optical fiber The present invention realizes an optical fiber that satisfies the conventional level of initial characteristics, generates zero H2, and does not cause an increase in transmission loss in accelerated aging tests. A diorganopolysiloxane represented by the general formula (wherein R is a substituted or unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and n is a positive integer), (Rof 1 An organohydrodiene polysiloxane having at least 3 silicon-bonded hydrogen atoms in the molecule, (/-1 platinum or platinum compound), consisting of the above three components, a silicon atom bond in the above component (b) The molar ratio of the hydrogen atom to the silicon atom-bonded vinyl group in component (a) is in the range of 0.7 to 1.5, and the Oi component is in the range of (A), (B) both components. Total amount of 20
The present invention provides a glass fiber for optical transmission coated with a silicone resin composition having a silicone resin composition of 200 ppm.

(イ)成分の一般式 (式中Rは脂肪族不飽和結合を有しない置換もしくは非
置換の1価炭化水素基であシ゛、nは正の整数)にて表
されるジオルガノシロキサンとしては、例えば 等が用りられる。
(a) The diorganosiloxane represented by the general formula of the component (wherein R is a substituted or unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and n is a positive integer) , for example, etc. are used.

(ロ)成分の1分子中に少なくとも3個のけい素原子結
合水素原子を有するオルガノハイドロジエンポリシロキ
サンとしては、例えば 等が用いられる。
Examples of the organohydrodiene polysiloxane having at least three silicon-bonded hydrogen atoms in one molecule of component (b) include the following.

ρ9成分の白金または白金化合物としては、例えば、塩
化白金酸の2−エチルベキテノール2重量%溶液塩化白
金酸のインプロピルアルコール2重量%溶液等が用いら
れる。
As the platinum or platinum compound as the ρ9 component, for example, a 2% by weight solution of chloroplatinic acid in 2-ethylbequitenol and a 2% by weight solution of chloroplatinic acid in inpropyl alcohol can be used.

本発明の特徴は、光ファイバの被覆材として(l si
H基とビニル基のモル比が0.7〜1.5であルかつ(
11ン白金触媒量がその総重量の20〜200ppmで
ある、シリコン樹脂を用いたことにある。
The feature of the present invention is that it can be used as a coating material for optical fiber (l si
The molar ratio of H group to vinyl group is 0.7 to 1.5, and (
The reason is that a silicone resin is used in which the amount of platinum catalyst is 20 to 200 ppm based on the total weight of the silicone resin.

ただし、白金触媒量は200 ppm以上でもかまわな
いが、H2発生量低減効果に関しては、本発明の組成で
必要かつ十分で17、白金触媒量が200 ppm以上
になると樹脂が劣化しゃすぐなる傾向がある。
However, the amount of platinum catalyst may be 200 ppm or more, but the composition of the present invention is necessary and sufficient for the effect of reducing H2 generation17, and when the amount of platinum catalyst is 200 ppm or more, the resin tends to deteriorate quickly. be.

(作用) 本発明のシリコン樹脂被覆光ファイバは、常温および高
温において、従来のシリコンJfJ!脂被覆光ファイバ
に見られたような、該シリコン樹脂中に発生するH2 
 に起因した伝送損失の増加を生じない。この理由につ
いて本顔発明者らは以下の如く推定している。
(Function) The silicone resin-coated optical fiber of the present invention has the same properties as conventional silicone JfJ! at room temperature and high temperature. H2 generated in the silicone resin, as seen in oil-coated optical fibers.
There is no increase in transmission loss due to The reason for this is estimated by the present inventors as follows.

すなわち、第1にSiH基とビニル基のモル比が0.7
〜1.5の範囲にあるため下記(2i式の反応に関与せ
ず、硬化後のシリコン樹脂中に残存するSiH基が少な
いこと、 第2にわずかながら残存する5i)(基が下記(3)式 の反応で発生するH2t−1多量の白金触媒の存在下、
0□ との反応によって下記(4)式のように消費する
ことができること、 によるものである。
That is, firstly, the molar ratio of SiH groups to vinyl groups is 0.7.
- 1.5, so the following (2i type) does not participate in the reaction and remains in the silicone resin after curing is small. Secondly, there is a small amount of 5i remaining (5i) (the group is the following (3) ) In the presence of a large amount of H2t-1 platinum catalyst generated in the reaction of the formula,
This is because it can be consumed as shown in the following equation (4) by reaction with 0□.

なお、本発明のシリコーン樹脂組成は、(イ)。The silicone resin composition of the present invention is (a).

(ロ)および←慢の3成分に限られるものではなく、そ
の他の添加剤を加えτもよく、その場合においても本発
明の有効性には変シはない。
It is not limited to the three components (b) and ←, and other additives may be added to increase τ, and the effectiveness of the present invention will not change even in that case.

以下に本発明のもとどなる知見を得た実験データを説明
する。ここで使用したシリコーン樹脂組成は、 f−1塩化白金酸の2−エチルヘキサノール2x量%溶
液である。この3成分よシなるシリコーン樹脂を150
Cで15分間加熱して硬化せしめ、試験に供した。該シ
リコーン硬化物を空気雰囲気中で2000で1時間加熱
し、発生したH2ガスをAr  キャリアガスを用いて
ガスクロマトグラムで分析した。
The experimental data from which the findings that form the basis of the present invention were obtained will be explained below. The silicone resin composition used here is a 2x volume % solution of f-1 chloroplatinic acid in 2-ethylhexanol. 150% silicone resin with these three ingredients
It was cured by heating at C for 15 minutes and used for testing. The cured silicone product was heated at 2000 °C for 1 hour in an air atmosphere, and the generated H2 gas was analyzed by gas chromatography using Ar carrier gas.

上記実験の結果を、SiH基とビニル基のモル比と白金
量(ppm)およびH2発生量[at / (i樹脂〕
の相関図として第1図に示す。なお白金量については、
×印5ppm、Δ印10ppm、厘印15ppm、○印
20ppm、@印1100pp、+印200 ppmを
あられす。
The results of the above experiment are expressed as the molar ratio of SiH groups and vinyl groups, the amount of platinum (ppm), and the amount of H2 generated [at / (i resin)]
Figure 1 shows the correlation diagram. Regarding the amount of platinum,
It hails 5ppm as marked by "X", 10ppm as marked by Δ, 15ppm as marked by "15ppm", 20ppm as marked by "○", 1100ppm as marked by @, and 200ppm as marked by "+".

第1図から明らかなように、  SiH基/ビニル基モ
ル比0.7〜1.5の範囲で、白金量が20〜200 
ppmの組成のシリコン樹脂は、H2発生量が実質ゼロ
であることがわかる。
As is clear from FIG.
It can be seen that silicone resin with a composition of ppm has substantially zero H2 generation.

(発明の効果) 本発明のシリコン樹脂被覆光伝送用ファイバは、従来の
シリコン樹脂被覆光ファイバの有する優れた初期伝送損
失特性、強度特性に加え、常温においても高温において
も、シリコン樹脂に起因するH2  の発生量を低減し
て、長期にわた)伝送損失の増加がない長期安定性にも
優れた光ファイバである。
(Effects of the Invention) The silicone resin-coated optical transmission fiber of the present invention not only has the excellent initial transmission loss characteristics and strength characteristics of the conventional silicone resin-coated optical fiber, but also has excellent initial transmission loss characteristics and strength characteristics that are caused by the silicone resin both at room temperature and high temperature. It is an optical fiber that reduces the amount of H2 generated and has excellent long-term stability with no increase in transmission loss over a long period of time.

(実施例) 以下本発明の有効性を実施例を挙げて示す。(Example) The effectiveness of the present invention will be illustrated below with reference to Examples.

実施例1 Gs  をドーパントとする比屈折率差1%の石英系光
フアイバプリフォーを、カーボン抵抗炉型線引炉にて線
引し、外径125μm のファイバとした。その後、高
屈折率のシリコーン樹脂を60μm の厚さに塗布して
赤外線炉で焼付け、さらに低屈折率のシリコーン樹脂を
被覆して外径4 D OArn  とし、赤外線炉で焼
付けた。この時の線引炉の温度は2150C,ffa引
速度60m/分、赤外線炉の温度は450Cであった。
Example 1 A silica-based optical fiber preform with a relative refractive index difference of 1% and containing Gs as a dopant was drawn in a carbon resistance furnace type drawing furnace to obtain a fiber with an outer diameter of 125 μm. Thereafter, a silicone resin with a high refractive index was coated to a thickness of 60 μm and baked in an infrared oven, and then a silicone resin with a low refractive index was coated to have an outer diameter of 4 D OArn and baked in an infrared oven. At this time, the temperature of the drawing furnace was 2150C, the ffa drawing speed was 60 m/min, and the temperature of the infrared furnace was 450C.

この場合に使用したシリコーン樹脂の組成は。What is the composition of the silicone resin used in this case?

(ハ)塩化白金酸のインプロビルアルコール2重量%溶
液 であ)、 ■ SiH基とビニル基のモル比が1.0■ 白金の濃
度が30 ppm になる様に(イへ(ロ)およびρ慢を混合した。
(c) A 2% by weight solution of chloroplatinic acid in Improvil alcohol), ■ The molar ratio of SiH groups to vinyl groups is 1.0 ■ The concentration of platinum is 30 ppm (I) and ρ Mixed with arrogance.

上記シリコーン樹脂で被覆された光ファイバ素線をナイ
μン12で外径0.91ffl+lφに押出し、200
pでH2発生、損失増加の加速試験を行なった。
The optical fiber coated with the above silicone resin was extruded with a knife 12 to an outer diameter of 0.91ffl+lφ, and
An accelerated test of H2 generation and loss increase was conducted at p.

H2発生量は、20DCで1時間に発生したH2ガス量
を、Arキャリアガスを用いガスクロマトグラムで分析
した。H2発生量は心91 mあた多5XIQ−’ml
と定量下限以下であった。
The amount of H2 generated was determined by analyzing the amount of H2 gas generated in one hour at 20 DC using a gas chromatogram using Ar carrier gas. The amount of H2 generated is 5XIQ-'ml per 91 m.
was below the lower limit of quantification.

損失増加の加速試験では、損失波長特性を200Cで6
時間後に測定し、1.39μmのOHビークで0.05
 c[/ &の増加と全く問題のないことを確認した。
In the accelerated loss increase test, the loss wavelength characteristics were changed to 6 at 200C.
Measured after hours, 0.05 at 1.39μm OH peak
It was confirmed that there was no problem with the increase in c[/&.

実施例2 Go  をドーパントとして比屈折率差1%、Pを1.
5%含む石英系光ファイバを、実施例1と同様な条件で
線引した。この時使用したシリコーン樹脂の組成は、実
施例1と白金量だけ異なっておシ、100 ppmであ
る。
Example 2 Go was used as a dopant, the relative refractive index difference was 1%, and P was 1.
A silica-based optical fiber containing 5% was drawn under the same conditions as in Example 1. The composition of the silicone resin used at this time differed from Example 1 only in the amount of platinum, which was 100 ppm.

この素線を実施例1と同様にナイロン心線にして試験に
供した。200Cで1時間後のH2発生素は、心線1m
あたり4×10−七定量下限以下で、損失増加特性では
、200Cで6時間後1.39μmピーク増加量が0.
1 dB / &sと問題のないレベルであることで確
認した。
This wire was made into a nylon core wire in the same manner as in Example 1 and was subjected to a test. H2 generating element after 1 hour at 200C is 1m of core wire.
The loss increase property is below the lower limit of quantification of 4 x 10-7 per unit, and the increase in loss at 1.39 μm peak after 6 hours at 200C is 0.
It was confirmed that the level was 1 dB/&s, which is acceptable.

比較例 Ge  をドーパントとして比屈折率差1%の石英系光
ファイバを実施例1と同様な条件で線引した。この時使
用したシリコーン樹脂組成は、実施例1とSiH基、ビ
ニル基のモル比、白金量が異なっている。高屈折率のシ
リコーン樹脂では3、SiH基とビニル基のモル比が3
、白金濃度が5 ppm、低屈折率のシリコーン樹脂で
は、SiH基とビニル基のモル比が2.5白金量度が8
ppmである。この素線を実施例1と同様にナイロン心
線にして試験に供した。200Cで1時間後のH2発生
量は、心線1mあたシ0.027dで、損失増加特性で
は、20006時間後の1.39 μm損失増加量は5
.26B / ![+sであった。
Comparative Example A silica-based optical fiber with a relative refractive index difference of 1% was drawn under the same conditions as in Example 1 using Ge as a dopant. The silicone resin composition used at this time was different from Example 1 in the molar ratio of SiH groups to vinyl groups and the amount of platinum. In high refractive index silicone resin, the molar ratio of SiH groups to vinyl groups is 3.
In a silicone resin with a platinum concentration of 5 ppm and a low refractive index, the molar ratio of SiH groups to vinyl groups is 2.5, and the platinum content is 8.
It is ppm. This wire was made into a nylon core wire in the same manner as in Example 1 and was subjected to a test. The amount of H2 generated after 1 hour at 200C is 0.027 d per 1 meter of core wire, and the increase in loss at 1.39 μm after 20006 hours is 5.
.. 26B/! [It was +s.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は被覆に用いるシリ;ン樹脂のSiH基とビニル
基のモル比と白金量を変化させた場合の、H2発生量の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of H2 generated when the molar ratio of SiH groups to vinyl groups of the silicone resin used for coating and the amount of platinum are changed.

Claims (1)

【特許請求の範囲】 1、光伝送用ガラスファイバに、 (イ)一般式 ▲数式、化学式、表等があります▼ (式中Rは脂肪族不飽和結合を有しない置換もしくは非
置換の一価炭化水素基であり、nは正の整数を示す)に
て表されるジオルガノポリシロキサン、 (ロ)1分子中に少なくとも3個のけい素原子結合水素
原子を有するオルガノハイドロジエンポリシロキサン、 (ハ)白金または白金化合物、 の上記3成分からなり、上記(ロ)成分中のけい素原子
結合水素原子と上記(イ)成分中のけい素原子結合ビニ
ル基のモル比が0.7〜1.5の範囲にあり、かつ、上
記(ハ)成分が上記(イ)、(ロ)両成分の合計量の2
0〜200ppmである、シリコン樹脂組成物を被覆し
てなる光伝送用ガラスファイバ。
[Claims] 1. Glass fiber for optical transmission has (a) general formula ▲ mathematical formula, chemical formula, table, etc. (b) an organohydrodiene polysiloxane having at least three silicon-bonded hydrogen atoms in one molecule; c) Platinum or a platinum compound, consisting of the above three components, wherein the molar ratio of the silicon-bonded hydrogen atoms in the above-mentioned (b) component to the silicon-bonded vinyl groups in the above-mentioned (a) component is 0.7 to 1. .5, and the component (c) above is 2 of the total amount of both components (a) and (b) above.
A glass fiber for optical transmission coated with a silicone resin composition having a concentration of 0 to 200 ppm.
JP59173343A 1984-08-22 1984-08-22 Glass fiber for optical transmission Pending JPS6152616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173343A JPS6152616A (en) 1984-08-22 1984-08-22 Glass fiber for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173343A JPS6152616A (en) 1984-08-22 1984-08-22 Glass fiber for optical transmission

Publications (1)

Publication Number Publication Date
JPS6152616A true JPS6152616A (en) 1986-03-15

Family

ID=15958660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173343A Pending JPS6152616A (en) 1984-08-22 1984-08-22 Glass fiber for optical transmission

Country Status (1)

Country Link
JP (1) JPS6152616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159707U (en) * 1987-04-08 1988-10-19
US4835057A (en) * 1987-03-25 1989-05-30 At&T Bell Laboratories Glass fibers having organosilsesquioxane coatings and claddings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819370A (en) * 1981-07-27 1983-02-04 Toshiba Silicone Co Ltd Covering composition and covering with the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819370A (en) * 1981-07-27 1983-02-04 Toshiba Silicone Co Ltd Covering composition and covering with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835057A (en) * 1987-03-25 1989-05-30 At&T Bell Laboratories Glass fibers having organosilsesquioxane coatings and claddings
JPS63159707U (en) * 1987-04-08 1988-10-19

Similar Documents

Publication Publication Date Title
CA1080388A (en) Self-adhering silicone compositions and preparations thereof
CA1155991A (en) Silicone compositions for the treatment of glass fibers
US5051467A (en) Silicone rubber compositions
JPH0739571B2 (en) Adhesive organopolysiloxane composition
US4102852A (en) Self-extinguishing room temperature vulcanizable silicone rubber compositions
CN109370235A (en) A kind of dual composition addition type silicon gel and preparation method thereof
US4287114A (en) Primer compositions
JPH02218755A (en) Curable organopolysiloxane composition
GB1338537A (en) Organosiloxane composition
US4560711A (en) Transparent organopolysiloxane compositions
US4609590A (en) Method of making a coated quartz optical communications fiber and the coated fiber obtained therefrom
US5349037A (en) Adhesive composition
JPS6348902B2 (en)
CA2065717A1 (en) Catalyst and coating composition containing same
JPH05262986A (en) Heat curable platinum catalyst-containing silicone coating composition
JPS6152616A (en) Glass fiber for optical transmission
JPH06345971A (en) One-pack curable silicone composition
JPH0476390B2 (en)
US4613659A (en) Low temperature polymethylsiloxane containing silicon-bonded hydrogen and curable compositions made therewith
JPH0528738B2 (en)
US4898903A (en) Thermally stable fluorinated organosiloxane gel composition
JP2510577B2 (en) Curable silicone gel composition
JPS63268765A (en) Treating agent for glass fiber product
JPS6220521B2 (en)
KR100535439B1 (en) Composition of releasing agents for dispersion based-on silicone