JPS6152118B2 - - Google Patents
Info
- Publication number
- JPS6152118B2 JPS6152118B2 JP57146943A JP14694382A JPS6152118B2 JP S6152118 B2 JPS6152118 B2 JP S6152118B2 JP 57146943 A JP57146943 A JP 57146943A JP 14694382 A JP14694382 A JP 14694382A JP S6152118 B2 JPS6152118 B2 JP S6152118B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- plate
- slide valve
- sliding
- passage hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 56
- 239000010959 steel Substances 0.000 claims description 56
- 239000000919 ceramic Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000035939 shock Effects 0.000 description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 230000003628 erosive effect Effects 0.000 description 9
- 230000006378 damage Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 4
- 239000005350 fused silica glass Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000011214 refractory ceramic Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- -1 syamoto Chemical compound 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- LNSPFAOULBTYBI-UHFFFAOYSA-N [O].C#C Chemical group [O].C#C LNSPFAOULBTYBI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Description
本発明は溶鋼流量制御用スライドプレートに関
するものである。
近年製鋼用取鍋やタンデイツシユでの溶鋼流量
制御には広くスライドバルブ方式が採用されてい
る。また転炉等への適用も試みられている。
スライドバルブ方式の構造を第1図及び第2図
に示す。第1図の固定プレート4及び摺動プレー
ト5の2枚のプレートの摺動面3は精密研磨され
ており、十分に平滑で容易に摺動ができるように
なつている。この2枚のプレートのうち下方の摺
動プレート5は第1図、第2図において左右方向
に摺動でき、これにより溶鋼通過孔2の断面積を
変化させ流量を調整する。このような機能を満足
する為にはプレートの溶鋼通過孔2においては溶
鋼通過中亀裂、欠け、磨耗、侵食等の欠陥が生じ
てはならない。また摺動面においては溶鋼通過部
よりの溶鋼侵入を防止し得るに十分な平滑さを持
つ必要がある。
溶鋼容器内へ溶鋼が装入される時、スライドバ
ルブは第2図のように溶鋼通過孔2が閉じた状態
にある。この時固定プレート4の溶鋼通過孔及び
上ノズル孔内には充填砂が満されているので2枚
のプレートは直接溶鋼とは接触しない。
次に摺動プレート5の移動により溶鋼通過孔2
が開いた第1図の状態となる。このとき充填砂は
溶鋼の重量により落下し次の瞬間、高温の溶鋼が
溶鋼通過孔2を高速で流れる。即ちこの瞬間溶鋼
通過孔部は急激な熱衝撃を受ける。さらに溶鋼が
通過する間溶鋼流による磨耗、侵食を受ける。
所定の溶鋼量を溶鋼容器より流出した後、摺動
プレート5を摺動し溶鋼通過孔2の閉じた第2図
の状態に戻す。この過程では摺動プレート5の摺
動面3は、順次連続的に固定プレート4の溶鋼通
過孔部の溶鋼に接触しながら摺動するのでごく表
面のみの熱衝撃を受ける。同様の操作が2〜4回
反復された後固定プレート及び摺動プレートは廃
却されている。尚、図において1は上ノズル、
1′は下ノズルを示す。
従来のスライドバルブプレートが廃却されるま
での経過は次のようになる。
溶鋼通過孔部には初期に受ける熱衝撃のため第
3図に示す如く放射状の亀裂6が発生する。この
亀裂は反復使用により連続的に成長しプレート全
体に広がる。また溶鋼の通過中は溶鋼流による磨
耗及び侵食を受け溶鋼通過孔の孔径拡大が生じ、
また前述の熱衝撃による亀裂がエツヂ部分の剥離
7を誘導し孔径拡大を助長する。このような状態
になると正確な流量制御機能を失うのでプレート
は廃却される。
一方摺動プレートの摺動面においては表面の熱
衝撃の反復で表層剥離8を生じ平滑さが失われ
る。これは溶鋼通過孔部に発生する亀裂の成長に
よつて助長される。十分な平滑さを失つた摺動面
はもはや高圧で押しつけられても溶鋼通過孔より
の溶鋼侵入を止めることはできなくなり廃却され
る。
従来スライドバルブ方式のプレート部には一般
にAl2O3質、MgO質、Al2O3−C質あるいはMgO
−C質等の耐火物のプレス成形品が使用されてい
るが十分満足できるものではない。
従来の耐火物よりもさらに耐熱衝撃性、耐磨耗
性及び耐侵食性に優れる耐火性セラミツクスでプ
レートを作成すれば高寿命が得られることは明白
であるが、しかし一般に耐熱衝撃性と耐侵食性と
は相反する特性であり、この両特性を合せ持つ高
級耐火性セラミツクスは非常に高価である為実用
されていない。
従来のスライドプレートは耐火性材料をプレス
成形した一体物(1個の耐火れんが)より成る
為、1個のプレートは全体に均質である。この為
次のような欠点があげられる。第一に溶鋼通過孔
部と摺動面における損傷がプレート廃却の直接原
因である。即ち、溶鋼に接触するごく一部分の損
傷がプレート全体の寿命を決定してしまう。その
為溶鋼に接しないプレートの大部分はほとんど損
傷を受けずに廃却されており無駄が多く高級耐火
性セラミツクスの使用を阻害している。
第2にプレート全体が均質であるが故に溶鋼通
過孔部に発生した亀裂が連続的に成長する。
第3に溶鋼通過孔部、摺動面及びその他の部分
では、それぞれ受ける損傷形態が異るにも拘らず
一体のプレス成型が行つている為、特性の異る最
適材料をそれぞれの部分に適用することが困難で
ある。
本発明は低膨張性のセラミツク本体及びこの本
体表面を3〜10モル%のMgOを含むZrO2で被覆
することを特徴とするスライドバルブプレートに
関するものである。尚、本発明においてスライド
バルブプレートとは下ノズルを装着した場合も含
むものとする。その構成の一例を第4図に示す。
摺動プレート本体10は従来のプレートと同様
の形状を低膨張性セラミツクで形成する。これに
用いるセラミツク材料としては溶融シリカ、シヤ
モツト、コージライト等が適している。本体その
ものが溶鋼流量調整時の大きな熱衝撃に耐えるこ
とが重要で、この為に低膨張性の溶融シリカ、シ
ヤモツト、コージライト等を使用する。しかし溶
融シリカ、シヤモツト及びコージライトは溶鋼に
対する耐磨耗性及び耐食性、耐熱性等の面では弱
く、溶鋼が直接触れる所では使用できない。この
為この溶鋼の直接当る所には熱衝撃に強い上に耐
磨耗性、耐食性、耐熱性にすぐれたセラミツクを
被覆する必要がある。種々のセラミツク材料を検
討した結果上記の特性を満足しうる材料として3
〜10モル%のMgOで部分安定化したZrO2が最良
であることを見いだした。このMgOで部分安定
化したZrO212(以降MPSZと呼ぶ)を摺動部分に
溶射する。又、溶鋼通過孔部分には焼結法により
作られた、もしくは溶射によつて作られた円筒あ
るいは中空円錐台状の成形体11をはめ込む。こ
の時に摺動部分の溶射膜12の厚みは0.2〜15
mm、溶鋼通過孔にはめ込む成形体11の肉厚は
0.5〜20mmが良い。摺動部分の溶射膜厚みは0.2mm
未満であるとスライドバルブプレート本体のセラ
ミツクが熱的に変化する恐れがあり、割れ損傷や
溶射膜の剥離につながる。15mmを超える厚みにな
ると溶射加工時間が長く生産性が悪くなり好まし
くない。溶鋼通過孔の成型体11は肉厚が0.5mm
未満であると、いかにMPSZが耐摩耗性にすぐれ
ていても溶鋼による摩耗損傷は大きい為期待され
る耐用回数が得られない。成形体の肉厚は20mm以
下で十分摺動部分の損傷と調和がとれる為、20mm
を超える必要はない。
MPSZのMgO含有量が3〜10モル%が望ましい
理由は次の通りである。
種々のZrO2材料を試験したが、安定化ZrO2及
びCaO部分安定化ZrO2、Y2O3部分安定化ZrO2さ
らにはCaO、MgO、Y2O3による完全安定化ZrO2
はいずれも急熱テストによつて割れを発生する。
本発明のMPSZのみが急熱テストの繰返しにも耐
え、割れないし又耐磨耗性、耐食性、にすぐれる
ことを見い出した。耐熱衝撃性がすぐれる理由は
MPSZ内に析出した単斜晶が急速加熱の際に変態
し熱収縮をおこして、熱応力を消すといわれてい
る。
第4図に本発明のスライドバルブプレートの溝
成の概略図を示した。MPSZの被覆は摺動部分全
面でも(b図)、実際に摺動する箇所のみ(a
図)でも溝わない。経済性の面からは実際に摺動
する箇所のみを溶射することが望ましい。さらに
溶射後摺動面を研磨し溶鋼の洩れがないように平
滑にする。溶鋼通過孔のMPSZ成型体11は、溶
射膜によつて固定されるがさらに脱落しないよう
に第4図の如く傾斜をつけた円筒をはめ込むこと
が望ましい。
以下に実施例を述べる。
プレート本体10をシヤモツト、コージライ
ト、溶融シリカで成型し被覆材としてこの溶鋼通
過孔部にMPSZの成型体11をはめ込み、摺動面
はMPSZを溶射した。比較として従来のスライド
バルブプレートとさらにAl2O3あるいはCaOで完
全安定化したZrO2をはめ込みかつ溶射したもの
を示す。試験は熱衝撃試験と侵食試験を行つた。
熱衝撃試験は酸素−アセチレンによる火炎でプ
レートを加熱した。この時プレートの表面温度が
1700℃となるように調節しプレート摺動面及び溶
鋼通過孔部を5分間加熱し30分間放冷するのを1
回の操作とした。この操作を繰り返し行いプレー
ト表面に亀裂が発生するまでの回転と一部分に剥
離が観察されるまでの回数で比較を行つた。なお
試験は20回の繰り返しで中止した。侵食試験は誘
導炉を用いて1650℃−4時間の条件で溶鋼通過孔
部の溶鋼による侵食量を比較した。侵食量は試験
終了後測定した。本発明によるスライドプレート
と従来のスライドプレートの品質と試験結果を示
す。
表1はスライドバルブプレートの摺動面に溶射
被覆したものの熱衝撃試験結果を示す。従来品に
は溶射被覆しないものも示した。3〜10モル%の
MgOで部分安定化したZrO2は他の従来品よりも
熱衝撃性にすぐれている。
表2はスライドバルブプレートの溶鋼通過孔部
の侵食試験結果を示す。本発明品1はMPSZの焼
結体で緻密である。その他は溶射によつて成形し
たものである。これより本発部品は従来品よりも
耐食性にすぐれていることが明白である。
The present invention relates to a slide plate for controlling the flow rate of molten steel. In recent years, slide valve systems have been widely used to control the flow rate of molten steel in steelmaking ladles and tundishes. Applications to converters, etc. are also being attempted. The structure of the slide valve system is shown in Figures 1 and 2. The sliding surfaces 3 of the two plates, the fixed plate 4 and the sliding plate 5 in FIG. 1, are precisely polished and are sufficiently smooth to allow easy sliding. Of these two plates, the lower sliding plate 5 can slide in the left-right direction in FIGS. 1 and 2, thereby changing the cross-sectional area of the molten steel passage hole 2 and adjusting the flow rate. In order to satisfy such a function, defects such as cracks, chips, wear, erosion, etc. must not occur in the molten steel passing hole 2 of the plate during the passage of molten steel. Furthermore, the sliding surface needs to have sufficient smoothness to prevent molten steel from entering through the molten steel passage section. When molten steel is charged into the molten steel container, the slide valve is in a state where the molten steel passage hole 2 is closed as shown in FIG. At this time, the molten steel passing hole and the upper nozzle hole of the fixed plate 4 are filled with sand, so the two plates do not come into direct contact with the molten steel. Next, by moving the sliding plate 5, the molten steel passing hole 2
It will be in the state shown in Figure 1, where it is open. At this time, the filling sand falls due to the weight of the molten steel, and at the next moment, high-temperature molten steel flows through the molten steel passage hole 2 at high speed. That is, this instantaneous molten steel passage hole is subjected to a sudden thermal shock. Furthermore, while the molten steel passes through it, it is subject to wear and erosion by the molten steel flow. After a predetermined amount of molten steel has flowed out of the molten steel container, the sliding plate 5 is slid to return the molten steel passage hole 2 to the closed state as shown in FIG. 2. In this process, the sliding surface 3 of the sliding plate 5 sequentially and continuously slides while contacting the molten steel in the molten steel passage hole of the fixed plate 4, so that only a small portion of the sliding surface 3 receives a thermal shock. After similar operations are repeated 2 to 4 times, the fixed plate and sliding plate are discarded. In addition, in the figure, 1 is the upper nozzle,
1' indicates the lower nozzle. The process until a conventional slide valve plate is discarded is as follows. As shown in FIG. 3, radial cracks 6 occur in the molten steel passage hole due to the initial thermal shock. This crack grows continuously with repeated use and spreads throughout the plate. Additionally, during the passage of molten steel, the diameter of the molten steel passage hole expands due to wear and erosion caused by the molten steel flow.
Moreover, the cracks caused by the thermal shock described above induce peeling 7 of the edge portion and promote the expansion of the pore diameter. In this condition, the plate loses its ability to accurately control flow, and is therefore discarded. On the other hand, on the sliding surface of the sliding plate, repeated thermal shocks on the surface cause surface layer peeling 8 and loss of smoothness. This is facilitated by the growth of cracks that occur in the molten steel passage holes. A sliding surface that has lost sufficient smoothness can no longer be stopped from entering the molten steel through the molten steel passage hole even if it is pressed under high pressure, and is discarded. Conventional slide valve type plates generally contain Al 2 O 3 , MgO, Al 2 O 3 -C, or MgO.
- Press-molded products of refractories such as C quality are used, but they are not fully satisfactory. It is clear that longer life can be achieved by making plates from refractory ceramics, which have better thermal shock, abrasion and erosion resistance than traditional refractories; This is a property that is contradictory to the property, and high-grade refractory ceramics that have both of these properties are extremely expensive and are not put into practical use. Since a conventional slide plate is made of a single piece (one refractory brick) press-molded from a refractory material, one plate is homogeneous throughout. For this reason, the following drawbacks can be cited. First, damage to the molten steel passage holes and sliding surfaces is the direct cause of plate scrapping. In other words, damage to a small portion of the plate that comes into contact with molten steel will determine the lifespan of the entire plate. For this reason, most of the plates that do not come into contact with molten steel are discarded without sustaining much damage, resulting in a lot of waste and hindering the use of high-grade refractory ceramics. Secondly, since the entire plate is homogeneous, cracks generated in the molten steel passage holes grow continuously. Thirdly, the molten steel passage hole, sliding surface, and other parts are press-formed as one piece even though the forms of damage they receive are different, so optimal materials with different properties are applied to each part. difficult to do. The present invention relates to a slide valve plate characterized by a low-expansion ceramic body and a surface of the body coated with ZrO 2 containing 3 to 10 mol% MgO. In the present invention, the term "slide valve plate" includes a case where a lower nozzle is attached. An example of its configuration is shown in FIG. The sliding plate main body 10 is made of low-expansion ceramic and has the same shape as a conventional plate. Suitable ceramic materials for this purpose include fused silica, syamoto, cordierite, and the like. It is important that the main body itself withstands large thermal shocks when adjusting the flow rate of molten steel, and for this purpose low-expansion materials such as fused silica, Shamots, cordierite, etc. are used. However, fused silica, syamoto, and cordierite have poor wear resistance, corrosion resistance, and heat resistance against molten steel, and cannot be used in areas where molten steel comes into direct contact with them. For this reason, it is necessary to coat the areas directly in contact with the molten steel with ceramic, which is resistant to thermal shock and has excellent abrasion resistance, corrosion resistance, and heat resistance. After examining various ceramic materials, we found 3 materials that could satisfy the above characteristics.
We found that ZrO2 partially stabilized with ~10 mol% MgO is the best. This ZrO 2 12 partially stabilized with MgO (hereinafter referred to as MPSZ) is thermally sprayed onto the sliding parts. Further, a cylindrical or hollow truncated conical molded body 11 made by sintering or thermal spraying is fitted into the molten steel passage hole. At this time, the thickness of the sprayed film 12 on the sliding part is 0.2 to 15
mm, the thickness of the molded body 11 to be fitted into the molten steel passage hole is
0.5~20mm is good. The sprayed coating thickness on the sliding part is 0.2mm.
If it is less than that, the ceramic of the slide valve plate body may be thermally changed, leading to cracking damage and peeling of the sprayed film. If the thickness exceeds 15 mm, the spraying time will be long and productivity will be poor, which is not preferable. The molded body 11 of the molten steel passage hole has a wall thickness of 0.5 mm.
If it is less than that, no matter how excellent the wear resistance of MPSZ is, the expected service life cannot be obtained because the wear damage caused by molten steel is large. The wall thickness of the molded body should be 20 mm or less, as it will harmonize well with damage to the sliding parts.
There is no need to exceed. The reason why the MgO content of MPSZ is desirably 3 to 10 mol% is as follows. Various ZrO2 materials were tested, including stabilized ZrO2 and partially stabilized ZrO2 with CaO, partially stabilized ZrO2 with Y2O3 and even fully stabilized ZrO2 with CaO, MgO, Y2O3 .
All of these cracks occur during rapid heat tests.
It has been found that only the MPSZ of the present invention can withstand repeated rapid heating tests, does not crack, and has excellent abrasion resistance and corrosion resistance. The reason for its excellent thermal shock resistance
It is said that monoclinic crystals precipitated within MPSZ transform during rapid heating, causing thermal contraction and eliminating thermal stress. FIG. 4 shows a schematic diagram of the groove formation of the slide valve plate of the present invention. The MPSZ coating can be applied to the entire sliding area (Figure b), or only to the areas where it actually slides (Figure a).
(Fig.) But there is no groove. From an economic point of view, it is desirable to spray only the areas that will actually slide. Furthermore, after thermal spraying, the sliding surfaces are polished to make them smooth to prevent molten steel from leaking. The MPSZ molded body 11 in the molten steel passage hole is fixed by the sprayed film, but it is desirable to fit a cylinder with an inclination as shown in FIG. 4 to prevent it from falling off. Examples will be described below. The plate body 10 was molded with syamoto, cordierite, and fused silica, and a molded body 11 of MPSZ was fitted into the molten steel passage hole as a covering material, and MPSZ was sprayed on the sliding surface. For comparison, a conventional slide valve plate and one in which ZrO 2 completely stabilized with Al 2 O 3 or CaO is inset and thermally sprayed are shown. The tests included a thermal shock test and an erosion test. The thermal shock test heated the plate with an oxygen-acetylene flame. At this time, the surface temperature of the plate is
Adjust the temperature to 1700℃, heat the plate sliding surface and molten steel passage hole for 5 minutes, and let it cool for 30 minutes.
The operation was performed once. This operation was repeated and the number of rotations until cracks appeared on the plate surface and the number of times until peeling was observed in some areas were compared. The test was stopped after 20 repetitions. The erosion test was conducted using an induction furnace at 1650°C for 4 hours to compare the amount of erosion caused by molten steel in the molten steel passage hole. The amount of erosion was measured after the test was completed. The quality and test results of the slide plate according to the present invention and the conventional slide plate are shown. Table 1 shows the thermal shock test results of a thermally sprayed coating on the sliding surface of a slide valve plate. Conventional products without thermal spray coating are also shown. 3-10 mol%
ZrO 2 partially stabilized with MgO has better thermal shock resistance than other conventional products. Table 2 shows the results of an erosion test of the molten steel passage hole of the slide valve plate. Product 1 of the present invention is a dense sintered body of MPSZ. Others were formed by thermal spraying. It is clear from this that the parts of this invention have better corrosion resistance than conventional products.
【表】【table】
【表】
以上、耐熱衝撃性、耐食性の面で本発明品は従
来のスライドバルブプレートよりも格段にすぐ
れ、実際の使用においても3倍以上の耐用が期待
できる。[Table] As described above, the product of the present invention is significantly superior to conventional slide valve plates in terms of thermal shock resistance and corrosion resistance, and can be expected to last more than three times as long in actual use.
第1図ないし第3図は従来のスライドバルブに
関するものであつて、第1図はスライドバルブ開
孔時の縦断面模式図、第2図は同じくスライドバ
ルブ開孔時の縦断面模式図、第3図は同じくスラ
イドバルブプレートの損傷状況を示す平面模式図
であり、第4図は本発明に係るスライドバルブプ
レートの構造概略を示す2例で、a及びbそれぞ
れ平面図と縦断面図を示す。図中、10は摺動プ
レート本体、11は溶鋼通過孔成形体、12は摺
動面溶射膜である。
Figures 1 to 3 relate to conventional slide valves, in which Figure 1 is a schematic vertical cross-sectional view when the slide valve hole is open, Figure 2 is a schematic vertical cross-sectional view when the slide valve hole is open, and Figure 2 is a schematic vertical cross-sectional view when the slide valve hole is open. FIG. 3 is a schematic plan view showing damage to the slide valve plate, and FIG. 4 is a schematic plan view of the slide valve plate according to the present invention, with a and b showing a plan view and a vertical cross-sectional view, respectively. . In the figure, 10 is a sliding plate main body, 11 is a molten steel passing hole formed body, and 12 is a sliding surface thermal spray coating.
Claims (1)
のMgOで半安定化されたZrO2で被覆した溶鋼流
量制御用スライドバルブプレート。 2 前記スライドバルブプレートの摺動部全面又
は一部を被覆した特許請求の範囲第1項記載の溶
鋼流量制御用スライドバルブプレート。 3 溶鋼通過孔内周面を3〜10モル%のMgOで
半安定化されたZrO2で被覆した特許請求の範囲
第1項記載の溶鋼流量制御用スライドバルブプレ
ート。[Claims] 1. 3 to 10 mol% of the low-expansion ceramic body
Slide valve plate for controlling the flow rate of molten steel coated with ZrO 2 semi-stabilized with MgO. 2. The slide valve plate for controlling the flow rate of molten steel according to claim 1, wherein the sliding portion of the slide valve plate is entirely or partially covered. 3. The slide valve plate for controlling the flow rate of molten steel according to claim 1, wherein the inner peripheral surface of the molten steel passage hole is coated with ZrO 2 semi-stabilized with 3 to 10 mol% MgO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14694382A JPS5964580A (en) | 1982-08-26 | 1982-08-26 | Slice valve plate for molten steel flow controll |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14694382A JPS5964580A (en) | 1982-08-26 | 1982-08-26 | Slice valve plate for molten steel flow controll |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5964580A JPS5964580A (en) | 1984-04-12 |
JPS6152118B2 true JPS6152118B2 (en) | 1986-11-12 |
Family
ID=15419075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14694382A Granted JPS5964580A (en) | 1982-08-26 | 1982-08-26 | Slice valve plate for molten steel flow controll |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5964580A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6141456U (en) * | 1984-08-10 | 1986-03-17 | 新日本製鐵株式会社 | High corrosion resistance sliding nozzle device |
JPS62148062A (en) * | 1985-12-23 | 1987-07-02 | Sumitomo Chem Co Ltd | Sliding nozzle plate for continuous casting |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501344A (en) * | 1973-05-11 | 1975-01-08 | ||
JPS512897A (en) * | 1974-06-26 | 1976-01-10 | Nippon Denso Co | JIDOSHAYO JIDOTEISOKUSOKOSOCHI |
JPS55121970A (en) * | 1979-01-04 | 1980-09-19 | Commw Scient Ind Res Org | Partially stabilized zirconia ceramic |
-
1982
- 1982-08-26 JP JP14694382A patent/JPS5964580A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501344A (en) * | 1973-05-11 | 1975-01-08 | ||
JPS512897A (en) * | 1974-06-26 | 1976-01-10 | Nippon Denso Co | JIDOSHAYO JIDOTEISOKUSOKOSOCHI |
JPS55121970A (en) * | 1979-01-04 | 1980-09-19 | Commw Scient Ind Res Org | Partially stabilized zirconia ceramic |
Also Published As
Publication number | Publication date |
---|---|
JPS5964580A (en) | 1984-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4179046A (en) | Refractory plate for slide closures of metallurgical vessels | |
US4877705A (en) | Plasma spray coated ceramic bodies and method of making same | |
US4182466A (en) | Wear part for sliding gates and process for the production of such wear parts and sliding gate with such wear parts | |
RU2146186C1 (en) | Part of refractory material used at casting steel and method for making such part | |
CN101839643A (en) | Enhancement type fire-proof crucible for smelting titanium alloy | |
JPS5919067B2 (en) | High durability casting nozzle | |
US5681499A (en) | Method and compositions for making refractory shapes having dense, carbon free surfaces and shapes made therefrom | |
KR20190050766A (en) | A roller for a roller furnace having at least one coating on its surface | |
CA2242243C (en) | Nozzle for use in continuous casting of steel | |
US5094692A (en) | Gas impermeable coating for a refractory article | |
JPS6224178B2 (en) | ||
JPS6152118B2 (en) | ||
US4268015A (en) | Bottom outlet or discharge for use in metallurgical vessels for steel melts, particularly tundishes | |
USRE33700E (en) | Parts subject to wear which come into contact with metal melts | |
EP0818259A1 (en) | Nozzle for use in continuous casting of steel | |
JPH0338027B2 (en) | ||
CN101839642B (en) | Fire-clay crucible capable of reacting thermal stress and being suitable for melting alloy with high activity | |
JPH09301782A (en) | Ceramic fiber formed article excellent in molten nonferrous metal resistance and its manufacture | |
JPS589887A (en) | Sliding nozzle plate brick for molten metal flow rate control and manufacture | |
US20230001472A1 (en) | An exchangeable nozzle for a nozzle changer system, a method for manufacturing such a nozzle, a nozzle changer system comprising such a nozzle and a tundish comprising such a nozzle changer system | |
CA1143939A (en) | Bottom outlet in metallurgical vessels used for molten steel | |
JPH0437466A (en) | Non-calcined plate brick for sliding nozzle | |
KR20000043949A (en) | Preparation method of fireproof material plate for injecting melted metal | |
KR100544063B1 (en) | sliding plate refractory for flow controling of molten metal | |
JP3692387B2 (en) | Manufacturing method of sliding gate plate |