JPS615201A - Forming method of optical element - Google Patents

Forming method of optical element

Info

Publication number
JPS615201A
JPS615201A JP12456184A JP12456184A JPS615201A JP S615201 A JPS615201 A JP S615201A JP 12456184 A JP12456184 A JP 12456184A JP 12456184 A JP12456184 A JP 12456184A JP S615201 A JPS615201 A JP S615201A
Authority
JP
Japan
Prior art keywords
optical
optical element
refractive index
spherical
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12456184A
Other languages
Japanese (ja)
Inventor
Tetsushi Nose
哲志 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12456184A priority Critical patent/JPS615201A/en
Publication of JPS615201A publication Critical patent/JPS615201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To form an optical element equivalent to an optical element having non-plane and aspherical functional surfaces easily with a high precision by forming both faces of optical materials into plane or spherical surfaces and giving a refractive index distribution to these surface layers and polishing them into plane or spherical surfaces. CONSTITUTION:For example, both faces of optical materials are formed into plane or spherical surfaces, and the refractive index distribution where the refractive index value accords with the depth is given to surfaces layers of optical materials by ion exchange or the like. Both faces of optical materials are polished into plane or spherical surface to form functional surfaces as optical faces. An ion exchange layer different by the length from the optical axis is formed on surface layers of the optical element obtained in this manner.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光学素子の作成方法に関し、特に屈折率の不均
一分布を有する光学素子の作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an optical element, and particularly to a method for manufacturing an optical element having a non-uniform distribution of refractive index.

〔従来技術〕[Prior art]

一般に、光学系において用いられている光学素子たトエ
ばレンズ、プリズムまたは反射鏡等においては、光が透
過または反射す名画(以下「機能面」という場合がある
)が平面または球面に形成されている。そして、この様
な光学素子を構成する光学材料としては実質上均一な屈
折率を有するものが用いられている。従って、光学素子
に所望の光学性能を付与するためには、光学材料の屈折
率。
In general, optical elements used in optical systems, such as lenses, prisms, or reflectors, have a flat or spherical surface that transmits or reflects light (hereinafter sometimes referred to as a "functional surface"). There is. As the optical material constituting such an optical element, one having a substantially uniform refractive index is used. Therefore, in order to impart desired optical performance to an optical element, the refractive index of the optical material must be adjusted.

機能面の曲率半径及び各機能面間の位置関係を適宜設定
することが行なわれる。しかるに、これらの光学素子は
各種の光学的収差を有し、光学系において所望の光学性
能を得ることが困難な場合がある。
The radius of curvature of the functional surfaces and the positional relationship between the functional surfaces are appropriately set. However, these optical elements have various optical aberrations, and it may be difficult to obtain desired optical performance in an optical system.

そこで、最近では特定の光学的収差の除去された光学素
子を得るため、機能面を非平面且つ非球面形状に形成す
ることが行なわれる様になっている。ところが、この種
の光学素子の作成は平面または球面の機能面のみを有す
る光学素子の作成に比べ著しく困難である。即ち、平面
または球面の光学面を形成する技術に関しては長い歴史
においてノウハウが確立されておシ光の波長以下のオー
ダーの精度を実現することができる一方で、非球面の光
学面を形成する技術に関しては最終的に光字面とする工
程の前工程である光学材料の研削やダイレクトプレス等
にj?いてはある程度の精度で非球面を形成し得るもの
の最終的に光学面とする工程において所望の形状にコン
トロールするとと即ち光の波長以下のオーダーの精度を
実現Jることは現状では確立されているとはいえない。
Therefore, recently, in order to obtain an optical element from which specific optical aberrations have been removed, functional surfaces have been formed into non-planar and aspherical shapes. However, creating this type of optical element is significantly more difficult than creating an optical element having only a flat or spherical functional surface. In other words, while the know-how for forming flat or spherical optical surfaces has been established over a long history and can achieve precision on the order of less than the wavelength of light, the technology for forming aspherical optical surfaces is Regarding grinding of optical materials, direct pressing, etc., which are the pre-processes for the final process of forming optical surfaces. Although it is possible to form an aspherical surface with a certain degree of accuracy, it is currently established that controlling the desired shape in the final process of forming an optical surface can achieve precision on the order of less than the wavelength of light. I can't say that.

従って、現在のところ非平面且つ非球面の機能面を有す
る光学素子は厳しい精度を要求されないものや極〈限ら
れた形状のものが作成されているにすぎない。この様な
光学素子の具体例としてシュミットプレートが例示でき
る。
Therefore, at present, optical elements having non-planar and aspherical functional surfaces are only produced that do not require strict precision or have extremely limited shapes. A specific example of such an optical element is a Schmidt plate.

一方、光学材料に屈折率分布を与え、これにより光学的
効果を得ている光学素子として、いわゆるセルフォック
レンズがある。これは光の進行する方向と垂直な方向に
屈折率分布を与えて光の集束効果を実現するものである
。そして、との様なセル7オツクレンズの光透過面を球
面に形成した光学素子も既に提案されている(Micr
o OpticsNews 、 Mol 、 1 + 
A3 r Oct 、 1,983. pl、26−)
。これら光学素子によれば、光透過面が平面またけ球面
であっても、屈折率分布が一様な毘学材刺を用いて非平
面且つ非球面の光学素子を形成したと同等の光学性能が
発帰できる。
On the other hand, there is a so-called selfoc lens as an optical element that provides an optical material with a refractive index distribution and thereby obtains an optical effect. This provides a refractive index distribution in a direction perpendicular to the direction in which light travels, thereby achieving a light focusing effect. Furthermore, an optical element in which the light transmitting surface of the cell 7 lens is formed into a spherical surface has already been proposed (Micr
o OpticsNews, Mol, 1+
A3 r Oct, 1,983. pl, 26-)
. According to these optical elements, even if the light transmitting surface is a flat or spherical surface, the optical performance is equivalent to that of a non-planar and aspheric optical element formed using a bibacterial material with a uniform refractive index distribution. can return.

しかしながら、実効的tiJj折率分布付与は一般に光
学材料の表面から比較的浅い(1−=−2tm程度)部
分迄し2か行なうことができないので、口径が小さい光
学素子の°局舎には有効であるが大l」径の光学素子の
場合にはその効果は著1−.. <小さいものとなる。
However, since effective tiJj refractive index distribution can generally only be applied from the surface of the optical material to a relatively shallow area (approximately 1-=-2 tm), it is not effective for optical elements with small apertures. However, in the case of an optical element with a large l'' diameter, the effect is significantly 1-. .. <It becomes small.

従って、上記のセルフォックレンズな丁j化蚊的小さし
へ口径にて使用されているにすぎない、っ〔発明の目的
〕 本発明は、以上の如き従来技術に&み、)f1折率分布
が一様なイす料を用いて作成さ九る任意の大きさの非平
面且つ非球面の機能面を有する光学素子と同等の光学性
能を有する光学素子を簡便且つ高精度に作成することを
目的とする。
Therefore, the above-mentioned Selfoc lens is only used with an aperture that is as small as the aperture. To easily and highly accurately produce an optical element having optical performance equivalent to that of an optical element having a non-planar and aspherical functional surface of arbitrary size, which is produced using a material with uniform distribution. With the goal.

〔発明の要旨〕[Summary of the invention]

本発明によれば、以上の如き目的は、光学素子の光透過
面または元反射面を形成すべき光学(オ刺の対応部分の
うちの少なく2も1つの部分を平面または球面に形成し
、次いで該光学材料の上記平面または球面に深さに応じ
た屈折率値を有する屈折率分布を与え、次いで上記平面
または球面を平面または球面研摩して光学面とすること
Kより達成される。
According to the present invention, the above-mentioned object is to form at least two or one of the corresponding parts of the optical element (optical part) into a flat or spherical surface to form the light transmitting surface or the original reflective surface of the optical element, Next, the above-mentioned plane or spherical surface of the optical material is provided with a refractive index distribution having a refractive index value depending on the depth, and then the above-mentioned plane or spherical surface is polished to form an optical surface.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しながら本発明作成方法の実施例を説
明する。
Embodiments of the production method of the present invention will be described below with reference to the drawings.

第1図(&)及び(b)は本発明の光学素子の作成方法
の第1の実施例を示す概略断面図である。
FIGS. 1(&) and 1(b) are schematic cross-sectional views showing a first embodiment of the method for producing an optical element of the present invention.

先ず、第1図(a)に示される如く、光学材料の両面を
球面に形成する。この両面の部分に光学素子の機能面が
形成される。光学材料としてはガラスが用いられ、球面
の形成は例えばダイヤモンドバイト等による研削にょシ
行なうことができる。この工程においては両球面は未だ
光学面には形成されていないが、その面精度は例えば1
μm程度となし得る。この工程の終了後、両球面には0
.5〜1.0μm程度の表面粗さ及びマイクロクラック
が存在する。
First, as shown in FIG. 1(a), both surfaces of an optical material are formed into spherical surfaces. Functional surfaces of the optical element are formed on both surfaces. Glass is used as the optical material, and the spherical surface can be formed by grinding with, for example, a diamond cutting tool. In this process, both spherical surfaces have not yet been formed into optical surfaces, but the surface accuracy is, for example, 1.
It can be on the order of μm. After this process, both spheres have 0
.. Surface roughness and microcracks of about 5 to 1.0 μm are present.

次に、光学材料の表面層のイオン交換を行なう。Next, ion exchange of the surface layer of the optical material is performed.

このイオン交換はたとえば第2図に示される様に行なわ
れる。即ち、イオン交換槽10中に硝酸カリウム等の塩
類12を収容して該イオン交換槽10を周囲からヒータ
ー14で加熱して塩類12を溶融せしめる。該イオン交
換槽10内の溶融塩12中に光学材料16を浸漬する。
This ion exchange is performed, for example, as shown in FIG. That is, salts 12 such as potassium nitrate are stored in an ion exchange tank 10, and the ion exchange tank 10 is heated from around it with a heater 14 to melt the salts 12. Optical material 16 is immersed in molten salt 12 in ion exchange tank 10 .

この際、光学材料16は支持体18上に載置せしめられ
る。かくして適宜の時間保持することによシ、光学材料
16の表面層に含まれるイオンと溶融塩12中のイオン
とがイオン交換せしめられ、これにより光学材料16の
表面層の屈折率が変化する1゜光学材料であるがラスに
はNs、  +K  +Cs  。
At this time, the optical material 16 is placed on the support 18. By holding it for an appropriate period of time, the ions contained in the surface layer of the optical material 16 and the ions in the molten salt 12 are ion-exchanged, thereby changing the refractive index of the surface layer of the optical material 16.゜It is an optical material, but the lath has Ns, +K +Cs.

汁 L++TI  等のイオンが含まれており、これらに対
しイオン交換のために使用される塩類としてはKNO3
,AgNO3,TlNO3、K2SO3,TI2so4
が例示でき、溶融によシイオンを生ずる。これらのイオ
ンが光学材料中に含まれた場合には屈折率の大きさは一
般にNa(K (Cs  (Ag  (TI  となる
It contains ions such as L++TI, and the salts used for ion exchange are KNO3.
, AgNO3, TlNO3, K2SO3, TI2so4
For example, when melted, ions are produced. When these ions are included in an optical material, the refractive index generally becomes Na(K(Cs(Ag(TI)).

従って、Na  を含む光学材料のNa  をT1  
とイオン交換せしめた場合には光学材料の屈折率は大き
くなり、Ag  を含む光学材料のAg  をK とイ
オン交換せしめた場合には光学材料の屈折率は小さくな
る。
Therefore, the Na of the optical material containing Na is T1
When ions are exchanged with K, the refractive index of the optical material increases. When Ag of an optical material containing Ag is ion-exchanged with K, the refractive index of the optical material decreases.

第1図(、)における点線は以上の如きイオン交換によ
シ屈折率が変化した表面層の屈折率分布を示す等屈折率
線である。図にも示される通り、屈折率は表面からの深
さに応じた値となる。尚、かくして屈折率の変化せしめ
られる深さは表面から1〜2m程度まで十分に可能であ
る。
The dotted lines in FIG. 1 (,) are equirefractive index lines showing the refractive index distribution of the surface layer whose refractive index has been changed by ion exchange as described above. As shown in the figure, the refractive index varies depending on the depth from the surface. Incidentally, the depth at which the refractive index can be changed in this manner is sufficiently possible to be about 1 to 2 m from the surface.

次に、第1図0)における光学材料の両球面を球面に研
削及び研摩して光学面とし機能面を形成し、第1図(b
) K示される如き光学素子を得る。図に示される様に
、得られた光学素子の表面層には光軸からの距離により
異なるイオン交換層が形成されている。従って、この光
学素子は全体的に均一な光学材料からなる非球面レンズ
即ち第3図に示される如きレンズと同等の光学性能を有
する。
Next, both spherical surfaces of the optical material in Fig. 1 (b) are ground and polished to form an optical surface and a functional surface is formed.
) An optical element as shown in K is obtained. As shown in the figure, ion exchange layers that differ depending on the distance from the optical axis are formed on the surface layer of the obtained optical element. Therefore, this optical element has optical performance equivalent to that of an aspheric lens made of a uniform optical material throughout, ie, a lens as shown in FIG.

かくして得られる光学素子の非球面効果について具体的
に説明する。
The aspherical effect of the optical element thus obtained will be specifically explained.

第1図(、)において、Slは屈折率分布を付与する前
の左側球面であシ、この球面の曲率半径R1を301I
I11とし、この球面の有効径を30陽とする。
In Fig. 1 (,), Sl is the left-hand spherical surface before giving the refractive index distribution, and the radius of curvature R1 of this spherical surface is 301I
I11, and the effective diameter of this spherical surface is 30 positive.

また、屈折率分布が次式で表わされる様に付与されると
する。
It is also assumed that the refractive index distribution is given as expressed by the following equation.

Δn(A= 0.1 exp(6,908・ρ)(ここ
で、ρは表面からの深さをあられし、Δnは均一な屈折
率部分との屈折率差をあられす) 第1図(b)に示される様に、研削及び研摩によシ左側
球面を曲率半径R2が33.72676mの機能面S2
として形成したとする。面S1を面S2に加工すること
によJayに関し光軸方向に薄くなる量δ8は次の様に
なる。
Δn (A = 0.1 exp (6,908・ρ) (here, ρ is the depth from the surface, and Δn is the refractive index difference with the uniform refractive index part) Figure 1 ( As shown in b), by grinding and polishing, the left spherical surface is turned into a functional surface S2 with a radius of curvature R2 of 33.72676 m.
Suppose we form it as . By processing the surface S1 into the surface S2, the amount δ8 by which Jay becomes thinner in the optical axis direction is as follows.

δ工=a4,22ci7e J欝2677τF−(30
−J「7F) これをいくつかの点について数値表示すると、次の様に
なる。
δ engineering=a4,22ci7e J欝2677τF-(30
-J "7F" When this is expressed numerically at several points, it becomes as follows.

yの位置その光路長変化OPDは次の様になる。The optical path length change OPD at the y position is as follows.

これをいくつかの点について数値表示すると、次の様に
なる。
If this is expressed numerically at several points, it will look like this:

かくして、光学素子の機能面s2が球面であるにもかか
わらず屈折率の均一な材料で非平面且つ非球面を形成し
たと同様な効果が得られる。そして、この様な光学素子
を均一な屈折率(n=1.5)分布の光学材料で作成し
た場合には、第3図に示される様に面S2からの光軸に
平行な方向のずれ賢δは次の様に表わせる。
Thus, although the functional surface s2 of the optical element is a spherical surface, the same effect can be obtained as if the functional surface s2 of the optical element were made of a material with a uniform refractive index and was made non-planar and aspherical. When such an optical element is made of an optical material with a uniform refractive index (n=1.5) distribution, the deviation from the surface S2 in the direction parallel to the optical axis as shown in FIG. Ken δ can be expressed as follows.

OPD =δX(n−1)=0.5Xδ・°・δ=2X
OPD これをyのいくつかの点について数値表示すると次の様
になる。
OPD = δX (n-1) = 0.5X δ・°・δ=2X
OPD When this is expressed numerically for several points of y, it becomes as follows.

第3図に示される如く、y=0における点とy;15に
おける点を結ぶ球面を考え、これを参照球面S3とする
。参照球面S3の曲率半径R3は33.9694881
mとなる。コノ参照球面s3を基準にした等価非球面の
光軸方向の変位置δ8は次の様になる。
As shown in FIG. 3, consider a spherical surface connecting the point at y=0 and the point at y;15, and define this as the reference spherical surface S3. The radius of curvature R3 of the reference spherical surface S3 is 33.9694881
m. The displacement position δ8 of the equivalent aspherical surface in the optical axis direction with respect to the reference spherical surface s3 is as follows.

δ、 = 33.9694881− J正6948η耳
F−(3172676−OI刀兄7F:メーδ)これを
いくつかの点について数値表示すると、次の様になる。
δ, = 33.9694881-J Positive 6948η Ear F- (3172676-OI Katanai 7F: Me δ) When this is expressed numerically for several points, it becomes as follows.

以上の如き光学素子の作成工程において、第1図(IL
)の形状から第1図(b)の形状へと加工する際には研
削工程におけるマイクロクラックが除去され、また上記
の如ぐ研削工程終了時における表面粗さが1μm程度あ
ってもイオン交換層の深さは1〜21111程度であ)
上記表面粗さ1μmに比べ十分大きいので、得られた光
学素子の光路長への影響は殆んどなく、光学性能上問題
はない。
In the manufacturing process of the optical element as described above, FIG. 1 (IL
) to the shape shown in Figure 1(b), microcracks in the grinding process are removed, and even if the surface roughness is about 1 μm at the end of the grinding process as described above, the ion exchange layer The depth is about 1~21111)
Since the surface roughness is sufficiently larger than the above-mentioned surface roughness of 1 μm, there is almost no influence on the optical path length of the obtained optical element, and there is no problem in terms of optical performance.

第4図(a)及び(b)は本発明の光学素子作成方法の
第2の実施例を示す概略断面図である。本実施例におい
ては上記第1の実施例と光学素子の形状のみ異なる。即
ち、第4図(11)に示される如く平行平板ガラスから
なる光学材料をイオン交換処理し、第4図(b)に示さ
れる如き両方の機能面が凹球面の光学素子を得ている。
FIGS. 4(a) and 4(b) are schematic cross-sectional views showing a second embodiment of the optical element manufacturing method of the present invention. This embodiment differs from the first embodiment only in the shape of the optical element. That is, as shown in FIG. 4(11), an optical material made of parallel flat glass is subjected to ion exchange treatment to obtain an optical element with both functional surfaces having concave spherical surfaces as shown in FIG. 4(b).

第5図(a)及び(b)は本発明の光学素子作成方法の
第3の実施例を示す概略断面図である。本実施例におい
ても上記第1の実施例と光学素子の形状のみ異なる。即
ち、先ず光学材料を研削等により第5図(、)に示され
る如く両凸球面形状に形成し、これをイオン交換処理し
、第5図(b)に示される如き一方の機能面が平面で且
つ他方の機能面が凸球面の光学素子を得ている。
FIGS. 5(a) and 5(b) are schematic cross-sectional views showing a third embodiment of the optical element manufacturing method of the present invention. This embodiment also differs from the first embodiment only in the shape of the optical element. That is, first, an optical material is formed into a biconvex spherical shape as shown in FIG. 5(a) by grinding, etc., and this is subjected to ion exchange treatment, so that one functional surface is flat as shown in FIG. 5(b). In addition, an optical element is obtained in which the other functional surface is a convex spherical surface.

以上の実施例においては光学材料としてガラスを用いた
が、本発明においてはその他プラスチックまたは結晶等
の材料を使用し得る。
Although glass was used as the optical material in the above embodiments, other materials such as plastic or crystal may be used in the present invention.

また、以上の実施例においてはイオン交換処理前の平面
または球面形成工程において研削が行なわれているが、
本発明においてはダイレクトゾレスによる表面をそのま
ま用いてもよい。
Furthermore, in the above examples, grinding is performed in the flat or spherical surface forming process before the ion exchange treatment, but
In the present invention, the surface formed by Direct Soles may be used as is.

尚、イオン交換処理前の平面または球面形成工程におい
て光学面を形成せしめてもよく、これによれば光学的精
度にて面形成ができるので、最終製品における非球面量
を極めて精確なものとすることができる。
Incidentally, an optical surface may be formed in the flat or spherical surface forming step before the ion exchange treatment, and since this allows the surface to be formed with optical precision, the amount of aspheric surface in the final product can be extremely accurate. be able to.

また、以上の実施例においては光学材料の屈折率を変化
させる手段としてイオン交換法を用いたが、本発明にお
いてはその他電界移入法1分子スタッフィング法、相分
離法、 CVD法、プラズマCVD法、 VkD法、拡
散共重合法、フォトケミカル法等の他の屈折率変化手段
を用いることができる。
In addition, in the above embodiments, an ion exchange method was used as a means to change the refractive index of the optical material, but in the present invention, other methods such as electric field transfer method, single molecule stuffing method, phase separation method, CVD method, plasma CVD method, Other refractive index changing means such as the VkD method, diffusion copolymerization method, and photochemical method can be used.

また、以上の実施例においては光学素子としてレンズを
例示したが、本発明により作成される光学素子としては
その他プリズムまたはマンノンミラー等が例示できる。
Further, in the above embodiments, a lens is exemplified as an optical element, but other examples of the optical element produced by the present invention include a prism, a mannon mirror, and the like.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明方法によれば、光学素子の表面形状加
工において極めて容易且つ正確な平面または球面加工工
程と光学材料の表面層の屈折率を変化せしめる工程とを
組合わせることによって、均一な屈折率分布を有する光
学材料で作成された非球面の機能面を有する光学素子と
同等の高精度の光学性能をもつ任意の大きさの光学素子
を簡便に得ることができる。
According to the method of the present invention as described above, uniform refraction can be achieved by combining an extremely easy and accurate plane or spherical processing step with a step of changing the refractive index of the surface layer of the optical material in processing the surface shape of an optical element. It is possible to easily obtain an optical element of any size that has high-precision optical performance equivalent to that of an optical element having an aspherical functional surface made of an optical material having an index distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は本発明方法の工程を示す断面
図であり、第2図はイオン交換工程の断面図であシ、第
3図は本発明方法により得られる光学素子と同等の光学
性能をもつ非球面レンズの断面図である。第4図(、)
及び(b)、及び第5図(、)及び(b)は本発明方法
の工程を示す断面図である。 第1図(0) y 第3図 第4図<a) 第4図(b) 第5図(0) 第5図(b)
1(a) and (b) are cross-sectional views showing the steps of the method of the present invention, FIG. 2 is a cross-sectional view of the ion exchange step, and FIG. 3 is a cross-sectional view of the optical element obtained by the method of the present invention. FIG. 3 is a cross-sectional view of an aspheric lens with equivalent optical performance. Figure 4 (,)
and (b), and FIGS. 5(a) and 5(b) are cross-sectional views showing the steps of the method of the present invention. Figure 1 (0) y Figure 3 Figure 4 <a) Figure 4 (b) Figure 5 (0) Figure 5 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)光学素子の半透過面または光反射面を形成すべき
光学材料の対応部分のうちの少なくとも1つの部分を平
面または球面に形成し、次いで該光学材料の上記平面ま
たは球面に深さに応じた屈折率値を有する屈折率分布を
与え、次いで上記平面または球面を平面または球面研摩
して光学面とすることを特徴とする、光学素子の作成方
法。
(1) Form at least one of the corresponding parts of the optical material that is to form the semi-transmissive surface or the light-reflecting surface of the optical element into a flat or spherical surface, and then add a depth to the flat or spherical surface of the optical material. A method for producing an optical element, characterized in that a refractive index distribution having a corresponding refractive index value is provided, and then the flat or spherical surface is polished to form an optical surface.
JP12456184A 1984-06-19 1984-06-19 Forming method of optical element Pending JPS615201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12456184A JPS615201A (en) 1984-06-19 1984-06-19 Forming method of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12456184A JPS615201A (en) 1984-06-19 1984-06-19 Forming method of optical element

Publications (1)

Publication Number Publication Date
JPS615201A true JPS615201A (en) 1986-01-11

Family

ID=14888524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12456184A Pending JPS615201A (en) 1984-06-19 1984-06-19 Forming method of optical element

Country Status (1)

Country Link
JP (1) JPS615201A (en)

Similar Documents

Publication Publication Date Title
US5909529A (en) Method of manufacturing planar gradient-index waveguide lenses
IL139038A (en) Precision double-sided aspheric elements
EP3083215B1 (en) Reusable castings molds and method of making such molds
US3563057A (en) Method for making multifocal lens
CN102490103A (en) Meniscus lens and processing method therefor
WO2000033121A1 (en) Microlens structure having two anamorphic surfaces on opposing ends of a single high index substrate and method of fabricating the same
JPH1148258A (en) Tool for molding diffraction surface of optical lens and its manufacture
US20050122601A1 (en) Prism and method for producing the same
JPH07191207A (en) Reflection type composite optical element
JPS615201A (en) Forming method of optical element
CN111151978A (en) Precision machining process of integrated metal pyramid reflector
Venkatesh Precision manufacture of spherical and aspheric surfaces on plastics, glass, silicon and germanium
Pollicove Survey of present lens molding techniques
JPS614001A (en) Formation of optical element
JPS5939527A (en) Plastic lens
JPS5933415A (en) Lens and its production
US2685821A (en) Method of producing light refracting optical elements having aspherically curved optical interfaces
JP2012532829A5 (en) Meniscus lens made of synthetic quartz glass and manufacturing method thereof
JP2949956B2 (en) Mold for forming optical element and optical element
JPH0442641B2 (en)
JP2004010399A (en) Method for manufacture glass molding
JPS61198111A (en) Production of optical waveguide substrate
JPH05301723A (en) Method for forming optical element
Sanger Perspective on precision machining, polishing, and optical requirements
JP2661449B2 (en) Manufacturing method of aspherical molded lens