JPS5939527A - Plastic lens - Google Patents
Plastic lensInfo
- Publication number
- JPS5939527A JPS5939527A JP15020482A JP15020482A JPS5939527A JP S5939527 A JPS5939527 A JP S5939527A JP 15020482 A JP15020482 A JP 15020482A JP 15020482 A JP15020482 A JP 15020482A JP S5939527 A JPS5939527 A JP S5939527A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- effective diameter
- lenses
- plastic
- outside
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00932—Combined cutting and grinding thereof
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Lens Barrels (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はプラスチックレンズに関し、背、粘度を必要と
する光学機器、例えはρ、精度のtlQ51釘′、カメ
ラ交検レンズ、光学センサー用レンズ等に用いられるプ
ラスチックレンズに餉する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to plastic lenses, and is suitable for plastic lenses used in optical devices that require height and viscosity, such as ρ, precision tlQ51 nails, camera inspection lenses, lenses for optical sensors, etc. Cook.
本発明はプラスチックレンズの実有効什外に設けられた
レンズの光6?方向の両側又は片I11に延びたπえ状
の軟部の外周を心乗り加工することにより、熱による曲
面の変形のない高精度のプラスチックレンズを得ること
を目的とする。The present invention provides light from a lens provided outside the actual effective area of the plastic lens. The object of the present invention is to obtain a high-precision plastic lens whose curved surface is not deformed by heat by centering the outer periphery of a curved soft part extending on both sides of the direction or on the piece I11.
従来、ガラス材を用いたレンズの製造工程は通常、プレ
ス相等を荒摺、砂かけ、研磨、心取り等2
の名工稈がある。Conventionally, the manufacturing process of lenses using glass materials usually involves two master craftsmen's processes such as roughening, sanding, polishing, centering, etc. of the press phase.
第1Fはガラスレンズ(1)で、上記の製造工程に従い
、ガラスレンズ(1)の両曲面(1a)、(lb)を夫
々側工程で単独に研トし、研磨完了後レンズを両側より
チャッキングし、これを高速で回転せしめ、両凸Th(
la)、(lb)の光軸を自1゛的に一致させ、その共
逆のツ(:Hに対し、高い精度でこれと平行に外径を、
仕上げ、その直径を所定の寸法に仕上げるのが心情り作
艷である。The 1st F is a glass lens (1). According to the manufacturing process described above, both curved surfaces (1a) and (lb) of the glass lens (1) are individually polished in each side process, and after polishing is completed, the lens is chucked from both sides. King, rotate it at high speed, and make a biconvex Th(
The optical axes of la) and (lb) are automatically aligned, and the outer diameter is parallel to the opposite axis (:H) with high precision.
Finishing and making the diameter to the specified size is the work of the heart.
一方近年、プラスチックレンズの?JmM 筐が種々開
発され、これが大量に使用されるり向になりつつあるが
、プラスチック材はガラス材に比べ、屈折率が一般的に
は低く、従ってレンズ設計上その曲率半径が必要以上に
小さくなり、戒や至難であり、且つ湿度変化に対し屈折
率が不安定であり。On the other hand, in recent years, plastic lenses? JmM Various types of housings have been developed, and they are becoming used in large quantities, but plastic materials generally have a lower refractive index than glass materials, so the radius of curvature is smaller than necessary for lens design. , which is a precept and extremely difficult, and the refractive index is unstable with respect to changes in humidity.
又吸湿性もあり、膨張率も大きく、且つ硬度も低く傷つ
き易い等々、材質的には本質的な欠点を有している。し
かし、プラスチック材はP(めてP金−安価に且つ大量
に供給出来る利点を有するので、高度の精度を要しない
場合、使用目的・使川場所P、3
等の如何に依っては充分に使用に堪える。例えば、単レ
ンズでファインダー又はルーペとし、又3〜4枚紅合せ
て低倍率の望達鋳や顕p釧とし、史に複お・枚の組合せ
で低級なカメラにも適用されている。この高度の精度を
要しないプラスチックレンズは、低コストで供給する目
的のため、通常成型したままの形状で使用されるが、プ
ラスチックレンズは上記辿り、レンズ材としては本質的
な欠点を有する素材で製作されている他に、その成型工
程上、不可避な次のような欠点をも併せ有している。In addition, it has inherent disadvantages as a material, such as being hygroscopic, having a large expansion coefficient, and being easily damaged due to its low hardness. However, plastic materials have the advantage of being inexpensive and can be supplied in large quantities, so if a high degree of precision is not required, depending on the purpose of use, the location of use, etc. It is suitable for use.For example, it can be used as a finder or magnifying glass with a single lens, or it can be used as a low-magnification Bodatsu cast or microscope lens by combining 3 or 4 lenses, and it has also been used in low-grade cameras with a combination of multiple lenses. Plastic lenses, which do not require a high degree of precision, are usually used in the as-molded form for the purpose of supplying them at low cost. In addition to being made from a material that has the same properties as the original, it also has the following unavoidable drawbacks due to its molding process.
プラスチックレンズの製造工程は、上記ガラスレンズの
通常の製造工程と異なり、レンズの両凸面と外径が同時
に完成されてしまう点であり、これこそプラスチックレ
ンズが低コストで大量に供給出来る所以であるが、反面
レンズの形状に関しその精度を倍下させている。The manufacturing process for plastic lenses differs from the normal manufacturing process for glass lenses in that the biconvex surfaces and outer diameter of the lens are completed at the same time, and this is the reason why plastic lenses can be supplied in large quantities at low cost. However, the accuracy is doubled due to the shape of the lens.
すなわち、第2 pl−第5図に示すように、(2)、
(3)は凸レンズ、(4)は凹レンズで、凸レンズ(2
)、(3)凹レンズ(4)は夫々インジ5
エクション成型される。第5図は凹レンズ(4)の側面
図で、点線で示す(6)は実有効径で、(7)は実有効
径(6)に対しその外側に充分余裕をもって形成したレ
ンズ有効径である(実有効径(6)、レンズ有効径(7
)の中間は通常透明であるが不透明にすることもある)
。CD面がパーティングラインで固定型と可動型の接触
面であり、成型後離型を容易にするためレンズ有効径(
7)の外側部は図示せる如く充分なる抜き勾配(12)
を付すのが通常である。従って、成型されたままのプラ
スチック・レンズの最外径は尖端状をなしており、更に
その一部に湯注入用ゲートロの切り残り部(5)が残存
していることになる。That is, as shown in 2nd pl-Figure 5, (2),
(3) is a convex lens, (4) is a concave lens, and convex lens (2
), (3) The concave lenses (4) are each indica 5 injection molded. Figure 5 is a side view of the concave lens (4), where (6) indicated by the dotted line is the actual effective diameter, and (7) is the lens effective diameter formed with sufficient margin outside of the actual effective diameter (6). (Actual effective diameter (6), lens effective diameter (7)
) is usually transparent, but can be made opaque)
. The CD surface is the parting line and is the contact surface between the fixed mold and the movable mold, and the lens effective diameter (
7) has sufficient draft angle (12) as shown in the figure.
It is usual to add . Therefore, the outermost diameter of the as-molded plastic lens has a pointed shape, and furthermore, the uncut portion (5) of the hot water pouring gate remains in a part of the outermost diameter.
第6図はレンズ(2)を成型する金型の要部断面図でこ
の金型は固定形(E′)、可動型(F’)、レンズ有効
径(7)を成型する入子部(E)、(F)を夫々備えて
いる。この入子部(E)、(F)の外径は夫々の両凸面
の有効径(6)と同一寸法に仕上げ、その一端面を図示
せる如く夫々の曲面の曲率半径(設計値)と波長の数分
の一稈度以内の6
精度に1面仕上げし、これを固定型(E′)、可動型(
F/)の夫々の所定位置に嵌合せしめ、且つレンズの中
心肉厚が所定の値になる如く固定して成型する。この入
子部(E)、(F)単体の製造に際しては、発―性のな
い且つ異物の混入もない分子構造の枠めて安定した素材
を選定し、先づ外径をレンズの有効径(7)と同一寸法
に仕上げ、次にその外径を基準としてその一端面を所定
の曲率と高粘度で一致するまで荒研磨、中研磨、炉入焼
戻(東中空が望ましい)等、調質し、更に最終的に1面
仕上研磨を行うが、その結果入子部の外径の中心線と1
面仕上げした曲面の光軸とが高精度で一致していること
は保証出来ない。それはガラスレンズの心疹枠業の如く
、入子の一端面を鋳面仕上げ後、他端面を平面仕上げし
、これに対し心数作業を行い、その外径をレンズの有効
径(7)寸法に仕上げることは一般には困難であるから
である。更に、入子部と夫々の金型との嵌合及び両金型
の合ぜ端に於ける製造説差等も加算され、例えは凸レン
ズ(2)に於て、尖端状をなしている最外径の中心線、
両凸面の光軸の三者が高精度で一致していることは一層
保証困難であることは明らかである。Figure 6 is a sectional view of the main parts of the mold for molding the lens (2). E) and (F) are provided. The outer diameters of the nested parts (E) and (F) are finished to the same dimensions as the effective diameters (6) of their respective biconvex surfaces, and the radius of curvature (design value) and wavelength of each curved surface are One side is finished to an accuracy of 6 degrees within a fraction of a culm degree, and this is used as a fixed type (E') and a movable type (E').
F/), and are fixed and molded so that the center thickness of the lens becomes a predetermined value. When manufacturing these nesting parts (E) and (F), we first select a material with a stable molecular structure that is non-caustic and free of foreign matter, and first set the outer diameter to the effective diameter of the lens. Finish to the same dimensions as (7), and then, using the outer diameter as a reference, rough polish, medium polish, furnace tempering (east hollow is preferable), etc. on one end surface until the specified curvature and high viscosity match. The center line of the outer diameter of the nesting part and the
It cannot be guaranteed that the optical axis of the finished curved surface matches with high precision. This is similar to the core frame work for glass lenses, where one end surface of the insert is finished with a cast surface, the other end surface is finished with a flat surface, and then the outer diameter is determined by the effective diameter (7) of the lens. This is because it is generally difficult to achieve the desired result. Furthermore, manufacturing tolerances in the fit between the nesting part and the respective molds and the mating ends of both molds are also added. For example, in a convex lens (2), the tip of the tip center line of outer diameter,
It is clear that it is even more difficult to guarantee that the three optical axes of the biconvex surfaces coincide with each other with high precision.
従って、精度を要しない場合には成型したままの形状で
ゲート口のみを切断して使用するが、精度を要する単レ
ンズ又は複数個組合せて使用する等の場合は、成型徒レ
ンズの実有効径(6)とその外側に設けられたレンズ有
効径(7)との中間部を両側よりチャッキングしく心出
し中ここにはキズが生ずることがある)。心取り加工を
行い。Therefore, if precision is not required, use the molded shape with only the gate opening cut, but if precision is required, such as using a single lens or a combination of multiple lenses, the actual effective diameter of the molded lens. (6) and the lens effective diameter (7) provided on the outside thereof may be scratched during centering by chucking from both sides). Perform centering processing.
その外径の中心線を両凸面の光軸と高精度で一致する如
く仕上げる必要がある。It is necessary to finish the center line of the outer diameter so that it coincides with the optical axis of both convex surfaces with high precision.
今、第6図の如く成型されたプラスチックレンズ(2)
に於て、心れJ工を適用し、尖端状のレンズ外径部(G
)に対し心数切削を行うと、プラスチック材の場合はガ
ラス材の場合より切削熱は高く、その高熱のためレンズ
の実有効径部(6)の曲面の形状が変形する心配がある
。Now, the plastic lens (2) is molded as shown in Figure 6.
In this process, we applied the centering J process to create a pointed lens outer diameter (G
), the cutting heat is higher for plastic materials than for glass materials, and there is a risk that the shape of the curved surface of the actual effective diameter portion (6) of the lens may be deformed due to the high heat.
このように、高精度のプラスチックレンズとして使用す
る場合はそのままの状態では使用不可能P、7
であり必ず心取り加工をする必要が有り、その心取り加
工において従来の形状では下記の様な欠点を有する。In this way, when used as a high-precision plastic lens, it cannot be used as is, and must be center-centered, and the conventional shape has the following drawbacks during center-centering processing. has.
1)心取り加工時はレンズ有効径(7)に近い部分を切
削加工するため、切削による熱変形により曲面の設計値
を忠実に保持出来ない。1) During centering, a portion close to the lens effective diameter (7) is cut, so the design value of the curved surface cannot be faithfully maintained due to thermal deformation due to cutting.
2)複数個のレンズを組合せ使用の場合、レンズ相互間
隔を高精度に保持するため高l′lIJ度の別部品を必
要とする。2) When a plurality of lenses are used in combination, a separate component with a high degree of l'IJ is required to maintain the distance between the lenses with high precision.
3)通常の成型プラスチックレンズは外周が尖端状をな
しているため組立後レンズの倒れ(傾き)の原因となる
。3) Ordinary molded plastic lenses have a pointed outer periphery, which causes the lens to fall (tilt) after assembly.
そこで本発明は上述の欠点に鑑み、これを解消すべくな
されたもので、以下、本発明の実施例を第7図以下の図
面を参照して詳細に説明する。In view of the above-mentioned drawbacks, the present invention has been made to solve this problem.Embodiments of the present invention will now be described in detail with reference to FIG. 7 and the subsequent drawings.
従来例と同一部品には同−勾号を付して説明を省略する
。Components that are the same as those in the conventional example are given the same sign and their description will be omitted.
第7図は凸レンズ(10)で、この凸レンズ(10)は
プラスチック材で成形され、実有効径(6)並びにレン
ズ有効径(7)が設けられている。FIG. 7 shows a convex lens (10), which is molded from a plastic material and has an actual effective diameter (6) and a lens effective diameter (7).
また、凸レンズ(10)の周縁に目面側に環状の縁部(
13)が一体的に成形されている。この縁部(13)の
外周を光軸方向の切取1i+(8)の位置で心取り加工
すれば、発熱部はレンズ(10)の実有効径(6)より
−Cれているため、実有効径(6)内の曲面の変形は完
全に防止出来、レンズ形状の点では設計値を忠実に保持
できる。In addition, an annular edge (
13) are integrally molded. If the outer periphery of this edge (13) is centered at the position of cut 1i + (8) in the optical axis direction, the heat generating part is located -C from the actual effective diameter (6) of the lens (10), so the actual Deformation of the curved surface within the effective diameter (6) can be completely prevented, and the design value can be faithfully maintained in terms of lens shape.
第8図は凹レンズ(11)を示し、同様に縁部(13)
が成型されている。Figure 8 shows a concave lens (11), and similarly the edge (13).
is molded.
このレンズを複数組合せて使用する場合、第9図の如く
複数個のレンズ(x4)、(15)t(16)を組合せ
、レンズ枠(17)に修め込み、固定ネジ(18)で固
定している。その時、それ等レンズ(14)s (15
) s (16)の相互間隔を高精度に保持せしめるた
め、上記心最輻工時に外径仕上げと同時に、その縁部(
13)の両端面を光軸に直角の切取線(9)で切削すれ
は、その端面よりその端面側のレンズの頂点までの距離
を、切削熱の影響をレンズの実有効径(6)内に及はさ
ぬように、高精度に仕上げることも可能てP、9
あり、別部品を使用せずにレンズ間隔を保持出来る。When using a combination of multiple lenses, as shown in Figure 9, combine multiple lenses (x4), (15) and (16), fit them into the lens frame (17), and secure them with the fixing screws (18). ing. At that time, they are lenses (14)s (15
) s (16) in order to maintain the mutual spacing with high precision, the edges (
When cutting both end faces of 13) along the perpendicular cutting line (9) to the optical axis, the distance from that end face to the vertex of the lens on that end face side must be kept within the actual effective diameter (6) of the lens. It is also possible to finish the lens with high precision so that it does not deteriorate, and the lens spacing can be maintained without using separate parts.
更に、尖端状をなしている通常の成型プラスチック・レ
ンズをレンズ枠(17)に嵌合せしめた場合、両者の嵌
合はラインコンタクトとなるため、レンズの倒れの(傾
き)原因となる場合もあるが上記辿りに設けた縁部(1
3)は、その巾は任意に長く決定出来るので、両者を嵌
合せしめた場合レンズの傾き情は従来に比べはるかに少
なくできる。Furthermore, when an ordinary molded plastic lens with a pointed shape is fitted into the lens frame (17), the fitting between the two forms a line contact, which may cause the lens to fall (tilt). However, the edge provided in the above trace (1
As for 3), since the width can be determined arbitrarily long, when the two are fitted together, the inclination of the lens can be much reduced compared to the conventional case.
尚、1部は上記実施例に限らず、光軸方向の片側のみに
延びるように設′けてもよいものである。Note that the first part is not limited to the above embodiment, and may be provided so as to extend only on one side in the optical axis direction.
本発明は上述のように構成され、環状の縁部を設けたた
め、心No工の際、発生する熱がレンズの実有効径に形
勢を与えず、実有効径内の曲面の変形を完全に防止でき
、レンズの設計ゲ(を忠実に保持できる。The present invention is constructed as described above, and since the annular edge is provided, the heat generated during core numbering does not affect the actual effective diameter of the lens, and the deformation of the curved surface within the actual effective diameter is completely suppressed. It is possible to prevent this and maintain the design of the lens faithfully.
また、複数個のレンズを組合せる場合にも、縁部を切削
することにより、従来のように別部品を使用せずに各レ
ンズの間隔を保持することができ11.10
また、レンズの傾き量を少なくできる等の効果がある。In addition, when combining multiple lenses, by cutting the edges, the distance between each lens can be maintained without using separate parts as in the past11.10 Also, the inclination of the lens It has the effect of reducing the amount.
第1図は従来のガラス製凸レンズの断面図、第2図、及
び第3図は従来のプラスチック成型レンズの凸レンズ、
第4図は凹レンズの断面図、
第5図は従来のプラスチック成型レンズの側面図、
第6図は凸レンズを成型する金型の要部断面図、第7図
以下は本発明の実施伊1を示し、第7図は本発明を適用
した凸レンズの断面図、第8図は他の実施例である凹レ
ンズの断面図、第9図は同複数個のレンズを組合せた場
合の断面図である。
(6) −−−−−−実有効径
(7)・・・・・・レンズ有効径
(10)・・・・・・凸レンズ
(11)・・・・・・凹レンズ
ど−□−
136−Figure 1 is a sectional view of a conventional convex glass lens, Figures 2 and 3 are convex lenses of conventional plastic molded lenses, Figure 4 is a sectional view of a concave lens, and Figure 5 is a side view of a conventional plastic molded lens. Figure 6 is a cross-sectional view of the main parts of a mold for molding a convex lens, Figure 7 and the following figures show implementation example 1 of the present invention, Figure 7 is a cross-sectional view of a convex lens to which the present invention is applied, and Figure 8 is FIG. 9 is a cross-sectional view of a concave lens according to another embodiment, and is a cross-sectional view when a plurality of the same lenses are combined. (6) -------Actual effective diameter (7)...Lens effective diameter (10)...Convex lens (11)...Concave lens -□- 136-
Claims (1)
るプラスチックレンズ。This plastic lens is characterized by leaving ample margin outside the actual effective diameter of the lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15020482A JPS5939527A (en) | 1982-08-30 | 1982-08-30 | Plastic lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15020482A JPS5939527A (en) | 1982-08-30 | 1982-08-30 | Plastic lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5939527A true JPS5939527A (en) | 1984-03-03 |
Family
ID=15491795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15020482A Pending JPS5939527A (en) | 1982-08-30 | 1982-08-30 | Plastic lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939527A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6114617A (en) * | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | Plastic lens |
US5068126A (en) * | 1988-03-04 | 1991-11-26 | Sharp Kabushiki Kaisha | Process for producing graphite electrodes |
US5169508A (en) * | 1988-03-04 | 1992-12-08 | Sharp Kabushiki Kaisha | Graphite electrode |
JP2002200653A (en) * | 2000-12-28 | 2002-07-16 | Konica Corp | Method for manufacturing optical element, and optical element |
FR2835931A1 (en) * | 2002-02-12 | 2003-08-15 | Marc Delery | Thermoplastic spectacle lens manufacturing procedure consists of injection molding between female and male components to form disc with peripheral web and crown |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151902A (en) * | 1980-04-25 | 1981-11-25 | Konishiroku Photo Ind Co Ltd | Plastic lens |
-
1982
- 1982-08-30 JP JP15020482A patent/JPS5939527A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151902A (en) * | 1980-04-25 | 1981-11-25 | Konishiroku Photo Ind Co Ltd | Plastic lens |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6114617A (en) * | 1984-06-29 | 1986-01-22 | Konishiroku Photo Ind Co Ltd | Plastic lens |
US5068126A (en) * | 1988-03-04 | 1991-11-26 | Sharp Kabushiki Kaisha | Process for producing graphite electrodes |
US5169508A (en) * | 1988-03-04 | 1992-12-08 | Sharp Kabushiki Kaisha | Graphite electrode |
JP2002200653A (en) * | 2000-12-28 | 2002-07-16 | Konica Corp | Method for manufacturing optical element, and optical element |
FR2835931A1 (en) * | 2002-02-12 | 2003-08-15 | Marc Delery | Thermoplastic spectacle lens manufacturing procedure consists of injection molding between female and male components to form disc with peripheral web and crown |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6622599B1 (en) | Precision double-sided aspheric element | |
US2314838A (en) | Optical lens and similar device | |
CN102490103B (en) | Meniscus lens and processing method therefor | |
JP3664522B2 (en) | Optical element molding die, optical element molding method, and optical element | |
CN1228166A (en) | Method of manufacturing contact lenses | |
US5067800A (en) | Composite optical article and method of manufacture thereof | |
JPH01124818A (en) | Lens array for information reading | |
JPS5939527A (en) | Plastic lens | |
JP2000258732A (en) | Spectacle lens and its production | |
US3109696A (en) | Method of making plastic lenses | |
JPH0486723A (en) | Polyhedral mirror and production thereof | |
JP2974644B2 (en) | Catadioptric optical lens and method of manufacturing the same | |
CN109807696A (en) | A kind of processing method of low centering error meniscus lens | |
US3936154A (en) | Short focal length large aperture optical system | |
JPS63217301A (en) | Compound lens | |
EP0356204A2 (en) | Laminated lens | |
EP0278638B1 (en) | Improved lens | |
JPH07117143A (en) | Mold lens | |
JPS59168413A (en) | Spectacles and its adjusting method | |
JPS62196613A (en) | Aspheric lens | |
TWI427447B (en) | System and method for slanted aspherical lens machining | |
JPH0656437A (en) | Forming of glass raw material for aspherical lens | |
JP2008020547A (en) | Lens, lens molding metal mold, and manufacturing method of lens molding metal mold | |
JPH10138290A (en) | Manufacture of optical plastic article | |
JP2002097025A (en) | Material for molding optical element and method of molding optical element using the same |