JPS6151616B2 - - Google Patents

Info

Publication number
JPS6151616B2
JPS6151616B2 JP6030982A JP6030982A JPS6151616B2 JP S6151616 B2 JPS6151616 B2 JP S6151616B2 JP 6030982 A JP6030982 A JP 6030982A JP 6030982 A JP6030982 A JP 6030982A JP S6151616 B2 JPS6151616 B2 JP S6151616B2
Authority
JP
Japan
Prior art keywords
alloy
alloys
mentioned
metal
aluminum fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6030982A
Other languages
Japanese (ja)
Other versions
JPS58177425A (en
Inventor
Yukio Kuramasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP6030982A priority Critical patent/JPS58177425A/en
Publication of JPS58177425A publication Critical patent/JPS58177425A/en
Publication of JPS6151616B2 publication Critical patent/JPS6151616B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はAl−Cu−Si−Mg系合金を製造する過
程で混入するCaを除去し、健全なる鋳造体を製
造できる上記合金の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing Al--Cu--Si--Mg based alloys, which removes Ca mixed in during the process of producing the alloys and can produce sound cast bodies.

熱機関、電気機関等のピストン、プーリ、軸受
およびシリンダブロツク等の部品は強度、耐熱
性、耐摩耗性がありしかも熱膨張係数が小さく、
圧力漏れがなく、加工表面の精度のよいこと等が
要求されている。これらの部品の素材合金として
はAl−Cu−Si−Mg系合金が使用され、増々その
使用量が多くなつている。このようなAl−Cu−
Si−Mg系合金は通常Cu0.5〜5.0%(以下重量%
を表わす。)、Si6〜20%、Mg0.3〜4.0%、を含有
し、さらに必要に応じて、上記の合金および該合
金によつて製造された鋳造体の諸性質を向上させ
るために種々の元素たとえばNi、Mn等を若干量
添加配合されているものである。JIS8種鋳物用ア
ルミニウム合金は上記したAl−Cu−Si−Mg系合
金の代表的なもので、上記した部品の製造に多く
使用されている。
Parts such as pistons, pulleys, bearings, and cylinder blocks of heat engines, electric engines, etc. have strength, heat resistance, and wear resistance, and have a small coefficient of thermal expansion.
It is required that there be no pressure leaks and that the machined surface has high precision. Al--Cu--Si--Mg alloys are used as material alloys for these parts, and their usage is increasing. Such Al−Cu−
Si-Mg alloys usually have a Cu content of 0.5 to 5.0% (hereinafter referred to as weight%).
represents. ), Si 6 to 20%, Mg 0.3 to 4.0%, and if necessary, various elements such as It contains a small amount of Ni, Mn, etc. JIS class 8 aluminum alloy for casting is a typical example of the above-mentioned Al-Cu-Si-Mg alloys, and is often used for manufacturing the above-mentioned parts.

上記したAl−Cu−Si−Mg系合金の各元素は溶
製原材料としてこれらの元素の金属単体もしくは
母合金のかたちで溶解添加し調整されているが、
該合金はこれらの元素の他にも上記の合金を製造
する過程で、上記の原材料および治工具等より混
入するCa、Fe等の不純物元素を含有する。従来
よりこれらの不純物元素がどのように鋳造体に影
響するか研究されており、特にCaの影響は種々
明らかにされている。例えばAl−Cu−Si−Mg系
合金の初晶Siを微細化するためにPを添加した場
合は、このPは合金中に存在するCaと反応して
所望の安定した微細化効果が得れず耐摩耗性等の
機械的特性を低下させてしまうこと、またCaは
鋳巣の形態に影響し、鋳造体全体に鋳巣を分散し
て該鋳造体を加工した際に切削面に鋳巣が露出し
平滑面が得れず、また分散した鋳巣が鋳造体内部
で連絡し合つているような場合には圧力漏れとい
う現象となつて現われること等が知られている。
Each element of the above-mentioned Al-Cu-Si-Mg alloy is prepared by melting and adding these elements as raw materials in the form of single metals or master alloys.
In addition to these elements, the alloy contains impurity elements such as Ca and Fe that are mixed in from the raw materials, jigs, and tools mentioned above during the process of manufacturing the alloy. Studies have been conducted on how these impurity elements affect cast bodies, and the effects of Ca in particular have been clarified in various ways. For example, when P is added to refine primary Si in an Al-Cu-Si-Mg alloy, this P reacts with Ca present in the alloy and the desired stable refinement effect cannot be obtained. Ca reduces mechanical properties such as wear resistance, and also affects the morphology of porosity, causing porosity to be dispersed throughout the casting and forming porosity on the cut surface when the casting is machined. It is known that if an exposed, smooth surface cannot be obtained, and if dispersed blowholes communicate with each other inside the cast body, a phenomenon called pressure leakage will occur.

従つて当該Al−Cu−Si−Mg系合金のCa含有量
は可及的少量であることが好ましいが、通常一般
には15〜20ppm以下を目安として製造されてい
る。
Therefore, it is preferable that the Ca content of the Al--Cu--Si--Mg alloy is as small as possible, but it is generally manufactured with a content of 15 to 20 ppm or less as a guideline.

上記した如くAl−Cu−Si−Mg系合金で製造さ
れた鋳造体に少量で影響の顕著なCaは、主に合
金元素の一つであるSiの溶製原料となる金属Siよ
り混入するものであつて、このためにこの金属Si
は金属Siの製造工程で種々脱Ca処理されている
が完全除去がむづかしく相当量のCaを含んでい
る。従つてこの金属Si中の未除去Caは上記の合
金の溶製過程で除去するのが好ましく、そのため
今までは当該合金の溶製に使用する原材料たとえ
ば金属Al、銅母合金、金属Si、およびスクラツプ
等をたとえば溶解炉等の炉に装入し、原材料を溶
解した後溶湯中に塩素ガスを吹き込んで溶湯中の
Caを除去し、しかる後溶湯中に金属Mgまたは
Mg母合金の如きMg原材料を添加溶解し、除滓等
の各種附随作業を施して所望するCa含有量の低
い上記の合金を溶製してきた。しかしながら上述
した従来方法は脱Ca処理に塩素ガスを使用する
ため機器に腐食を生じ、機器の保全に多大の努力
を払う必要があつた。また環境公害対策上塩素ガ
スを使用することができず、それ故上記の低Ca
合金の入手に支障をきたす場合も生じ、新規な脱
Ca方法を採用した新しいAl−Cu−Si−Mg系合金
の製造法の開発が強く要望されている。
As mentioned above, Ca, which has a noticeable effect in small amounts on cast bodies manufactured from Al-Cu-Si-Mg alloys, is mainly mixed in from metal Si, which is the raw material for melting Si, which is one of the alloying elements. For this reason, this metal Si
Although various Ca removal treatments are used in the manufacturing process of metal Si, it is difficult to completely remove Ca and it contains a considerable amount of Ca. Therefore, it is preferable to remove the unremoved Ca in the metal Si during the melting process of the above-mentioned alloys. For example, scrap etc. are charged into a furnace such as a melting furnace, and after melting the raw materials, chlorine gas is blown into the molten metal to dissolve the molten metal.
After removing Ca, metal Mg or
The above-mentioned alloys with the desired low Ca content have been melted by adding and melting Mg raw materials such as Mg master alloys and performing various incidental operations such as slag removal. However, the above-mentioned conventional method uses chlorine gas for Ca removal treatment, which causes corrosion in the equipment, requiring great efforts to maintain the equipment. In addition, due to environmental pollution measures, chlorine gas cannot be used, so the above-mentioned low Ca
In some cases, it may be difficult to obtain alloys, and new
There is a strong demand for the development of a new method for producing Al-Cu-Si-Mg alloys using the Ca method.

発明者は上記した実情に対応すべく種々検討し
た結果、弗化アルミニウムカリウムに脱Ca能の
あることを見出し、Al−Cu−Si−Mg系合金の有
効なCaの除去法を開発し、当該合金の効果的な
製造法を完成した。
As a result of various studies in response to the above-mentioned circumstances, the inventor discovered that potassium aluminum fluoride has the ability to remove Ca, and developed an effective method for removing Ca from Al-Cu-Si-Mg alloys. Completed an effective method for manufacturing alloys.

すなわち本発明は、Al−Cu−Si−Mg系合金を
溶製するにあたり使用する上記元素を含む溶製原
材料の溶湯に弗化アルミニウムカリウムもしくは
弗化アルミニウムカリウムと弗化アルミニウムと
を反応させ、上記溶湯中のCa含有量を低減し
て、低Ca含有量のAl−Cu−Si−Mg系合金を製造
するものである。
That is, the present invention allows potassium aluminum fluoride or potassium aluminum fluoride and aluminum fluoride to react with a molten raw material containing the above-mentioned elements used in melt-manufacturing an Al-Cu-Si-Mg alloy. The purpose is to reduce the Ca content in the molten metal to produce an Al-Cu-Si-Mg alloy with a low Ca content.

本発明の方法で製造されるAl−Cu−Si−Mg系
合金の元素は先にも説明したようにCu0.5〜5.0
%、Si6〜20%、Mg0.3〜4.0%、を必須に含有す
るもので、さらに必要に応じてNi、Mn等の任意
元素を例えばNi0.3〜3.0%、Mn0.1〜1.5%、含有
したものである。
As explained earlier, the elements of the Al-Cu-Si-Mg alloy produced by the method of the present invention are Cu0.5 to 5.0.
%, Si6~20%, Mg0.3~4.0%, and further optionally contains optional elements such as Ni and Mn, for example, Ni0.3~3.0%, Mn0.1~1.5%, It contains.

上記組成の合金を溶製する際に使用する溶製原
材料たとえば金属Al、銅母合金、金属Siおよびス
クラツプ等をたとえば溶解炉等の炉に装入し、該
原材料を溶解した後該溶湯中にフオスクオライザ
ー等によつて脱Ca用溶剤として弗化アルミニウ
ムカリウムまたは弗化アルミニウムカリウムと弗
化アルミニウムとを添加し、撹拌するとこれらの
溶剤は溶湯中のCaと選択的に反応して高溶融点
の弗化カルシウムを形成し、該溶湯中のCaを滓
として該溶湯より分離除去するものであつて、し
かる後該溶湯中へ金属MgまたはMg母合金の如き
Mg原材料を添加溶解して合金組成を調整する
と、塩素ガス処理を要さない低Ca含有量のAl−
Cu−Si−Mg系合金を溶製することができる。上
記の脱Ca用溶剤の添加温度は炉内の原材料が溶
解している温度であればいかような温度でもよい
が、通常は750℃〜850℃であり、その最高温度は
経済上の点から930℃程度である。また上述の如
く添加した脱Ca用溶剤は当該合金溶湯面上を覆
い、Alおよび合金元素の酸化損失を減少する。
特にMg原材料の添加溶解は上記の溶剤の添加前
にすることもできるが、Mgの歩留が多少悪くな
るので、上述の如く当該溶剤の添加後、しかも脱
Ca処理後の浮滓を除去した後に行う方が好まし
い。また上記の脱Ca用溶剤を添加する時期は、
所要の原材料のうちCa含有量の高い原材料を溶
解して、Ca濃度の高い合金溶湯で行うと、効率
よくCaを除去できて好ましい。
The molten raw materials, such as metal Al, copper master alloy, metal Si, and scrap used when melting the alloy having the above composition, are charged into a furnace such as a melting furnace, and after the raw materials are melted, they are added to the molten metal. Potassium aluminum fluoride or potassium aluminum fluoride and aluminum fluoride are added as a solvent for removing Ca using a fusqualizer, etc., and when stirred, these solvents selectively react with Ca in the molten metal, resulting in a high melting point. Calcium fluoride is formed, and Ca in the molten metal is separated and removed from the molten metal as slag, and then metal Mg or Mg master alloy, etc. is added to the molten metal.
By adding and dissolving Mg raw materials to adjust the alloy composition, Al− with low Ca content that does not require chlorine gas treatment
Cu-Si-Mg alloy can be produced. The temperature at which the above Ca removal solvent is added may be any temperature as long as the raw materials in the furnace are melted, but it is usually between 750°C and 850°C, and the maximum temperature is determined from an economical point of view. The temperature is about 930℃. Further, the Ca removing solvent added as described above covers the surface of the molten alloy, reducing oxidation loss of Al and alloying elements.
In particular, the Mg raw material can be added and dissolved before the addition of the above-mentioned solvent, but since the yield of Mg will be slightly lower,
It is preferable to perform this after removing the floating dregs after Ca treatment. Also, the timing of adding the above-mentioned Ca removal solvent is
It is preferable to melt a raw material with a high Ca content among the required raw materials and use a molten alloy with a high Ca concentration, since Ca can be efficiently removed.

ここで弗化アルミニウムカリウムと共に弗化ア
ルミニウムを添加すると弗化アルミニウムカリウ
ム単味の場合に較らべて溶湯中のCaを効率よく
分離除去できるからであるが、これは弗化アルミ
ニウムが脱Ca反応に際して弗化アルミニウムカ
リウムおよび反応生成物に作用し、これらの一部
を溶湯中のCaと反応しやすい化合物に変成させ
るためと思われる。
This is because if aluminum fluoride is added together with potassium aluminum fluoride, Ca in the molten metal can be separated and removed more efficiently than when potassium aluminum fluoride is used alone. This seems to be because it acts on potassium aluminum fluoride and reaction products during the reaction, converting some of these into compounds that easily react with Ca in the molten metal.

以上述べたように本発明方法は塩素ガスを使用
せずにCa含有量の低いAl−Cu−Si−Mg系合金を
製造することができるとともに、安定して該合金
を供給することができ、しかも塩素ガスによる機
器の腐食も防止できて優れた効果を有する発明で
あると言える。
As described above, the method of the present invention can produce an Al-Cu-Si-Mg alloy with a low Ca content without using chlorine gas, and can stably supply the alloy. Furthermore, it can be said that this invention has excellent effects as it can prevent corrosion of equipment due to chlorine gas.

実施例 1 溶解炉内へ金属Si3.6t装入し、その上に金属
Cu270Kg、金属Ni750Kg、Alインゴツト25tを投入
し、しかる後バーナを点火してこれら溶製原材料
を溶解し、780℃に保持した。Caの含有量を測定
したところ65ppmであつた。次に脱Ca用溶剤と
して弗化アルミニウムカリウム(重量比で
KAlF4:K3AlF6=4:1、K2AlF5微量)300Kg
を溶湯上に投入した後撹拌し、上記の溶剤投入後
15分、30分、60分経過後にCa含有量を測定し
た。尚各々の測定前に脱Ca反応を促進させるた
めに撹拌した。その結果は15分後33ppm、30分
後25ppm、60分後20ppmであつた。しかる後金
属Mg405Kgを添加し溶解してJIS8種鋳物用アルミ
ニウム合金を製造した。合金組成はCu0.9%、
Si12%、Mg1.3%、Ni2.5%、Ca20ppmであり、
Ca含有量の十分低い合金を製造することができ
た。
Example 1 3.6t of metal Si was charged into the melting furnace, and metal was placed on top of it.
270Kg of Cu, 750Kg of Ni metal, and 25t of Al ingots were charged, and then the burner was ignited to melt these melted raw materials and maintained at 780°C. When the Ca content was measured, it was 65 ppm. Next, potassium aluminum fluoride (by weight) was used as a solvent for removing Ca.
KAlF 4 :K 3 AlF 6 = 4:1, K 2 AlF 5 trace amount) 300Kg
After pouring the above solvent onto the molten metal and stirring,
Ca content was measured after 15, 30, and 60 minutes. In addition, the mixture was stirred to promote the Ca removal reaction before each measurement. The results were 33 ppm after 15 minutes, 25 ppm after 30 minutes, and 20 ppm after 60 minutes. Thereafter, 405 kg of metal Mg was added and melted to produce a JIS Class 8 casting aluminum alloy. Alloy composition is Cu0.9%,
Si12%, Mg1.3%, Ni2.5%, Ca20ppm,
We were able to produce an alloy with sufficiently low Ca content.

また上記した実施例1の他の態様として上記の
実施例1に使用した溶剤240Kgに弗化アルミニウ
ム60Kgを混合した溶剤を使用して上記した実施例
と同様の条件で上記の合金を製造したところ、溶
製原材料の溶解時のCa含有量が70ppm、溶剤投
入15分後28ppm、30分後21ppm、60分後15ppm
であり、弗化アルミニウムカリウムに弗化アルミ
ニウムを混ぜた場合は脱Ca効果の大きいことが
判る。
In addition, as another aspect of the above-mentioned Example 1, the above-mentioned alloy was manufactured under the same conditions as the above-mentioned Example using a solvent in which 240Kg of the solvent used in the above-mentioned Example 1 was mixed with 60Kg of aluminum fluoride. , Ca content when melting raw materials is 70ppm, 28ppm after 15 minutes of solvent injection, 21ppm after 30 minutes, and 15ppm after 60 minutes.
It can be seen that when aluminum fluoride is mixed with aluminum potassium fluoride, the Ca removal effect is large.

Claims (1)

【特許請求の範囲】[Claims] 1 必須元素として、Cu0.5〜5.0%、Si6〜20
%、Mg0.3〜4.0%を含み、任意元素としてNiま
たは/およびMnを含有するAl−Cu−Si−Mg系
合金を溶製するにあたり、少なくとも一種以上の
上記の元素を含むAl溶湯に弗化アルミニウムカ
リウムもしくは弗化アルミニウムカリウムと弗化
アルミニウムとを反応させて、上記溶湯中のCa
含有量を低減することを特徴とするAl−Cu−Si
−Mg系合金の製造方法。
1. Cu0.5~5.0%, Si6~20 as essential elements
%, Mg0.3 to 4.0%, and optionally contains Ni or/and Mn. Potassium aluminum oxide or potassium aluminum fluoride is reacted with aluminum fluoride to remove Ca in the molten metal.
Al-Cu-Si characterized by reduced content
-Production method of Mg-based alloy.
JP6030982A 1982-04-13 1982-04-13 Manufacture of al-cu-si-mg alloy Granted JPS58177425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6030982A JPS58177425A (en) 1982-04-13 1982-04-13 Manufacture of al-cu-si-mg alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030982A JPS58177425A (en) 1982-04-13 1982-04-13 Manufacture of al-cu-si-mg alloy

Publications (2)

Publication Number Publication Date
JPS58177425A JPS58177425A (en) 1983-10-18
JPS6151616B2 true JPS6151616B2 (en) 1986-11-10

Family

ID=13138429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030982A Granted JPS58177425A (en) 1982-04-13 1982-04-13 Manufacture of al-cu-si-mg alloy

Country Status (1)

Country Link
JP (1) JPS58177425A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126744A (en) * 1984-07-16 1986-02-06 Honda Motor Co Ltd Wear resistant aluminum alloy
JPS621839A (en) * 1985-06-26 1987-01-07 Sky Alum Co Ltd Wear resistant rolled aluminum alloy plate
JPH01180938A (en) * 1988-01-12 1989-07-18 Ryobi Ltd Wear-resistant aluminum alloy
JP2703840B2 (en) * 1991-07-22 1998-01-26 東洋アルミニウム 株式会社 High strength hypereutectic A1-Si powder metallurgy alloy
CN113584334A (en) * 2021-08-12 2021-11-02 江苏库纳实业有限公司 Production process of aluminum alloy section for automobile

Also Published As

Publication number Publication date
JPS58177425A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
US3620716A (en) Magnesium removal from aluminum alloy scrap
RU2213795C1 (en) Method of production of aluminum-scandium alloying composition (versions)
NO152452B (en) PROCEDURE FOR PREPARING IRON ALLOY WITH IMPROVED PROPERTIES USING LANTHAN AND LANTHAN PRESERVATION FOR EXERCISE OF THE PROCEDURE
JPS6151616B2 (en)
CN109609803B (en) High-strength wear-resistant copper alloy material, preparation method and sliding bearing
JPH10330822A (en) Method for recovering valuable metal from industrial waste
US3421887A (en) Process for producing a magnesium-containing spherical graphite cast iron having little dross present
DE2314843C2 (en) Process for the production of vacuum treated steel for forging billets
CN110484765B (en) Aluminum bronze alloy and preparation method thereof
US2760859A (en) Metallurgical flux compositions
US2059555A (en) Alloys
US2079901A (en) Metallurgical addition agent and process
EP0691410A1 (en) Additive for treating molten metal, in particular for treating molten iron or steel
US1377374A (en) Manganese-magnesium alloy and method of making same
US3993474A (en) Fluid mold casting slag
JPS5931581B2 (en) Demagnesium treatment method for aluminum alloy
JPH0454723B2 (en)
JP4210603B2 (en) Method for removing manganese in molten cast iron and method for producing spheroidal graphite cast iron
SU1130445A1 (en) Composition of thermit mixture for welding
JP3797818B2 (en) Graphite spheroidized alloy for cast iron production
US2065534A (en) Process for improving aluminum alloy
SU1328400A1 (en) Cast iron
CA1045335A (en) Method for the centrifugal casting of metallic blanks
SU1447909A1 (en) Flux for treating post-eutectic castable aluminium-silicon alloys
CN116676518A (en) High-elongation magnesium alloy and production process thereof